• Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Imperial College London Featured Masters Courses
Anglia Ruskin University Featured Masters Courses
Swansea University Featured Masters Courses
"viruses"×
0 miles

Masters Degrees (Viruses)

We have 36 Masters Degrees (Viruses)

  • "viruses" ×
  • clear all
Showing 1 to 15 of 36
Order by 
The objectives of this course are to equip those intending to pursue a career in academic or industrial research with the required knowledge and skills, and to provide a solid foundation for those who aim to go on to study at PhD level. Read more

Overview

The objectives of this course are to equip those intending to pursue a career in academic or industrial research with the required knowledge and skills, and to provide a solid foundation for those who aim to go on to study at PhD level.

During the course you will develop an in-depth understanding of the structure and function of viruses and the processes of viral infection and viral diseases at the molecular level.

The course also provides training in laboratory and research skills in a supportive learning environment.

Two parts of the course:

The course is comprised of two parts, a taught component, which is given over the first two terms (approximately 5 months) and a full-time laboratory based research project (7 months) which is carried out over the remainder of the session. The taught component is comprised of lectures, laboratory practical’s, tutorials and student presentations and covers the most important aspects of viruses and viral diseases under the 6 topic headings.

Testing of the knowledge acquired is through a combination of written examinations, assessed coursework in the form of laboratory write-ups and essays (Element 2), and the individual research project dissertation and viva (Element 2).

Course content

Introductory Core Lecture Programme

Virus Architecture and Virus Interactions with Cells

Virus Genomes, Gene Expression and Replication

Host Responses to Virus Infection

Diagnosis, Vaccines and Therapies

Epidemiology, Transmission and Evolution of Viruses

You can apply online

http://www.imperial.ac.uk/study/pg/apply/how-to-apply/

Read less
The taught Infection Biology MSc will help you to develop your knowledge and understanding of the molecular mechanisms by which bacteria, viruses and parasites cause disease in humans and in domesticated animals, and the immune responses generated by these hosts to such pathogens. Read more

The taught Infection Biology MSc will help you to develop your knowledge and understanding of the molecular mechanisms by which bacteria, viruses and parasites cause disease in humans and in domesticated animals, and the immune responses generated by these hosts to such pathogens. You can choose to specialise in virology, microbiology (bacteriology) or parasitology.

Why this programme

  • This postgraduate degree in Infection Biology allows you to study in an institute housing two UK national centres of excellence in Virology and Parasitology, and active in the Scottish Infection Research Network (SlRN), a key clinical focus on healthcare-related research.
  • You will work in the laboratories of internationally recognised infection biology researchers, conducting high quality basic, translational and clinical science.
  • This MSc in Infection Biology provides access to a combination of highly specialised equipment, unique in Scotland, including cutting edge in vitro and invivo research facilities for biological imaging, high content screening microscopy, and a state of the art polyomics facility bringing together metabolomics, proteomics, genomics, transcriptomics, and the integration of data sets with bioinformatics.
  • You can attend guest lectures and workshops from scientists and clinicians working in the pharmaceutical, diagnostic and biotechnology fields.
  • You can carry out a research project in an internationally recognised centre of excellence, working with world-leading researchers in infection biology.
  • This MSc Infection Biology integrates infection biology with cutting edge molecular and cellular techniques, and offers breadth in covering bacteria, viruses and parasites.
  • Students can opt to specialise in one of the three areas of infection biology, and will graduate with a named specialism, i.e. MSc Infection Biology (Microbiology), MSc Infection Biology (Parasitology) or MSc Infection Biology (Virology).
  • Optional courses allow students to develop their interests. These are
  • Diagnostic Technologies and Devices
  • Drug Discovery
  • Animal Models of Disease
  • Current Trends and Challenges in Biomedical Research and Health
  • Technology Transfer and Commercialisation of Bioscience Research
  • Emerging Viruses
  • Omics Technologies for Biomedical Sciences
  • Bioimaging.
  • We have excellent opportunities to engage with industrial and clinical scientists, and with guest lecturers from the pharmaceutical industry, medical diagnostic laboratories and bioscience business.
  • Students have the opportunity to carry out a research project in an internationally recognised centre of excellence, working with world-leading researchers in the field of infection biology.

Programme structure

The MSc programme will consist of five taught courses and a project or dissertation, spread over 11-12 months. Three courses are compulsory, and two are chosen from a series of options.

The PgDip programme will consist of five taught courses, spread over 7-8 months, with three compulsory courses and two chosen from a series of options.

The PgCert programme consists one core taught course over 3-4 months.

Core courses and project

  • Host-pathogen Interactions and Immune Responses to Infection
  • Molecular Research Skills
  • Designing a Research Project: Biomedical Research Methodology
  • Infection Biology Research Project (laboratory based in Virology, Parasitology, or Microbiology)

Optional courses

  • Drug Discovery
  • Diagnostic Technologies and Devices
  • Animal Models of Disease
  • Current Trends and Challenges in Biomedical Research and Health
  • Technology Transfer and Commercialisation of Bioscience Research
  • Emerging Viruses
  • Omics Technologies for Biomedical Sciences
  • Bioimaging

Teaching and learning methods

A variety of methods are used, including lectures, tutorials, workshops, laboratories and problem-based learning. These are supplemented by a wide range of course specific electronic resources for additional learning and self assessment. As a result, you will develop a wide range of skills relevant to careers in infection biology research, diagnostics or drug development. These skills include team-working, data interpretation and experimental design. You will use primary scientific literature as an information resource.

