• Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Southampton Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Cass Business School Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"virus"×
0 miles

Masters Degrees (Virus)

We have 31 Masters Degrees (Virus)

  • "virus" ×
  • clear all
Showing 1 to 15 of 31
Order by 
The objectives of this course are to equip those intending to pursue a career in academic or industrial research with the required knowledge and skills, and to provide a solid foundation for those who aim to go on to study at PhD level. Read more

Overview

The objectives of this course are to equip those intending to pursue a career in academic or industrial research with the required knowledge and skills, and to provide a solid foundation for those who aim to go on to study at PhD level.

During the course you will develop an in-depth understanding of the structure and function of viruses and the processes of viral infection and viral diseases at the molecular level.

The course also provides training in laboratory and research skills in a supportive learning environment.

Two parts of the course:

The course is comprised of two parts, a taught component, which is given over the first two terms (approximately 5 months) and a full-time laboratory based research project (7 months) which is carried out over the remainder of the session. The taught component is comprised of lectures, laboratory practical’s, tutorials and student presentations and covers the most important aspects of viruses and viral diseases under the 6 topic headings.

Testing of the knowledge acquired is through a combination of written examinations, assessed coursework in the form of laboratory write-ups and essays (Element 2), and the individual research project dissertation and viva (Element 2).

Course content

Introductory Core Lecture Programme

Virus Architecture and Virus Interactions with Cells

Virus Genomes, Gene Expression and Replication

Host Responses to Virus Infection

Diagnosis, Vaccines and Therapies

Epidemiology, Transmission and Evolution of Viruses

You can apply online

http://www.imperial.ac.uk/study/pg/apply/how-to-apply/

Read less
The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. Read more

The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. This is achived by integrating plant biotechnology and agrofood technology within course content in order to deal with the challenges of innovation in agriculture.

With such an integrated approach, the Master B2AS represents a meeting point between academia and professionals. During the program, students may specialize either in the field of plant biology, biotechnology, plant breeding, genetics, plant and human health benefits, food production and innovation. The wide partner network provides students with a range of complementary expertise. This means that specific competencies are developed within the chosen field of biotechnology and plant breeding for agriculture improvements.

Program structure

Semester 1:

Scientific English (3 ECTS)

  • Students will reinforce and develop the reading, writing, listening and speaking skills relevant to a biological science research context.
  • Students will acquire knowledge of the linguistic and discursive features of both written and spoken scientific English.
  • Structure and rhetoric of the research article, writing up an abstract. Oral scientific presentation – students prepare a mini-symposium on the topic related to their future work placement (and thus complete relevant bibliographical and reading research in preparation).
  • Students are evaluated on their communication skills in English and also on their ability to manage complex scientific concepts in English.

Plant development and reproduction (3 ECTS)

  • Genetic regulation of root and stem apical meristem functioning, epigenetic regulations of plant development and reproduction, parental imprinting, plant hormones, fruit and seed development, sex determination in plants, cellular mechanisms involved in plant organ growth and development.

Metabolism and cellular compartmentation (3 ECTS)

  • Metabolism and cell compartmentation: morphodynamic organization of the plant secretory pathway, lipid and protein machineries; membrane transporters in plants and the related methods of study; lipid signaling in plant cells; formation and dynamics of membrane domains; regulation of metabolism and gene expression by sugars in plants. Nature and importance of futile cycles in plants.

Biotechonology (3 ECTS)

  • In vitro culture and applications, plant transformation and applications to crop plants, GMO legislation and traceability, metabolic engineering, GMO and production of antibodies and of molecules of high health value, GMO in the food industry, fungi biotechnology.

Plant pathogen interactions (3 ECTS)

  • Plant-Mollicutes interactions, plant-virus interactions: analysis of plant and virus factors necessary for virus cycle, viroids; RNA interference, plant defence mechanisms against pathogens (fungi, bacteria and virus), breeding of plants resistant to pathogens, biodiversity of plant pathogens, epidemiology of plant pathogen interactions and impact on crop production.

Plant breeding (3 ECTS)

  • Principles of selection and genetic gain, response to selection, germplasm resources, collecting, analysing, classifying, international rules on germplasm resources. Population improvement and cultivar development (breeding for lines, hybrids, clones, populations), high throughput phenotyping, breeding strategies and methods including molecular breeding (MAS, genomic selection) and biotechnologies, multiple traits selection, genotype by environment interaction, protecting varieties and intellectual property, plant breeding international network and organization.

Quantitative and population genetics and evolution (3 ECTS)

  • Population genetics and genetic diversity, haplotype structure, domestication and genetic consequences, linkage disequilibrium, genetic variance, estimating variance components, heritability, genetic correlations, association genetics, genomic selection, induced diversity TILLinG, natural diversity ecoTILLinG, linking genetics, genomics and bioinformatics : from fine- mapping to gene cloning; genotyping by sequencing.

Semester 2:

Laboratory Practice (6 months/30 ECTS) 

  • In a public laboratory and/or a private company laboratory.

Strengths of this Master program

During their studies, students will:

  • Acquire scientific knowledge in various fields of plant biology, green biotechnology, food supplements, food production, etc.
  • Receive a modern research-based training.
  • Develop an understanding of the challenges of modern agricultural practices in a context of environmental constraints and increasing demand.
  • Develop an understanding of the benefits and limits of modern biotechnology.
  • Acquire the skills to develop action planning processes for bioscience.
  • Acquire skills and practice within an English-speaking environment as well as other languages practised within the consortium.
  • Develop the necessary skills to collaborate with international teams and networks.
  • Acquire competencies for knowledge transfer to students and collaborators.
  • Develop competencies to create, finance and manage a new start-up.
  • Acquire an understanding of today’s industrial and economic environment within the Biotech sector.

After this Master program?

The objectives of the B2AS program are to prepare students for further study via PhD programs and/or careers in the food and agronomy industry throughout the world. This is achieved by providing high-level training in plant sciences but also by preparing students with relevant knowledge and skills in management and business. 