Electronic resources

Our online resources were voted the best in the United Kingdom in the International Student Barometer in 2012, and include

  • a continually updated Moodle (virtual learning environment) with extensive additional teaching and self-assessment material.
  • over 35,000 online textbooks and e-journals available through the University library website.
  • academic databases of biological sciences and medicine.
  • animated audio visual presentations (Henry Stewart talks) by world leading experts covering many topics in infection biology.

Career prospects

About half of our MSc students enter a research career, mainly by undertaking further postgraduate research studies towards a PhD, or by working in research laboratories in clinical or academic settings, including national government laboratories.

Other students go on to work in the pharmaceutical, diagnostic or biotechnological industries.



Read less
This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. Read more

This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. The increasing incidence of microbial infections worldwide is being compounded by the rapid evolution of drug-resistant variants and opportunistic infections by other organisms. The course content reflects the increasing importance of genomics and molecular techniques in both diagnostics and the study of pathogenesis.

In response to a high level of student interest in viral infections, the School has decided to offer the opportunity for students who focus on viruses in their module and project choices to be awarded a Master's degree in Medical Microbiology (Virology). This choice will depend on the module selection of the individual student in Terms 2 and 3 and choice of project.

Graduates from this course move into global health careers related to medical microbiology in research or medical establishments and the pharmaceutical industry.

The Bo Drasar Prize is awarded annually for outstanding performance by a Medical Microbiology student. This prize is named after Professor Bohumil Drasar, the founder of the MSc Medical Microbiology course.

The Tsiquaye Prize is awarded annually for the best virology-based project report.

- Full programme specification (pdf) (https://www.lshtm.ac.uk/files/mm_progspec.pdf)

- Intercalating this course (https://www.lshtm.ac.uk/study/courses/ways-study/intercalating-study-masters-degree)

Visit the website https://www.lshtm.ac.uk/study/masters/medical-microbiology

Objectives

By the end of the course students should be able to:

- demonstrate advanced knowledge and understanding of the nature of viruses, bacteria, parasites and fungi and basic criteria used in the classification/taxonomy of these micro-organisms

- explain the modes of transmission and the growth cycles of pathogenic micro-organisms

- demonstrate knowledge and understanding of the mechanisms of microbial pathogenesis and the outcomes of infections

- distinguish between and critically assess the classical and modern approaches to the development of therapeutic agents and vaccines for the prevention of human microbial diseases

- demonstrate knowledge of the laboratory diagnosis of microbial diseases and practical skills

- carry out a range of advanced skills and laboratory techniques, including the purification of isolated microbial pathogens, study of microbial growth cycles and analyses of their proteins and nucleic acids for downstream applications

- demonstrate research skills

Structure

Term 1:

There is a one-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and course-specific sessions, followed by two compulsory modules:

- Bacteriology & Virology

- Analysis & Design of Research Studies

Recommended module: Molecular Biology

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:

Students take a total of five modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules that can be taken only after consultation with the Course Director.

- Slot 1:

Clinical Virology

Molecular Biology & Recombinant DNA Techniques

- Slot 2:

Clinical Bacteriology 1

Molecular Virology

- Slot 3:

Advanced Training in Molecular Biology

Basic Parasitology

- Slot 4:

Clincal Bacteriology 2

Molecular Biology Research Progress & Applications

- Slot 5:

Antimicrobial Chemotherapy

Molecular Cell Biology & Infection

Mycology

Pathogen Genomics

Further details for the course modules - https://www.lshtm.ac.uk/study/courses/masters-degrees/module-specifications

Project Report

During the summer months (July - August), students complete a laboratory-based original research project on an aspect of a relevant organism, for submission by early September. Projects may take place within the School or with collaborating scientists in other colleges or institutes in the UK or overseas.

The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose

Course Accreditation

The Royal College of Pathologists accepts the course as part of the professional experience of both medical and non-medical candidates applying for membership. The course places particular emphasis on practical aspects of the subjects most relevant to current clinical laboratory practice and research.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msmm.html#sixth



Read less
This course combines theoretical knowledge and practical training in the immunology of infectious diseases through comprehensive teaching and research methods. Read more

This course combines theoretical knowledge and practical training in the immunology of infectious diseases through comprehensive teaching and research methods. Students will gain specialised skills in applying scientific concepts, evaluating scientific data and carrying out modern immunological techniques. Students will benefit from the unique mix of immunology, vaccinology, molecular biology, virology, bacteriology, parasitology, mycology and clinical medicine at the School.

Infectious diseases represent an increasingly important cause of human morbidity and mortality throughout the world. Vaccine development is thus of great importance in terms of global health. In parallel with this growth, there has been a dramatic increase in studies to identify the innate, humoral or cellular immunological mechanisms which confer immunity to pathogenic viruses, bacteria, fungi and parasites. As a result, increasing numbers of scientists, clinicians and veterinarians wish to develop their knowledge and skills in these areas.