Graduates may apply for positions in the following industrial sectors in a R&D laboratory as well as in production activities:

  • Plant research laboratories
  • Plant breeding companies
  • Agro-chemical companies
  • Green and white biotechnology companies
  • Food, diet and nutrition companies
  • Plant medicinal production companies
  • Food supplement or nutraceutical companies
  • Pharmaceutical companies
  • Business trade companies


Read less
The Research Masters (ResM) is a Masters level degree awarded by Plymouth University through the Duchy College node - a research node of Plymouth University’s Centre for Agriculture and Rural Sustainability (CARS). Read more
The Research Masters (ResM) is a Masters level degree awarded by Plymouth University through the Duchy College node - a research node of Plymouth University’s Centre for Agriculture and Rural Sustainability (CARS).

All ResM students are supervised by college staff based in Cornwall on the Stoke Climsland or Newquay campuses and co-supervised by Plymouth University staff. The ResM culminates in the examination of a thesis based on a period of extended research, preceded by two taught modules that equip the student for research.

The ResM programme at Duchy is tailored to individual needs and commonly involves working with an industry partner. There are full-time and part-time routes.

Full and partial fees bursaries may be available, please contact Dr Peter McGregor for more information and eligibility criteria.

Indicative project titles for Agriculture & Food:
• Agricultural change and its social, economic and environmental implications
• Farm family wellbeing
• Succession and retirement in farming
• Impact of organic farming on the rural economy
• Sustainable farming and food
• The food and farming economy of Devon and Cornwall

Proposed project titles:
• Generating virus free tulips: A collaborative project with the Botanic Garden Cambridge. You will be based in the nationally renowned micro-propagation laboratory at Duchy College Rosewarne (moving to Eden Project by Sept 2016) and undertake a series of experiments to generate virus free tissue and help preserve a rare and valuable tulip accession of the Botanic Garden Cambridge. Techniques will include tissue culture and molecular viral detection.

Student case study: “Study is flexible and fits in alongside my employment plus the tutors are experts in their field. When I finish I hope to use my knowledge and research to enhance the training offered to farmers in the South West” (Polly Gilbert, ResM Agriculture & Food).

Read less
Want to be at the forefront of scientific research into microbes and their role in developing new medicines, tackling diseases and improving the environment?. Read more
Want to be at the forefront of scientific research into microbes and their role in developing new medicines, tackling diseases and improving the environment?

Northumbria is the only UK university to offer Microbiology as an individual discipline, giving you the opportunity to develop specialist knowledge and break new ground as a scientist.

Gain hands-on, immersive experience, in high tech facilities, working alongside leading academics. Advance your expertise in clinical and environmental microbiology, studying how viral and bacterial diseases work and how you can use microbes to create new medicines.

You’ll cover microbial taxonomy, bioinformatics and molecular biology, using bacteria and viruses to develop new technologies and substances through data analysis and genome sequencing.

With opportunities to develop your theoretical knowledge, advance your own research, and increase your profile through articles and publications, this course equips you for further PhD study or for a career in microbiology.

This course is also available part time - for more information, please view the web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/microbiology-dtpmgy6/

Learn From The Best

Specialising in a wide range of research areas, from developing enzymes for pharmaceutical, chemical and food industries, to life in extreme environments, your academic team reflect the varied, multi-disciplinary nature of microbiological science.

Tutors are active researchers in their chosen specialisms and share their knowledge through teaching, scientific conferences and publications. Many have established relationships with professional microbiology organisations and lead policy and practice within the profession.

Combining industry experience and research expertise, you’ll benefit from their knowledge and real-life insights as you develop your skills and understanding.

Teaching And Assessment

You’ll enhance your knowledge of this broad subject matter through in-depth, research focused and real-life learning.

You’ll gain skills in applying tools, techniques and methods related to molecular biology, microbial culture and classification and in functional analysis of microbial and viral genomes.

With an emphasis on individual learning and problem solving using the latest research, as part of the course, you’ll undertake a research project based on a currently relevant question. This will allow you to develop your particular specialism or interest and focus your study on practical research.

You’ll be assessed on your ability to apply your subject knowledge to real-world challenges in the form of assessment tasks as well as being measured in key laboratory skills.

Module Overview
AP0700 - Graduate Science Research Methods (Core, 20 Credits)
AP0701 - Molecular Biology (Core, 20 Credits)
AP0702 - Bioinformatics (Core, 20 Credits)
AP0703 - Subject Exploration (Core, 20 Credits)
AP0706 - Microbes and Disease (Core, 20 Credits)
AP0707 - Microbial Diversity (Core, 20 Credits)
AP0708 - Applied Sciences Research Project (Core, 60 Credits)

Learning Environment

You’ll get hands-on experience in our large, modern well-equipped laboratories with audio-visual facilities that help you observe, learn and question techniques and ideas.

High-tech wet and dry labs which are fully equipped for molecular biology manipulations are available to help you work on your own research projects.

While some modules are conventionally taught, you’ll benefit from a mixture of learning experiences including lectures, small group seminars and laboratory sessions, adding a practical edge to your theoretical understanding.

Research-Rich Learning

The internationally recognised and well-established group, led by Professor Iain Sutcliffe, apply scientific approaches to aspects of healthcare and extend understanding of diseases.

Research areas include:
-Bacterial cell envelope architecture and biosynthesis
-Control of parasitic arthropods
-Microbial diagnostics (in collaboration with Applied Chemistry)
-Microbial enzymes as biocatalysts (through our Nzomics Innovation Unit, in collaboration with Applied Chemistry)
-Molecular ecology and microbial community analysis in human health (COPD, cystic fibrosis and necrotising enterocolitis)
-Molecular ecology and microbial community analysis in the environment (Lake Suigetsu, Japan; Polar environments) and in agricultural management
-Genomics and proteomics of prokaryotes
-Novel antimicrobials (in collaboration with Applied Chemistry)
-Systematics and taxonomy of bacteria
-Virulence determinants in pathogenic streptococci

Microbiological and virological based techniques to study; virus-host interactions and phage genomics (through our Nu-omics). Research is funded by companies, charities and research council grants.

Give Your Career An Edge

This course has been designed to help you develop specific knowledge and practical skills in Microbiology based on work-related learning. Teaching and assessment throughout the course is based on problem solving linked to a practical approach to current research.

You’ll have opportunities for work-based learning and to be an ambassador for STEM activities, gaining valuable professional experience and applying your knowledge in real-world situations.

Your research project provides a chance to showcase your interests and ability to define, formulate and test a hypothesis through careful experimental design, method development, data capture and analysis and communicating your findings.

You’ll be able to demonstrate transferable skills valued by employers including critical thinking, working as part of a group, data mining and record keeping, alongside problem solving, independent learning, and communication with both technical and non-technical audiences.

Your Future

The MSc Microbiology course will support and inspire you to high achievement in employment or further education and research in your chosen specialism.

Building on your theoretical knowledge with practical and laboratory skills you’ll show that you can tackle complex problems with confidence, skill and maturity as you develop key strengths in critical thinking and expressing opinions based on evidence.

The practices and procedures of Microbiology and Virology, together with logical thinking, attention to detail and a questioning mind will equip you with skills suitable for a range of careers in human health and disease, environmental studies and industrial or biotechnical industries.

Read less
The two year MSc Biology concerns understanding the complexity of biological systems, at scales ranging from single molecules to whole ecosystems, provides a unique intellectual challenge. Read more

MSc Biology

The two year MSc Biology concerns understanding the complexity of biological systems, at scales ranging from single molecules to whole ecosystems, provides a unique intellectual challenge. The biosciences aim to understand living systems and to help preserve biodiversity and our environment and simultaneously produce sufficient healthy and safe food.

Programme summary

Biological issues are at the forefront of the technological progress of modern society. They are central to global concerns about how we effect and are affected by our environment. Understanding the complexity of biological systems, at scales ranging from single molecules to whole ecosystems, provides a unique intellectual challenge. The MSc Biology allows students to get a broad overview of the latest developments in biology, ranging from genes to ecosystems. They learn to critically discuss the newest scientific developments in the biological sciences. Within their area of specialisation, students deepen their knowledge and skills in a certain subject. To prepare for a successful international career, we strongly encourage our students to complete part of their programme requirements abroad.

Specialisations

The MSc Biology offers nine specialisations:

Animal Adaptation and Behavioural Biology
This specialisation focuses mainly on subjects as adaptation, mechanisms involved in these adaptations and behaviour of animals.

Bio-interactions
In this specialisation, you obtain knowledge about interactions between organisms. You learn to understand and interpret interactions on different levels, from molecular to ecosystem level.

Molecular Ecology
In this specialisation, you learn to use molecular techniques to solve ecological questions. You will use, for example, molecular techniques to study the interaction between a virus and a plant.

Conservation and Systems Ecology
This specialisation focuses initially on fundamental processes that play a key role in ecology. You learn to interpret different relations, for example, the relation between chemical (or physical processes) and bioprocesses. Furthermore, you learn to analyse different ecosystems. You can use this knowledge to manage and conserve these ecological systems.

Evolution and Biodiversity
The systematics of biodiversity in an evolutionary perspective is the central focus of this specialisation. Subjects that will be addressed in this specialisation are: evolution, genetics, biosystematic research and taxonomic analysis.

Health and Disease
This specialisation focuses on regulatory mechanisms that have a central role in human and animal health.

Marine Biology
Choosing this specialisation means studying the complexity of the marine ecosystem. Moreover, you learn about the impacts of, for instance, fishery and recreation on this ecosystem or the interaction between different species in this system.

Molecular Development and Gene Regulation
This specialisation focuses on gene regulations and the different developmental mechanisms of organisms.

Plant Adaptation
This specialisation focuses on the adaptations that different plants gained in order to adjust to various conditions. You learn to understand the regulation processes in plants that underlie these adaptations.

Your future career

Many graduates from the MSc Biology study programme enter careers in fundamental and applied research or go on to become PhD students. Some find a position as communication officer, manager or policymaker. Compared with other Dutch universities, many biology graduates from Wageningen University find a position abroad.

Alumna Iris de Winter.
"I work as a PhD student at Wageningen University. In my research, I aim to understand the effect of human disturbance on the parasites prevalence in lemurs. I also look at the potential risks of the transmission of diseases and parasites from lemurs to humans, but also vice versa, from humans (and their livestock and pets) to wild lemur population. I alternate my fieldwork in Madagascar with parasite identification, analyses and writing manuscripts in the Netherlands. With this research, I hope to gain more insight in the factors that increase parasite prevalence in natural systems and hereby to improve the protection of both lemurs and their natural habitat."

Related programmes:
MSc Molecular Life Sciences
MSc Animal Sciences
MSc Plant Sciences
MSc Forest and Nature Conservation
MSc Biotechnology
MSc Plant Biotechnology
MSc Aquaculture and Marine Resource Management
MSc Organic Agriculture.

Read less
The Molecular Life Sciences programme focuses on the molecular aspects of the fields of nutrition, health, nature and the living environment and works in close coordination with colleagues from different disciplines. Read more

MSc Molecular Life Sciences

The Molecular Life Sciences programme focuses on the molecular aspects of the fields of nutrition, health, nature and the living environment and works in close coordination with colleagues from different disciplines.

Programme summary

The Molecular Life Sciences programme focuses on molecules and their properties. It seeks to discover relationships between the physical and chemical properties of molecules, particularly the role of complex molecules in living systems. It is an interdisciplinary programme that combines chemistry, physics and biology. The aim of the programme is to enable students to conduct independent research at the interface of chemistry, biology and physics, or in an applied field such as medicine, the environment, food sciences or (bio) nanotechnology. The programme is tailormade and thesis-oriented, with the thesis being the culmination of the study.

Specialisations

Biological Chemistry
By combining the principles of chemistry, biochemistry, molecular biology, cell biology, microbiology, genetics and bioinformatics, this specialisation enables students to contribute new insights to the life sciences. Increasingly complex areas are studied, such as the molecular regulation of growth and cell differentiation, gene control during development and disease, and the transfer of genetic traits. Another important field is enzymology where enzyme mechanisms are studied with the aim of understanding and modifying their properties to make new compounds or biological membranes.