The flexible nature of the course allows students to focus on attaining a broader understanding of infectious disease through attending taught units. Students can also undertake an extended research project within groups led by experienced team leaders. Such projects can involve basic investigations of immune mechanisms or applied field based studies.

Graduates from this course go into research positions in academia and industry, and further training such as PhD study.

- Full programme specification (pdf) (https://www.lshtm.ac.uk/files/iid_progspec.pdf)

- Intercalating this course (https://www.lshtm.ac.uk/study/courses/ways-study/intercalating-study-masters-degree)

Visit the website https://www.lshtm.ac.uk/study/masters/immunology-infectious-diseases

Objectives

By the end of this course students should be able to:

- demonstrate specialist knowledge and understanding of the basic principles of host immunity to infection against the diverse range of pathogens which confront human populations

- apply this specialist knowledge to a range of practical skills and techniques, in particular modern molecular and cellular techniques for assessing immune responses to pathogens

- critically assess, select and apply appropriate research methods to investigate basic immunological mechanisms and applied issues in the immunology of infection

- critically evaluate primary scientific data and the published scientific literature

- integrate and present key immunological concepts at an advanced level, both verbally and in written form

Structure

Term 1:

There is a one-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and an introduction to major groups of pathogens, followed by two compulsory modules:

- Immunology of Infectious Diseases

- Analysis & Design of Research Studies

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:

Students take a total of five study modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules which may be taken only after consultation with the Course Directors.

*Recommended modules

- Slot 1:

Advanced Immunology 1 (compulsory)

- Slot 2:

Advanced Immunology 2 (compulsory)

- Slot 3:

Advanced Training in Molecular Biology*

Clinical Immunology*

Extended Project*

Basic Parasitology

Clinical Infectious Diseases 3: Bacterial & Viral Diseases & Community Health in Developing Countries

- Slot 4:

Extended Project*

Immunology of Parasitic Infection: Principles*

Molecular Biology Research Progress & Applications*

Clinical Infectious Diseases 4: Parasitic Diseases & Clinical Medicine

Epidemiology & Control of Communicable Diseases

Ethics, Public Health & Human Rights

Genetic Epidemiology

- Slot 5:

AIDS*

Antimicrobial Chemotherapy*

Extended Project*

Molecular Cell Biology & Infection*

Mycology*

Further details for the course modules - https://www.lshtm.ac.uk/study/masters/immunology-infectious-diseases#structure

Residential Field Trip

Towards the end of Term 1, students get the opportunity to hear about the latest, most exciting aspects of immunological research at the British Society of Immunology Congress. The cost is included in the £500 field trip fee.

Project Report

During the summer months (July - August), students complete a research project on an immunological subject, for submission by early September. Some of these projects may take place with collaborating scientists overseas or in other colleges or institutes in the UK. Students undertaking projects overseas will require additional funding of up to £1,500 to cover costs involved.

The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msiid.html#sixth



Read less
Develop a broad understanding of organisms, including bacteria, viruses, plants and humans. Gain the specialist research skills needed to prepare for your career. Read more

Develop a broad understanding of organisms, including bacteria, viruses, plants and humans. Gain the specialist research skills needed to prepare for your career.

The course focuses on the outstanding research expertise in the department, with study topics including cell and developmental biology, medical and industrial biotechnology, infection and immunity, evolution and biodiversity. You’ll be able to select from a diverse range of topics and projects, allowing you to tailor your studies.

Your studies will help you develop the skills you need to move into a wide range of careers in the sciences or to take on further research. Our graduates have an excellent employment record with companies and academic institutions across the globe.

Graduates have moved into roles with employers including the Institute of Cancer Research and Oxford Biomedica in the UK, Chembiotek in India and Tsinghua University in China.

You’ll study with some of the world’s top academics, as well as having the opportunity to attend seminars by visiting experts. Teaching methods are varied, combining hands-on laboratory work with lectures, seminars, tutorials and presentations.

Visit the website http://www.bath.ac.uk/courses/postgraduate-2018/taught-postgraduate-master-s-courses/msc-biosciences/

Why study Biology and Biochemistry with us?

- 85% of our research judged to be internationally recognised, excellent or world-leading

- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa.

Recent employers include:

Morvus-Technology Ltd

Janssen-Cilag

Royal United Hospital, Bath

Ministry of Defence

State Intellectual Property Office, Beijing

Wellcome Trust Centre for Human Genetics, Oxford University

AbCam

Salisbury Foundation Trust Hospital

BBSRC

Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/



Read less
Course description. Lead academic. Dr Martin Nicklin. This flexible course focuses on the molecular and genetic factors of human diseases. Read more

Course description

Lead academic: Dr Martin Nicklin

This flexible course focuses on the molecular and genetic factors of human diseases. Understanding those factors is crucial to the development of therapies.

Core modules cover the fundamentals. You choose specialist modules from the pathway that interests you most.

We also give you practical lab training to prepare you for your research project. The project is five months of invaluable laboratory experience: planning, carrying out, recording and reporting your own research.