Physical Chemistry
This specialisation uses the most advanced technologies to focus on the chemical and physical properties of molecules and their behaviour in chemical and biochemical processes. The processes in nature are used as models for studying and synthesising new compounds with interesting chemical or physical properties for applications such as LCDs, biosensors or food science. Students can major in the fields of biophysics, organic chemistry or physical chemistry and colloid science.

Biomedical Research
This specialisation equips graduates with key skills in the natural sciences and enables them to use these skills as part of an integrated approach. Many recent breakthroughs in biomedical research have taken place at the interface between chemistry, biology and physics, so it is logical that many of our graduates enter careers in biomedical research. The explicit aim of this specialisation is to prepare students for careers at a medical research institute, academic hospital or a company in the pharmaceutical industry. As a result, students also complete their internships at such locations.

Physical Biology
Students in this specialisation learn to view biomolecules from a physical point of view. They use techniques in biophysics, physical chemistry, microspectroscopy and magnetic resonance (MRI) to contribute to areas such as cell-cell communication, transformation of light into chemical energy, and protein interactions. Students can major in fields such as biochemistry, biophysics, microbiology, molecular biology, plant physiology, physical chemistry and colloid science.

Your future career

By combining the power of chemistry, physics and biology, graduates are able to make a significant contribution to fundamental and/or applied research in fields such as (bio) nanotechnology, biotechnology, environmental research, biomedical research, nutrition and the food sciences. Our graduates enter careers at universities, research institutes and industrial laboratories. The first job for many of our graduates is a four year PhD project at a university or research institute. This is not only an excellent preparation for a research career, but it also prepares you for management positions. Others become science journalists, teachers or consultants in government or industry.

Project Flu Vaccination for bacteria.
Together with his colleagues of the Laboratory of Microbiology, professor John van der Oost unravelled part of the working of the immune systems of bacteria that had been infected by a virus. Theoretically, this knowledge allows for other bacteria to be protected against specific viruses and, thus, may be considered to be a flu vaccination for bacteria. Understanding this process in simple organisms on a molecular level, is the first step in revealing the mechanism of viral infection in the human body. This can be the starting point for a whole new line of medicines.

Related programmes:
MSc Biotechnology
MSc Food Technology
MSc Bioinformatics
MSc Nutrition and Health
MSc Plant Biotechnology
MSc Biology

Read less
Despite incredible advances in medicine, there is still plenty of work to be done in the 21st century to create healthier communities across the globe – and microbiologists are leading the way. Read more

Despite incredible advances in medicine, there is still plenty of work to be done in the 21st century to create healthier communities across the globe – and microbiologists are leading the way.

Tuberculosis and cholera still devastate populations around the world. New and deadly strains of influenza are appearing. Zika virus is spreading rapidly with warmer global temperatures – as are other parasitic diseases.

For almost a century, we’ve relied on vaccines and antibiotics to prevent and treat infectious disease. But as new pathogens emerge, and antimicrobial drug resistance spreads, innovative approaches are needed. The stakes for microbiologists are higher than ever.

GCU’s MSc Clinical Microbiology will give you the expertise you need to help conquer these challenges – building knowledge, advancing cures and contributing to the common good.

The curriculum takes a scientific approach to the field of clinical microbiology, keeping it career-focused with an emphasis on research and development.

  • Explore principles and practice of bacteriology, virology, parasitology and mycology
  • Examine the disease process: transmission of pathogens, diagnosis and treatment
  • Study the prevention of infectious disease

The programme brings together lectures, seminars and practical laboratory classes, ensuring you’ll acquire both cutting-edge theoretical knowledge and hands-on practical skills. You’ll keep pace with the latest advances in microbiology – including the big breakthroughs happening now in the top microbiology labs across the world.

Finally, you’ll undertake a laboratory-based research project with real-world impact, practising the skills required of a successful independent researcher in clinical microbiology.

What you will study

(Re)Emerging Infectious Disease; Microbial Pathogenicity; Medical Microbiology; Skills for Professional Practice for Biosciences; Applied Molecular Microbiology; Microbial Genetics; Case Studies in Infectious Diseases; and Research Project.

Graduate prospects

Through GCU’s MSc Clinical Microbiology, you will acquire the skills necessary for success in this highly competitive and important field. 

With an understanding of this fast-changing sector and in-demand lab experience, our graduates make competitive candidates for jobs in health, medicine and life sciences, and in university and industry research departments. You’ll also be well prepared to pursue further study at the PhD level.



Read less
In the absence of subsidy, the EU poultry sector relies on highly efficient production systems, with successful companies often using sophisticated technologies. Read more
In the absence of subsidy, the EU poultry sector relies on highly efficient production systems, with successful companies often using sophisticated technologies. This is reflected in the integrated structure of most poultry companies and the number of graduates and postgraduates employed by them.

Many companies have responded to the pressure on financial margins by setting up operations world wide. There continues to be a good demand for suitably trained graduate and postgraduate level entrants into the sector.

The skills and knowledge delivered by the Applied Poultry Science programme are highly relevant to companies using intensive methods of production and those responding to retailer demand for extensive systems. This enables both new entrants and existing employees wishing to build on their expertise and aspirations, to enhance their career opportunities within the poultry sector.

The Applied Poultry Science course is offered on a part-time distance learning basis.

It is designed to suit those in continuing employment or with other commitments. Participants come from a wide range of backgrounds, including nutritionists, breeders, vets and other poultry sector workers, all of whom wish to develop their career and businesses.

Specific course objectives are to provide graduates with:
- A sound knowledge of the underlying science of poultry production.
- A good understanding of the issues underpinning poultry production systems.
- A wide range of specialist skills appropriate to poultry science professionals.
- The ability to critically evaluate developments in poultry science, including nutritional, genetic,
- Welfare, quality assurance and environmental issues.
- The ability to produce professional level recommendations and reports.
- Research skills.

The MSc Applied Poultry Science degree is awarded by the University of Glasgow.

Course Content

The programme is a mix of technical, scientific, environmental and management skills development modules. It is taught largely by staff from the SRUC Avian Science Research Centre who are involved in poultry research studies on a daily basis and who aim to provide up to the minute, highly relevant knowledge transfer into the Applied Poultry Science programme.

The Avian Science Research Centre has a full range of facilities for those wishing to study or carry out research with SRUC ranging from a hatchery to a processing plant and a good range of different poultry production systems.

Poultry Production Systems

This module studies the poultry meat and poultry egg industry in terms of its structure and sectors including intensive and non-intensive systems. It includes global export and import markets for the major poultry meat and egg products and evaluates their quality assurance systems. It will examine the requirements for optimal performance within the various systems and investigate factors affecting performance.

Poultry Nutrition and Growth

Poultry nutrition and growth examines the principles of poultry nutrition, particularly the importance of different nutrients in terms of growth and production and how they are processed in the avian body. It includes a study of the major anatomical and physiological systems in poultry and describes the role of nutrition in poultry health in different production environments, with particular regard to nutrient deficiencies. The partitioning of energy and nutrients into the growth and development of the whole body and different components of the body will also be examined, as will methods of describing different growth patterns.

Incubation and Hatchery Practice

This module develops knowledge and an understanding of the science and technology that underpins the production of day-old stock. Students study embryo-genesis in poultry and how this is exploited by the poultry sector to maximise the production of viable hatchlings. At the conclusion of the module students will be able to critically evaluate poultry hatchery practices, where appropriate, from an international prospective.

Housing and the Environment

Large scale poultry production seeks to manage the birds’ environment to optimise the competing demands of welfare, productivity, quality and environmental protection in an economically viable way. Recognising the impacts of different housing alternatives, the relationship to environmental emissions, and the sustainability of systems are therefore essential skills for those engaged in the industry that this module addresses. The approach will initially be one of directed study in order that the full range of issues are covered; but later in the module, students will be asked to do a case study on a real poultry enterprise with the coursework being centred on the completion of the IPPC application form for an intensive poultry enterprise. Even though some students may not be familiar with large scale poultry enterprises, the structured approach required to carry out the IPPC assessment process, and the wealth of information available in the relevant technical document will give a sound basis for understanding the range of housing and environmental issues involved.

Poultry Behaviour and Welfare

This module explains the general principles of poultry behaviour and welfare and studies sensory perception, motivation and learning in poultry. It evaluates the behavioural and physiological indicators that are used to assess welfare in given circumstances. It examines current practice with respect to welfare and current welfare legislation.

Poultry Health and Hygiene

A range of different infectious and non-infectious diseases will be covered in depth, mostly affecting chickens and turkeys but with specific sessions on diseases of game birds and diseases of pigeons. The importance of notifiable diseases such as Newcastle Disease and highly pathogenic avian influenza will be emphasised, and the significance of other potentially zoonotic organisms such as Salmonella, Campylobacter, Chlamydophila Psittaci and West Nile Virus will be discussed.

Advanced Poultry Nutrition

Advanced poultry nutrition builds on the poultry nutrition and growth module and examines theoretical and practical poultry nutrition in greater depth. It links current nutritional theories, (eg. amino acid balance and requirements or the anti-nutrient and toxic properties of feedstuffs) with methods of alleviation. These are integrated with classical nutrition-balance studies and proximate analyses, exposing students to all aspects of a nutritional study. It also involves a detailed study of nutrition with respect to bird growth and health and the environmental constraints imposed on the system.

Experimental Design

This module aims to develop statistical skills to aid the technical, scientific and management decisions. It explores a range of statistical processes from the collection of data and its interpretation to the production of information charts, diagrams and tables and the analysis of data looking at differences, significance and trends.

Management Skills

With the labour market becoming more competitive there is a real need for today's graduates to develop skills beyond academic knowledge in order to thrive. This module introduces various management skills which include communication, teamworking, leadership, time management, decision-making, empowerment and motivation. It aims therefore to improve the student’s knowledge and ability to manage. A range of practical methods and approaches will be used to enable the students to better organise and motivate themselves and others.

The study weekends and short study tour are an integral part of teaching delivery and students are strongly recommended to attend these if they are to succeed in this course.

Read less
- https://www.kent.ac.uk/locations/medway/. This programme builds on a very successful in-house training programme implemented by a major pharmaceutical company. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

This programme builds on a very successful in-house training programme implemented by a major pharmaceutical company.

It was designed and conceived by pharmaceutical industry experts in drug discovery and will be delivered and assessed by experts in this field at the School of Pharmacy.

The MSc covers how fundamental science is applied to the discovery and development of medicines and the main aims are to:

- provide you with the experience of critically appraising the research questions and techniques that are routine in the pharmaceutical industry workplace

- produce graduates trained in the processes by which fundamental science is linked to the design and development of modern medicines

- provide expert preparation for students who wish to pursue a career in drug discovery, or wish to proceed to a PhD.

Visit the website https://www.kent.ac.uk/courses/postgraduate/736/applied-drug-discovery

Duration: One year full-time (campus based), two years part-time (distance learning)

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Course structure

This programme is taught as either a classic one year full-time programme with attendance required on Mondays and Tuesdays for 48 weeks plus an additional study day off-campus, or delivered through distance e-learning using an interactive virtual learning environment on a two-year part-time basis.

The programme comprises 60 credits at certificate level, 60 credits at diploma level and 60 credits at Master’s level. You may choose to end your study at any one of these stages.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

Assessment

Assessment is by 100% coursework; including scientific reports, assignments, essays, a research project and portfolio entries.