Recent graduates work in academic research science, pharmaceuticals and the biotech industry.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

  • From Genome to Gene Function
  • Human Gene Bioinformatics
  • Research Literature Review
  • Human Disease Genetics
  • Modulating Immunity
  • Laboratory Practice and Statistics

Six optional pathways

Genetic Mechanisms pathway

  • Modelling Protein Interactions
  • Gene Networks: Models and Functions

Microbes and Infection pathway

  • Virulence Mechanisms of Viruses, Fungi and Protozoa
  • Mechanisms of Bacterial Pathogenicity
  • Characterisation of Bacterial Virulence Determinants

Experimental Medicine pathway

  • Molecular and Cellular Basis of Disease
  • Model Systems in Research
  • Novel Therapies

Cancer pathway

  • Molecular Basis of Tumourigenesis and Metastasis
  • Molecular Techniques in Cancer Research
  • Molecular Approaches to Cancer Diagnosis and Treatment

Cardiovascular pathway

  • Vascular Cell Biology
  • Vascular Disease: Models and Clinical Practice

Clinical Applications pathway

Apply directly to this pathway. Available only to medical graduates. Students are recruited to a specialist clinical team and pursue the taught programme (1-5) related to the attachment. They are then attached to a clinical team for 20 weeks, either for a clinical research project or for clinical observations. See website for more detail and current attachments.

Teaching and assessment

Lectures, seminars, tutorials, laboratory demonstrations, computer practicals and student presentations.

Assessment is continuous. Most modules are assessed by written assignments and coursework, although there are some written exams.

Two modules are assessed by verbal presentations.

Your research project is assessed by a thesis, possibly with a viva.



Read less
This Masters in Cancer Sciences will prepare you for a career in cancer science, whether you aim to pursue a PhD or further medical studies, or seek a career in the health services sector, in the life sciences, biotechnology or pharmaceutical industries. Read more

This Masters in Cancer Sciences will prepare you for a career in cancer science, whether you aim to pursue a PhD or further medical studies, or seek a career in the health services sector, in the life sciences, biotechnology or pharmaceutical industries. Our programme takes a 'bench to bedside' approach, enabling graduates to work within a multidisciplinary environment of world-leading scientists and cancer-specialists to address the latest challenges in cancer research.

Why this programme

  • University of Glasgow is rated in the UK top five and best in Scotland for cancer studies. You will be taught by a multidisciplinary team of world leading cancer scientists and clinicians within the Cancer Research UK Glasgow Centre.
  • This MSc in Cancer Sciences programme is unique in the UK as it delivers integrated teaching in molecular biology, pathology and clinical service.
  • The Cancer Research UK Glasgow Centre brings together scientists and clinicians from research centres, universities and hospitals around Glasgow to deliver the very best in cancer research, drug discovery and patient care. The centre’s world leading teams have made major advances in the understanding and treatment of many cancers. For more information, please visit: http://www.wecancentre.org/
  • In the first semester, each week is focused around one of the new Hallmarks of Cancer, with the focus on the molecular/cellular biology of this hallmark. A tutorial session will enable you to discuss and integrate your learning from the week. This will enable you to understand how research into the fundamental principles of cancer cell biology can translate to advances in cancer treatment.
  • The aim of this MSc in Cancer Sciences is to train cancer researchers who can break down the barriers that currently prevent discoveries at the bench from being translated into treatments at the bedside. By understanding the science, methodology and terminology used by scientists and clinicians from different disciplines, you will learn to communicate effectively in a multidisciplinary environment, to critically evaluate a wide range of scientific data and to research strategies and learn how to make a significant contribution to cancer research.

Programme structure

Semester 1: Hallmarks of Cancer

This 13 week core course aims to:

  • provide you with a critical understanding of the molecular and cellular events that drive cancer development and progression
  • demonstrate how an understanding of these events underpins current and future approaches to cancer diagnosis and treatment
  • integrate the teaching of molecular biology, cell biology, diagnosis and treatment of cancer
  • describe how all these disciplines communicate and work together in the fight against cancer
  • provide you with theoretical training in fundamental molecular and cell biology techniques used in cancer research

One week of practical training is provided at the start of the course. This course is assessed through a lab notebook, group assessment, critical essay and an exam that focuses on data analysis and interpretation.

Semester 2

In the second semester, you can choose from a range of 3 week optional courses, before taking the core course “Designing a Research Project”.

  • Drug Discovery
  • Drug Development and Clinical trials
  • Viruses and Cancer
  • Diagnostic technologies and devices
  • Technology transfer and commercialisation of bioscience research
  • Current trends and challenges in biomedical research and health

or

  • Frontiers in Cancer Sciences – 5 week optional course
  • Omic technologies for the biomedical sciences: from genomics to metabolomics - – 5 week optional course

or

  • Designing a research project: biomedical research methodology - 6 week optional course

Semester 3

Bioscience Research Project

In this 14 week core course you will:

  • have an opportunity to perform a piece of original research to investigate a hypothesis or research questions within the area of cancer research. The project may be “wet” or “dry”, depending what projects are available
  • develop practical and/or technical skills, analyse data critically and draw conclusions, and suggest avenues for future research to expand your research findings

Note: students must have a minimum of grade C in semesters 1 and 2 in order to proceed to the research project.

Career prospects

The knowledge and transferable skills developed in this programme will be suitable for those contemplating a PhD or further medical studies, those wishing to work in the health services sector, and those interested in working in the life sciences, biotechnology or pharmaceutical industries, including contract research organisations (CROs). This programme is designed for students with undergraduate degrees in the life sciences, scientists working in the pharmaceutical and biotechnology industries, and clinicians and other healthcare professionals. 