Programme aims

This programme aims to:

- produce graduates trained in the processes by which fundamental science is linked to the design and development of modern medicines

- teach you an understanding of the drug discovery process

- provide you with expanded training in the biological sciences technical skills that underpin the processes of drug discovery

- provide you with the experience of critically appraising the research questions and techniques they use routinely in the workplace

- develop a variety of postgraduate level intellectual and transferable skills

- equip you with lifelong learning skills necessary to keep abreast of developments in drug discovery

- provide you with opportunities for shared multidisciplinary learning in drug discovery

- give you the experience of undertaking an independent research project

- provide expert preparation for students who wish to pursue and/or further a career in drug discovery, or wish to proceed to a higher degree (PhD) in topics related to the drug discovery process

- provide access to as wide a range of students as practicable irrespective of race, background, gender or physical disability from both within the UK and from overseas.

Research areas

- Chemistry and drug delivery

This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

- Biological sciences

This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

- Pharmacy practice

This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

Graduates who obtain their PhD from Kent or Greenwich are highly sought after by prospective employers, both within the UK and overseas. Destinations for doctoral graduates include university academic departments, research institutes and leading pharmaceutical and biotechnological companies.

The taught postgraduate programmes are designed to promote the continuing professional development by providing sought-after skills. The programmes are beneficial for those who wish to develop their skills and/or to take the next step in their career. While the MSc in Applied Drug Discovery produces elite drug discovery personnel, who can pursue a career in the pharmaceutical industry or academia.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
- https://www.kent.ac.uk/locations/medway/. This programme provides general-level hospital pharmacists – registered with the GPhC and working – with the core skills required to provide holistic pharmaceutical care in the practice setting. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

This programme provides general-level hospital pharmacists – registered with the GPhC and working – with the core skills required to provide holistic pharmaceutical care in the practice setting.

The programme aligns with a nationally agreed pharmacy practitioner development strategy and is the result of a unique collaboration of higher education institutions across London and the south and east of England.

The programme develops your knowledge and skills in clinical pharmacy practice and medicines management. It works on a philosophy of student-centred workplace learning, supported by workbooks and contact days facilitated by experienced pharmacy practitioners. You are expected to take responsibility for managing your learning and achieving the programme objectives. The ethos and culture of the programme is to enhance and develop self-reliance and an adult approach to learning in support of continuing professional development.

Visit the website https://www.kent.ac.uk/courses/postgraduate/737/general-pharmacy-practice

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Modules

For more about the structure of this course please visit the Medway School of Pharmacy website (http://www.msp.ac.uk/studying/postgraduate/cert-gen-pharm-pract/index.html).

Assessment

Assessment is by Objective Structure Clinical Examination (OSCE), multiple-choice questions, assignments, literature review, prescribing audit, change management project, and a competency-based portfolio review.

Programme aims

The PCert and PDip aim to:

- enable you to apply appropriate knowledge, skills and attitudes in order to carry out effectively the role of the general pharmacist practitioner within your pharmacy practice base and wider healthcare teams

- enable you to carry out effective consultations with patients respecting their diverse needs and with regard to confidentiality and consent

- enable you to identify, prioritise and resolve complex pharmaceutical care issues

- enable you to apply knowledge of pathophysiology, pharmacology and the clinical use of drugs and therapeutic guidelines to the treatment of common disease states

- enable you to access, gather, interpret, critically evaluate and summarise medicines information

- enable you to monitor the quality of services provided, identify, prioritise and resolve significant medicines management issues and monitor and evaluate outcomes

- enable you to establish population health needs and apply specialist pharmaceutical knowledge to public health issues.

The MSc aims are to:

- investigate a topic in depth

- evaluate current practice or a new service

- publish research and advance knowledge in pharmacy practice

- develop skills you require for the RPS Advanced Pharmacy Framework

- inspire you and others in your workplace to carry out much needed practice research

- support your future career and perhaps to help you explore new career paths.

Research areas

Chemistry and drug delivery
This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

Biological sciences
This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

Pharmacy practice
This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

This programme provides progression for pharmacists towards advanced practitioner status.

Completion of the practice elements of the course leads to the award of the Certificate of Completion of General Pharmacist Training from an accredited training centre.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
- https://www.kent.ac.uk/locations/medway/. This programme, approved by the appropriate professional/regulatory bodies, provides a distance learning option for qualification as a non-medical prescriber. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

This programme, approved by the appropriate professional/regulatory bodies, provides a distance learning option for qualification as a non-medical prescriber.

Eight contact days cover communication and diagnostic skills. Other topics on the syllabus include the legal, policy, professional and ethical aspects of prescribing, plus pharmacology and patient assessment and monitoring.

Visit the website https://www.kent.ac.uk/courses/postgraduate/740/independent-supplementary-prescribing

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Course structure

You can take the Master’s programme as a stand-alone PCert in Independent/Supplementary Prescribing, or as one pathway into the Medicines Management programme, by studying prescribing as either the first or second year of the Medicines Management PDip.

On successful completion, the School will notify the appropriate professional/regulatory body that you have qualified as an independent/supplementary prescriber.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

Assessment

Assessment is by Objective Structured Clinical Examination (OSCE), assignments, case-study analysis, multiple-choice questions, short answer paper, narrative based on portfolio entries and attendance at a period of learning in practice.

Programme aims

This programme aims to:

- prepare pharmacists to practice as supplementary prescribers

- prepare nurses and midwives to practice as supplementary/independent prescribers

- develop the knowledge and skills required by an allied health professional to practice as a supplementary prescriber

- meet the standards set by the respective professional or regulatory body as required within the legislative framework.

Research areas

Chemistry and drug delivery
This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

Biological sciences
This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

Pharmacy practice
This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

Graduates who obtain their PhD from Kent or Greenwich are highly sought after by prospective employers, both within the UK and overseas. Destinations for doctoral graduates include university academic departments, research institutes and leading pharmaceutical and biotechnological companies.

The taught postgraduate programmes are designed to promote the continuing professional development by providing sought-after skills. The programmes are beneficial for those who wish to develop their skills and/or to take the next step in their career.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
- https://www.kent.ac.uk/locations/medway/. The Medway School of Pharmacy’s innovative postgraduate distance-learning programme in Medicines Management equips healthcare professionals with the skills and knowledge to contribute effectively to medicines management services and to individual drug therapy decisions. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

The Medway School of Pharmacy’s innovative postgraduate distance-learning programme in Medicines Management equips healthcare professionals with the skills and knowledge to contribute effectively to medicines management services and to individual drug therapy decisions.