Read less
Genetics is the scientific study of inheritance and as such is a very broad research area. Within the School of Life Sciences, research in Genetics is focussed on the Institute of Genetics, most groups of which are located within the Queen's Medical Centre. Read more
Genetics is the scientific study of inheritance and as such is a very broad research area. Within the School of Life Sciences, research in Genetics is focussed on the Institute of Genetics, most groups of which are located within the Queen's Medical Centre. Projects in genetics cover a wide spectrum from population and evolutionary genetics through to molecular and biochemical genetics. They have the common aim of understanding how the genetic material achieves its functions and how it is passed down through generations. Some of the research involves classic genetic approaches including the isolation of mutants with specific phenotypes and the study of their behaviour in genetic crosses. These studies involve model organisms that include bacteria, yeasts and other fungi, Xenopus, zebrafish and mice. Other research in Genetics at Nottingham employs molecular techniques and bioinformatics to address fundamental evolutionary problems such as the evolution of AIDS viruses, the genetic changes that are associated with speciation and the evolution of transposable elements and genome structure. There also projects available in Genetics research groups who are focussing on the systems responsible for maintaining gene and genome integrity and securing accurate chromosome transmission in bacteria, archaea, yeast and vertebrates.

APPLICATION PROCEDURES

After identifying which Masters you wish to pursue please complete an on-line application form
https://pgapps.nottingham.ac.uk/
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS
http://www.nottingham.ac.uk/studywithus/international-applicants/scholarships-fees-and-finance/scholarships/masters-scholarships.aspx

Read less
Overview. Advances in molecular biology have enabled major developments in biotechnology which in turn has lead to huge advances in medicine, molecular biology and industry. Read more
Overview
Advances in molecular biology have enabled major developments in biotechnology which in turn has lead to huge advances in medicine, molecular biology and industry. Students choosing this MSc degree will enjoy a comprehensive course that covers the key aspects of practical and theoretical medically-related molecular biology, developing advanced skills in this area.

Description
The course is composed of a modular 120-credit taught component and a 60-credit research project and dissertation. The taught component covers a broad range of medical molecular topics and techniques and includes thorough laboratory training. The course is run in conjuncture with our School of Medicine to ensure that students gain a broad view of modern molecular biology and laboratory techniques.

Overseas Students
A two-year course aimed at students from non-European Union countries who come to the UK requiring pre-MSc level training in English language and basic pre-MSc molecular biology. The first year of this course will bring students up to a level where they will be capable of studying for a full MSc degree and it will develop English language skills to the minimum level required for MSc level learning. Year one will be run in conjunction with ELCOS (English Language Courses for Overseas Students). Students can obtain the minimal English certification for MSc entry.

Module list (1st year of English-life sciences modules)
The English language content and life sciences teaching are integrated to enable students to undertake MSc level life-sciences modules through the medium of English

Life-sciences for none native English speakers - 50 credits
Academic Writing & Grammar
Speaking & Listening
Ad.Vocabulary Use & Reading
Near Native English 1
Near Native English 2

Modules list: (for first year of 1 year course and 2nd year of 2 year course)

Semester 1
Molecular and Medical Techniques
Techniques of molecular biology and biotechnology
Medical microbes viruses and parasites
Development, cancer and the human body
Genomes and Genetics
IT skills for medical and molecular research

Semester2
Project preparation course
Medical Biotechnology
Cellular causes of disease
Biomarkers in autoimmunity

Summer term
Research Project (Experimental research into a medical/molecular or genetics research topic)

Aims and Objectives
* Provide an excellent grounding in laboratory techniques and a critical approach to research planning and implementation.
* Develop understanding of molecular biology and the molecular basis of disease.
* Develop transferable skills, including their ability to work as a member of a team, and communicate in scientific writing and speech.
* Provide the opportunity for students to gain and enhance skills required by research organisations and biotechnology companies.
*Provide the ability to attain a level required to carry out research for a higher degree (PhD) in medical molecular and related areas.

Read less
Want to be at the forefront of scientific research into microbes and their role in developing new medicines, tackling diseases and improving the environment?. Read more
Want to be at the forefront of scientific research into microbes and their role in developing new medicines, tackling diseases and improving the environment?

Northumbria is the only UK university to offer Microbiology as an individual discipline, giving you the opportunity to develop specialist knowledge and break new ground as a scientist.

Gain hands-on, immersive experience, in high tech facilities, working alongside leading academics. Advance your expertise in clinical and environmental microbiology, studying how viral and bacterial diseases work and how you can use microbes to create new medicines.

You’ll cover microbial taxonomy, bioinformatics and molecular biology, using bacteria and viruses to develop new technologies and substances through data analysis and genome sequencing.

With opportunities to develop your theoretical knowledge, advance your own research, and increase your profile through articles and publications, this course equips you for further PhD study or for a career in microbiology.

This course is also available part time - for more information, please view the web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/microbiology-dtpmgy6/

Learn From The Best

Specialising in a wide range of research areas, from developing enzymes for pharmaceutical, chemical and food industries, to life in extreme environments, your academic team reflect the varied, multi-disciplinary nature of microbiological science.