The programme emphasises clinical and costeffective prescribing in the context of holistic consideration of patient needs, and one of its pathways offers you the chance to qualify as an independent/supplementary prescriber.

Visit the website https://www.kent.ac.uk/courses/postgraduate/738/medicines-management

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Course structure

You can register for the full MSc programme or undertake stand-alone modules. Modules can be put together to form a short course programme. Module length varies from five to 15 credits.

For the PCert, you must complete 60 credits, of which at least 20 must be from core modules. Diploma students must complete 120 credits, of which at least 40 credits must be from core modules. To gain the MSc, you must complete a 60-credit research project, write a dissertation and present the results as a poster.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

Assessment

Assessment includes case study analysis, critical appraisal of literature, assignments including short essays, a research project and dissertation.

Programme aims

This programme aims to:

- equip healthcare professionals with the skills and knowledge to contribute effectively to medicines management services and to individual drug therapy decisions in primary and secondary care.

- enable you to incorporate your learning directly into your workplace and to rise to the challenges presented by the new, patient-centred NHS.

Research areas

- Chemistry and drug delivery

This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

- Biological sciences

This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

- Pharmacy practice

This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

Graduates who obtain their PhD from Kent or Greenwich are highly sought after by prospective employers, both within the UK and overseas. Destinations for doctoral graduates include university academic departments, research institutes and leading pharmaceutical and biotechnological companies.

The taught postgraduate programmes are designed to promote the continuing professional development by providing sought-after skills. The programmes are beneficial for those who wish to develop their skills and/or to take the next step in their career.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
The Water Technology programme is a two year programme with a joint degree. The programme is offered jointly by Wageningen University, University Twente and University of Groningen with education being provided at the Technological Top Institute for Water technology (TTIW Wetsus), in Leeuwarden. Read more

MSc Water Technology

The Water Technology programme is a two year programme with a joint degree. The programme is offered jointly by Wageningen University, University Twente and University of Groningen with education being provided at the Technological Top Institute for Water technology (TTIW Wetsus), in Leeuwarden

Programme summary

There are a lot of new and existing global problems related to the availability and quality of water for personal, agricultural and industrial use. And these problems require sustainable solutions with a minimal impact on the environment. Water technology has unfortunately not been a focal point of most academic research and education programmes, despite its enormous importance to society. Instead, the expertise of various research groups is usually concentrated on other processes and in some cases, only later dedicated to water treatment in spin-off projects. New technologies will be necessary to develop new concepts for the treatment of waste water. And also for the production of clean water from alternative sources like salt (sea) water, waste water or humid air in order to minimise the use of precious groundwater. These challenges require academically trained experts who can think out-of-the-box and help to find practical solutions in the near future. A dedicated joint Master Water Technology programme has been created to train and educate these experts.

The MSc Water Technology is situated in Leeuwarden, the capital of water technology, and is offered jointly by three Dutch universities: Wageningen University, the University of Twente and the University of Groningen. A combined technological approach, based on state-of-the-art universities in science and technology, will search for solutions to several developments within business and society; with a worldwide impact on the demand for and use of water. One dedicated Master programme with joint degree allows for flexibility and can be adapted to the changing needs of the labour market. Wageningen University offers a strong focus on environmental sciences, the University of Twente on science and technology, and the University of Groningen on fundamental sciences. Students will be educated in the multidisciplinary laboratory of the technological top institute for water technology called Wetsus.

The MSc Water Technology programme specifically targets students interested in beta science and technology. The programme offers a unique combination of scientific insights and technological applications from the field of Biotechnology and Chemical Engineering. This combined approach for problem solving within the global framework of water problems is an asset to the programme. The programme is a valuable addition for postgraduate students with a completed bachelor degree in Environmental Engineering, Chemical Engineering and Biotechnology; or in related fields with a strong knowledge of mathematics, physics, chemistry and/or biology, and with affinity of water processes. Students are challenged with examples and case studies of real (research) problems that they might encounter as water professionals.

Students apply for the MSc Water Technology programme at Wageningen University, but will be registered at the other two universities as well. They will have access to the facilities of all three universities. Upon the successful completion of the programme, students receive one joint degree MSc Water Technology issued by all participating universities.

Specialisations

There are no official specialisations within the programme Water Technology. Students specialise themselves by doing a thesis within one of the research fields. Some examples are: Priority compounds, Virus Control, Applied water physics, Desalination, Concentrates, Biofouling, Aquatic worms, Advanced waste water treatment, Algae, Separation at source, Resource recovery, Membrane processes and operation for wastewater treatment and reuse and Sensoring.

Your future career

This study domain is becoming more and more relevant due to the urgent need for new technologies to meet global water problems. Water technology for public drinking water production and sewage water treatment is a very large market. Furthermore, the largest use of fresh water is for irrigation purposes. The industrial water supply and industrial waste water treatment also represent a significant market. There is no question that businesses involved in water technology will grow tremendously. Besides this, human capital is a basic condition to guarantee the success and continuity of the development of sustainable technologies. In many EU countries, the lack of talented technological professionals is becoming an increasingly limiting factor. The programme prepares students for a professional position in the broad area of water technology. Graduates have good national and international career prospects in business and research.

Student Stefanie Stubbé.
"Wetsus gave me the opportunity to get personalized education: teachers that take the time for you and fellow students that challenge and collaborate with you at the same time. Water technology is going to be huge in the future; I already experienced that at several companies when I searched for an internship. Although it is sometimes hard work and far away from the "city-life" in the Netherlands; I've never regretted my choice to start this Master!"

Related programmes:
MSc Biotechnology
MSc Environmental Sciences

Read less
The Postgraduate Diploma course provides training in clinical special care dentistry to enable dentists to deliver primary care both safely and independently to this patient group. Read more

Course Details

The Postgraduate Diploma course provides training in clinical special care dentistry to enable dentists to deliver primary care both safely and independently to this patient group. In addition, it aims to deliver a comprehensive education in the theoretical principles of special care dentistry and develop an ability to critically analyze professional literature. The course leads to the award of Postgraduate Diploma in Special Care Dentistry (P.Grad.Dip. in Special Care Dentistry). The curriculum is designed to enable postgraduate students, including dental practitioners who work in general dental practice as well as community and hospital dental services, to achieve the intended learning outcomes of the course. The course consists of seven core (compulsory) modules as follows: Biological Sciences of Relevance to Special Care Dentistry; Concepts of Health, Impairment, Functioning and Disability; Concepts of Oral Health, Impairment and Disability; Clinical Special Care Dentistry; Oral Healthcare Planning and Oral Health Promotion for Individuals and Groups; Professional Literature Appraisal; Legislation, Ethics and Clinical Governance.

In addition to the course of study and examinations, students must present an essay-based project on barriers to care, and a related presentation, a dissertation, clinical competencies and case presentations as well as submitting a project on service delivery models. Students must also submit a portfolio including a reflective logbook of all cases seen as part of the course as well as selected cases from their own independent practice demonstrating application of knowledge and practical skills obtained through this course. Satisfactory attendance at all aspects of the course is compulsory. A Professional Postgraduate Diploma in Special Care Dentistry is awarded on passing all components of the course. The Diploma will be unclassified but a Distinction will be awarded if a combined mark of at least 70% is obtained across all modules.

Admission Requirements

Practitioners must hold a Bachelors Degree in Dental Science or its equivalent of at least two years and be eligible to register with the Dental Council of Ireland. Students have a responsibility to have valid Basic Life Support (BLS) certification from a certified body for the duration of the course. Furthermore, students must possess their own professional indemnity insurance and present evidence of satisfactory seroconversion against Hepatitis B virus and a recent negative hepatitis C antibody test. Applicants will also be required to undergo Garda (Police) vetting. All applicants must upload a separate statement (no more than 300 words in length) stating why they wish to undertake the Diploma.

Read less
This course has been developed in response to the demand from industry for cyber security professionals who have a systematic understanding of the principles and technologies underpinning today's IT systems. Read more
This course has been developed in response to the demand from industry for cyber security professionals who have a systematic understanding of the principles and technologies underpinning today's IT systems.

Cyber security is a key problem in the provision of services, from the application layer through to the basic building blocks of computer and network systems. People trained in cyber security are greatly sought after and in the UK analysts expect that there will be a shortage of security professionals for the next 10 years or more.

The digital world is a complex place, varied in form and distributed, serving different types of stakeholder who use a variety of devices to access information. Specialists who recognise the diversity of business needs and the breadth of technologies and techniques to combat cyber threats, and have a systematic approach to understanding the impact of technology on organisations, are essential to the success of today's and tomorrow's cyber systems.

Equal in importance to securing cyber systems and their supporting technologies, is the management and delivery of content and services through to the users. These systems are in reality socio-technical-economic systems incorporating people, technologies, service providers, content providers, governments (laws, regulations, policies) through to law enforcement. The cyber security specialist is a broadly based professional able to work with technologists, senior management, service providers and suppliers, through to the end users, with their aim to provide secure services and investigate breaches.

This course builds on typical undergraduate computing courses, or those degrees with a high degree of computing content, whose graduates are looking to develop new knowledge and skills in cyber security. This course is designed to help the student gain an understanding of how cyber security systems are designed and constructed, and of the impact of technology into an organisation. The course will also give you the skills you need to work effectively in a business environment, and provide a solid basis for cyber security research. The course is supported by several research groups within the School of Computing and Engineering and the school has received research funding in cyber security.

Course detail

The course will also give you the skills you need to work effectively in a business environment, and provide a solid basis for cyber security research and development. The course is supported by several research groups within the School of Computing and Engineering and the School has received research funding in cyber security.

Teaching consists of lectures, seminars and laboratory work to provide a basis for the intensive individual study you need to undertake to maximise your achievements and the potential outcomes from taking the course.

Modules

• Fundamentals of Cyber Security
• Security Management
• Network and Systems Security
• Security Operations and Assurance
• Learning and Professional Development
• Employability Skills and Employment
• Knowledge Management (option)
• Computer Networks (option)
• Distributed Application Development (option)
• Project Management (option)
• Mobile Application Development (option)
• Research Methods
• Dissertation.

Format

Diverse methods are used to explore all aspects of the field. A strong supportive culture exists amongst the course tutors which enables students to achieve their potential.

Assessment

Assessed work is a significant part of the total assessment in the masters. There is practical work, report writing, presentations, critical academic writing and the skills and knowledge gained in these contribute to a capacity to deliver a high quality dissertation.

There are a number of end of module exams. Course tutors provide appropriate support throughout the module to ensure candidates are well prepared.

Career and study progression

Graduates in cyber security have a good record of achieving employment and progressing in their professional work. The security industry is wide, including companies that need to protect themselves, government and law enforcement through to the providers of equipment and services, such as the:
• anti-virus, security software vendors (such as McAfee, Kaspersky, Symantec, Sophos, EMC/RSA, Entrust, etc.),
• network and computer vendors (such as Cisco, Juniper, Palo Alto, HP, Barracuda, etc.),
• network and service providers (such as British Telecom, Vodafone, Rackspace, Amazon, etc.),
• consultancies (such as KPMG, IBM, Fujitsu, HP, etc.)
• services companies and in government and law enforcement.

Outstanding graduates have gone on to further study at the level of MPhil and PhD at UWL and at other institutions.

We actively encourage students with potential for research to make their interest known early on in their course.

How to apply

Click the following link for information on how to apply to this course: http://www.uwl.ac.uk/students/postgraduate/how-apply

Scholarships and bursaries

Information about scholarships and bursaries can be found here: http://www.uwl.ac.uk/students/postgraduate/scholarships-and-bursaries

Read less

Show 10 15 30 per page



Cookie Policy    X