Tutors are active researchers in their chosen specialisms and share their knowledge through teaching, scientific conferences and publications. Many have established relationships with professional microbiology organisations and lead policy and practice within the profession.

Combining industry experience and research expertise, you’ll benefit from their knowledge and real-life insights as you develop your skills and understanding.

Teaching And Assessment

You’ll enhance your knowledge of this broad subject matter through in-depth, research focused and real-life learning.

You’ll gain skills in applying tools, techniques and methods related to molecular biology, microbial culture and classification and in functional analysis of microbial and viral genomes.

With an emphasis on individual learning and problem solving using the latest research, as part of the course, you’ll undertake a research project based on a currently relevant question. This will allow you to develop your particular specialism or interest and focus your study on practical research.

You’ll be assessed on your ability to apply your subject knowledge to real-world challenges in the form of assessment tasks as well as being measured in key laboratory skills.

Module Overview
AP0700 - Graduate Science Research Methods (Core, 20 Credits)
AP0701 - Molecular Biology (Core, 20 Credits)
AP0702 - Bioinformatics (Core, 20 Credits)
AP0703 - Subject Exploration (Core, 20 Credits)
AP0706 - Microbes and Disease (Core, 20 Credits)
AP0707 - Microbial Diversity (Core, 20 Credits)
AP0708 - Applied Sciences Research Project (Core, 60 Credits)

Learning Environment

You’ll get hands-on experience in our large, modern well-equipped laboratories with audio-visual facilities that help you observe, learn and question techniques and ideas.

High-tech wet and dry labs which are fully equipped for molecular biology manipulations are available to help you work on your own research projects.

While some modules are conventionally taught, you’ll benefit from a mixture of learning experiences including lectures, small group seminars and laboratory sessions, adding a practical edge to your theoretical understanding.

Research-Rich Learning

The internationally recognised and well-established group, led by Professor Iain Sutcliffe, apply scientific approaches to aspects of healthcare and extend understanding of diseases.

Research areas include:
-Bacterial cell envelope architecture and biosynthesis
-Control of parasitic arthropods
-Microbial diagnostics (in collaboration with Applied Chemistry)
-Microbial enzymes as biocatalysts (through our Nzomics Innovation Unit, in collaboration with Applied Chemistry)
-Molecular ecology and microbial community analysis in human health (COPD, cystic fibrosis and necrotising enterocolitis)
-Molecular ecology and microbial community analysis in the environment (Lake Suigetsu, Japan; Polar environments) and in agricultural management
-Genomics and proteomics of prokaryotes
-Novel antimicrobials (in collaboration with Applied Chemistry)
-Systematics and taxonomy of bacteria
-Virulence determinants in pathogenic streptococci

Microbiological and virological based techniques to study; virus-host interactions and phage genomics (through our Nu-omics). Research is funded by companies, charities and research council grants.

Give Your Career An Edge

This course has been designed to help you develop specific knowledge and practical skills in Microbiology based on work-related learning. Teaching and assessment throughout the course is based on problem solving linked to a practical approach to current research.

You’ll have opportunities for work-based learning and to be an ambassador for STEM activities, gaining valuable professional experience and applying your knowledge in real-world situations.

Your research project provides a chance to showcase your interests and ability to define, formulate and test a hypothesis through careful experimental design, method development, data capture and analysis and communicating your findings.

You’ll be able to demonstrate transferable skills valued by employers including critical thinking, working as part of a group, data mining and record keeping, alongside problem solving, independent learning, and communication with both technical and non-technical audiences.

Your Future

The MSc Microbiology course will support and inspire you to high achievement in employment or further education and research in your chosen specialism.

Building on your theoretical knowledge with practical and laboratory skills you’ll show that you can tackle complex problems with confidence, skill and maturity as you develop key strengths in critical thinking and expressing opinions based on evidence.

The practices and procedures of Microbiology and Virology, together with logical thinking, attention to detail and a questioning mind will equip you with skills suitable for a range of careers in human health and disease, environmental studies and industrial or biotechnical industries.

Read less
Computer security remains a hot topic in the media and there is strong demand for graduates with technical skills in this area. The programme addresses computer and information security holistically because vulnerability in any one component can compromise an entire system. Read more
Computer security remains a hot topic in the media and there is strong demand for graduates with technical skills in this area. The programme addresses computer and information security holistically because vulnerability in any one component can compromise an entire system.

This includes computer architectures, operating systems, network technologies, data storage and software development processes. A wide range of threats and other security issues (for example, denial-of-service attacks, hacking, viruses and worms) are covered along with defences and countermeasures.

The programme is aimed at computing graduates who are seeking careers as computer security professionals or who are interested in research. All taught Master’s programmes at Canterbury are available with an optional industrial placement.

Visit the website https://www.kent.ac.uk/courses/postgraduate/254/computer-security

About the School of Computing

Our world-leading researchers, in key areas such as systems security, programming languages, communications, computational intelligence and memory management, and in interdisciplinary work with biosciences and psychology, earned us an outstanding result in the most recent national research assessment.

In addition, two of our staff have been honoured as Distinguished Scientists by the ACM and we have also held Royal Society Industrial Fellowships.

As an internationally recognised Centre of Excellence for programming education, the School of Computing is a leader in computer science teaching. Two of our staff have received the ACM SIGCSE Award for Outstanding Contribution to Computer Science Education. We are also home to two National Teaching Fellows, to authors of widely used textbooks and to award-winning teaching systems such as BlueJ.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

CO834 - Trust, Security and Privacy Management (15 credits)
CO874 - Networks and Network Security (15 credits)
CO876 - Computer Security (15 credits)
CO880 - Project and Dissertation (60 credits)
CO885 - Project Research (15 credits)
CO899 - System Security (15 credits)
CO894 - Development Frameworks (15 credits)
CO889 - C++ Programming (15 credits)
CO846 - Cloud Computing (15 credits)
CO882 - Advanced Object-Oriented Programming (15 credits)
CO883 - Systems Architecture (15 credits)
CO836 - Cognitive Neural Networks (15 credits)
CO837 - Natural Computation (15 credits)
CO838 - Internet of Things and Mobile Devices (15 credits)
CO841 - Computing Law, Contracts and Professional Responsibility (15 credits)
CO528 - Introduction to Intelligent Systems (15 credits)
CO545 - Functional and Concurrent Programming (15 credits)
CO645 - IT Consultancy Practice 2 (15 credits)
CO832 - Data Mining and Knowledge Discovery (15 credits)
CO847 - Green Computing (15 credits)
CO890 - Concurrency and Parallelism (15 credits)
CO892 - Advanced Network Security (15 credits)
EL846 - Industrial Context of Biometrics (15 credits)
CO871 - Advanced Java for Programmers (15 credits)
CO881 - Object-Oriented Programming (15 credits)

Assessment

Assessment is through a mixture of written examinations and coursework, the relative weights of which vary according to the nature of the module. The final project is assessed by a dissertation.

Programme aims

This programme aims to:

- enhance the career prospects of graduates seeking employment in the computing/IT sector

- prepare you for research and/or professional practice at the forefront of the discipline

- develop an integrated and critically aware understanding of one or more areas of computing/IT and their applications (according to your degree title)

- develop a variety of advanced intellectual and transferable skills

- equip you with the lifelong learning skills necessary to keep abreast of future developments in the field.

Careers

Students can gain practical work experience as part of their degree through our industrial placements scheme and KITC (see above). Both of these opportunities consolidate academic skills with real world experience, giving our graduates a significant advantage in the jobs market. Our graduates go on to work for leading companies including Cisco, GlaxoSmithKline, IBM, Intel, Lilly, Microsoft, Morgan Stanley, Thomson Reuters and T-Mobile. Many have gone on to develop their careers as project leaders and managers.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
Discover the molecular principles underlying the biology of microorganisms. You’ll develop expert knowledge of infection and immunity. Read more

Discover the molecular principles underlying the biology of microorganisms. You’ll develop expert knowledge of infection and immunity.

You’ll study the molecular and cellular biology of microorganisms such as bacteria, viruses, fungi and yeasts. These include gene expression and regulation, gene transfer, genome structure, epidemiology, cell communication pathogenicity and virulence factors.

You’ll have the opportunity to study flexibly, choosing options that suit your future ambitions. There is a varied range of interdisciplinary units available to allow you to tailor your studies.

Your studies will help you develop the skills you need to move into a wide range of careers in the sciences or to take on further research. Our graduates have an excellent employment record with companies and academic institutions across the globe. Graduates have moved into roles with employers including Biocapita in Beijing, University of Florence in Italy and BBSRC in the UK. Many students have moved into further study and research.

Visit the website: http://www.bath.ac.uk/courses/postgraduate-2018/taught-postgraduate-master-s-courses/msc-molecular-microbiology/   

Why study Biology and Biochemistry with us?

- 90% of our research judged to be internationally recognised, excellent or world-leading

- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa.

Recent employers include:

Morvus-Technology Ltd

Janssen-Cilag

Royal United Hospital, Bath

Ministry of Defence

State Intellectual Property Office, Beijing

Wellcome Trust Centre for Human Genetics, Oxford University

AbCam

Salisbury Foundation Trust Hospital

BBSRC

Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/



Read less
Discover the molecular principles underlying the biology of microorganisms. You’ll develop expert knowledge of infection and immunity. Read more

Discover the molecular principles underlying the biology of microorganisms. You’ll develop expert knowledge of infection and immunity.

You’ll study the molecular and cellular biology of microorganisms such as bacteria, viruses, fungi and yeasts. These include gene expression and regulation, gene transfer, genome structure, epidemiology, cell communication pathogenicity and virulence factors. You’ll have the opportunity to study flexibly, tailoring your course according to your needs.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation. You’ll gain an insight into a range of research activities and techniques, gaining the transferable skills training needed for all early stage researchers. You’ll also address the scientific, ethical and commercial context within which the research takes place.

All of the MRes courses can be studied as the first year of our Integrated PhD course.

Visit the website http://www.bath.ac.uk/science/graduate-school/taught-programmes/mres-molecular-microbiology/    

Why study Biology and Biochemistry with us?

- 90% of our research judged to be internationally recognised, excellent or world-leading

- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

MRes degree programmes are designed for graduates who are contemplating a research career and who may go on to study for a PhD or to a position in industry involving interaction with research scientists.

If these do not apply, you might consider an MSc programme (http://www.bath.ac.uk/bio-sci/masters/)

For further information please visit our department pages (http://www.bath.ac.uk/bio-sci/)

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa. Recent employers include:

Morvus-Technology Ltd

Janssen-Cilag

Royal United Hospital, Bath

Ministry of Defence

State Intellectual Property Office, Beijing

Wellcome Trust Centre for Human Genetics, Oxford University

AbCam

Salisbury Foundation Trust Hospital

BBSRC

Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/



Read less
The language and concepts of infection and immunity, from basic science to translational clinical research, are taught by our world-class investigators. Read more

The language and concepts of infection and immunity, from basic science to translational clinical research, are taught by our world-class investigators. The programme emphasises data interpretation, critical analysis of current literature and culminates in a full-time research project: excellent preparation for a research career.

About this degree

The programme provides insight into state-of-the-art infection and immunity research, current issues in the biology of infectious agents, the pathogenesis, prevention and control of infectious diseases, and immunity and immune dysfunction. 

Students learn from UCL scientists about their research and are trained in the art of research by carrying out a full-time research project in a UCL laboratory.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), three optional modules (45 credits) and a research dissertation (60 credits).

A Postgraduate Diploma comprising four core modules and four optional modules (120 credits, full-time nine months, part-time, flexible study two to five years) is offered.

A Postgraduate Certificate comprising four core modules (60 credits, full-time three months, and flexible study up to two years) is offered.

Core modules

  • Laboratory Introduction to Basic Bacteriology
  • Molecular Virology
  • Immunology in Health and Disease
  • Epidemiology and Infectious Diseases
  • Data Interpretation

Optional modules

  • Microbial Pathogenesis
  • Tropical Microbiology
  • Advanced Virology
  • HIV Frontiers from Research to Clinic
  • Immunological Basis of Disease
  • Immunodeficiency and Therapeutics
  • Infectious Diseases Epidemiology and Global Health Policy
  • Global eradication of viruses

Dissertation/report

All MSc students undertake independent research which culminates in a 4,000-word dissertation.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, paper review sessions, laboratory practicals, an independent research project and self-directed learning. A diverse range of assessment methods is used; coursework may be in the form of presentations, essays, data interpretation exercises, poster preparation, and group working. Many modules also have unseen written examination.

Further information on modules and degree structure is available on the department website: Infection and Immunity MSc

Careers

The programme produces graduates who are equipped to embark on research careers. Immersion in the superb research and teaching environment provided by UCL and the Division of Infection & Immunity, gives our graduates a unique understanding of the cutting edge of infection and immunity research and how world-class research is carried out. 

Opportunities for networking with UCL senior investigators with international reputations and their worldwide collaborators can provide the inside track for career development. Graduates are well placed to move onto PhD programmes, research positions in diverse biomedical fields, clinical research positions, further training and positions in associated professions.

Recent career destinations for this degree

  • PhD Student, Universitホ catholique de Louvain
  • Research Assistant, Imperial College London
  • Research Assistant, UCL
  • PhD in Molecular Immunology, UCL

Employability

Graduates are exceptionally well prepared for a career in research. The combination of research-informed teaching and practical research training provides an ideal preparation for a PhD and is equally applicable for clinicians seeking specialist training or wishing to pursue the clinical academic career track.

More broadly, a rigorous grounding in scientific method, critical analysis, data interpretation and independent thinking provides a pallet of marketable and transferable skills applicable to many professional career paths.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The UCL Division of Infection & Immunity is a vibrant and world-class research community. Students are embedded in this superb training environment which provides a challenging and stimulating academic experience. 

Programme content reflects the research and clinical excellence within the division as well as cross-disciplinary research from all over UCL. First-class teaching and research supervision is provided by UCL academics, many of whom have international reputations.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Division of Infection & Immunity

80% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Develop a broad understanding of organisms, including bacteria, viruses, plants and humans. Gain the specialist research skills needed to prepare for your career. Read more

Develop a broad understanding of organisms, including bacteria, viruses, plants and humans. Gain the specialist research skills needed to prepare for your career.

This course is ideal for you if you want to go into a research career or study for a PhD. Your studies will focus on the outstanding research expertise in the department, with topics including cell and developmental biology, medical and industrial biotechnology, infection and immunity, evolution and biodiversity. You’ll be able to select from a diverse range of topics and projects, customising your course according to your needs and future ambitions.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation. You’ll gain an insight into a range of research activities and techniques, gaining the transferrable skills training needed for all early stage researchers. You’ll also address the scientific, ethical and commercial context within which the research takes place.

All of the MRes courses can be studied as the first year of our Integrated PhD course.

Visit the website http://www.bath.ac.uk/courses/postgraduate-2018/taught-postgraduate-master-s-courses/mres-biosciences/

Why study Biology and Biochemistry with us?

- 90% of our research judged to be internationally recognised, excellent or world-leading

- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa. Recent employers include:

Morvus-Technology Ltd

Janssen-Cilag

Royal United Hospital, Bath

Ministry of Defence

State Intellectual Property Office, Beijing

Wellcome Trust Centre for Human Genetics, Oxford University

AbCam

Salisbury Foundation Trust Hospital

BBSRC

Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/



Read less

Show 10 15 30 per page



Cookie Policy    X