• Ulster University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Cranfield University Featured Masters Courses
Birmingham City University Featured Masters Courses
University College London Featured Masters Courses
University of Bath Featured Masters Courses
"viral"×
0 miles

Masters Degrees (Viral)

We have 44 Masters Degrees (Viral)

  • "viral" ×
  • clear all
Showing 1 to 15 of 44
Order by 
This course develops the careers of doctors whose interest is the practice of medicine in tropical and low- and middle-income countries. Read more

This course develops the careers of doctors whose interest is the practice of medicine in tropical and low- and middle-income countries. The course offers a wide choice of modules and provides training in clinical tropical medicine at the Hospital for Tropical Diseases.

The Diploma in Tropical Medicine & Hygiene (DTM&H):

All students going on the MSc will take the Diploma in Tropical Medicine & Hygiene. Students with a prior DTM&H, or holding 60 Masters level credits from the East African Diploma in Tropical Medicine & Hygiene may apply for exemption from Term 1 via accreditation of prior learning.

Careers

Graduates from this course have taken a wide variety of career paths including further research in epidemiology, parasite immunology; field research programmes or international organisations concerned with health care delivery in conflict settings or humanitarian crises; or returned to academic or medical positions in low- and middle-income countries.

Awards

The Frederick Murgatroyd Award is awarded each year for the best student of the year. Donated by Mrs Murgatroyd in memory of her husband, who held the Wellcome Chair of Clinical Tropical Medicine in 1950 and 1951.

- Full programme specification (pdf) (https://www.lshtm.ac.uk/files/tmih_progspec.pdf)

Visit the website https://www.lshtm.ac.uk/study/masters/tropical-medicine-international-health

Objectives

By the end of this course students should be able to:

- understand and describe the causation, pathogenesis, clinical features, diagnosis, management, and control of the major parasitic, bacterial, and viral diseases of developing countries

- demonstrate knowledge and skills in diagnostic parasitology and other simple laboratory methods

- understand and apply basic epidemiological principles, including selecting appropriate study designs

- apply and interpret basic statistical tests for the analysis of quantitative data

- critically evaluate published literature in order to make appropriate clinical decisions

- communicate relevant medical knowledge to patients, health care professionals, colleagues and other groups

- understand the basic sciences underlying clinical and public health practice

Structure

Term 1:

All students follow the course for the DTM&H. Term 1 consists entirely of the DTM&H lectures, seminars, laboratory practical and clinical sessions, and is examined through the DTM&H examination and resulting in the award of the Diploma and 60 Master's level credits at the end of Term 1.

Terms 2 and 3:

Students take a total of five study modules, one from each timetable slot (Slot 1, Slot 2 etc.). Recognising that students have diverse backgrounds and experience, the course director considers requests to take any module within the School's portfolio, provided that this is appropriate for the student.

*Recommended modules

- Slot 1:

Clinical Infectious Diseases 1: Bacterial & Viral Diseases & Community Health in Developing Countries*

Clinical Virology*

Epidemiology & Control of Malaria*

Advanced Immunology 1

Childhood Eye Disease and Ocular Infection

Designing Disease Control Programmes in Developing Countries

Drugs, Alcohol and Tobacco

Economic Evaluation

Generalised Liner Models

Health Care Evaluation

Health Promotion Approaches and Methods

Maternal & Child Nutrition

Molecular Biology & Recombinant DNA Techniques

Research Design & Analysis

Sociological Approaches to Health

Study Design: Writing a Proposal

- Slot 2:

Clinical Infectious Diseases 2: Parasitic Diseases & Clinical Medicine*

Conflict and Health*

Design & Analysis of Epidemiological Studies*

Advanced Diagnostic Parasitology

Advanced Immunology 2

Clinical Bacteriology 1

Family Planning Programmes

Health Systems; History & Health

Molecular Virology; Non Communicable Eye Disease

Population, Poverty and Environment

Qualitative Methodologies

Statistical Methods in Epidemiology

- Slot 3:

Clinical Infectious Diseases 3: Bacterial & Viral Diseases & Community Health in Developing Countries*

Control of Sexually Transmitted Infections*

Advanced Training in Molecular Biology

Applied Communicable Disease Control

Clinical Immunology

Current Issues in Safe Motherhood & Perinatal Health

Epidemiology of Non-Communicable Diseases

Implementing Eye Care: Skills and Resources

Medical Anthropology and Public Health

Modelling & the Dynamics of Infectious Diseases

Nutrition in Emergencies

Organisational Management

Social Epidemiology

Spatial Epidemiology in Public Health

Tropical Environmental Health

Vector Sampling, Identification & Incrimination

- Slot 4:

Clinical Infectious Diseases 4: Parasitic Diseases & Clinical Medicine*

Epidemiology & Control of Communicable Diseases*

Ethics, Public Health & Human Rights*

Global Disability and Health*

Immunology of Parasitic Infection: Principles*

Analytical Models for Decision Making

Clinical Bacteriology 2

Design & Evaluation of Mental Health Programmes

Environmental Epidemiology

Evaluation of Public Health Interventions

Genetic Epidemiology

Globalisation & Health

Molecular Biology Research Progress & Applications

Nutrition Related Chronic Diseases

Population Dynamics & Projections

Reviewing the Literature

Sexual Health

Survival Analysis and Bayesian Statistics

Vector Biology & Vector Parasite Interactions

- Slot 5:

AIDS*

Antimicrobial Chemotherapy*

Mycology*

Advanced Statistical Methods in Epidemiology

Analysing Survey & Population Data

Applying Public Health Principles in Developing Countries

Environmental Health Policy

Integrated Vector Management

Integrating Module: Health Promotion

Molecular Cell Biology & Infection

Nutrition Programme Planning

Pathogen Genomics

Principles and Practice of Public Health

Further details for the course modules - https://www.lshtm.ac.uk/study/courses/masters-degrees/module-specifications

Project Report:

During the summer months (July - August), students complete a research project in a subject of their choice, for submission by early September. Projects may involve writing up and analysing work carried out before coming to the School, a literature review, or a research study proposal. Some students gather data overseas or in the UK for analysis within the project. Such projects require early planning.

Students undertaking projects overseas will require additional funding of up to £1,500 to cover costs involved. The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/mstmih.html#sixth



Read less
This is a multidisciplinary programme that bridges the fields of epidemiology, laboratory sciences and public health. It includes a strong practical component and the opportunity to undertake a research project overseas. Read more

This is a multidisciplinary programme that bridges the fields of epidemiology, laboratory sciences and public health. It includes a strong practical component and the opportunity to undertake a research project overseas. The course will train students in all aspects of the control of infectious diseases and prepare them for a career in a range of organisations.

This course will equip students with specialised skills that will facilitate a career in the control of infectious diseases as staff of health ministries, health departments, national or international disease control agencies, aid organisations or universities.

The majority of the research projects are performed overseas, with collaborating public health or research organisations and NGOs. Students are encouraged to take advantage of this overseas opportunity, which is crucial to the nature of the course.

- Full programme specification (pdf) (https://www.lshtm.ac.uk/files/cid_progspec.pdf)

- Intercalating this course (https://www.lshtm.ac.uk/study/courses/ways-study/intercalating-study-masters-degree)

Visit the website https://www.lshtm.ac.uk/study/masters/control-infectious-diseases

Objectives

By the end of this course students should be able to:

- investigate the transmission of endemic and epidemic infections

- select appropriate methods of control

- design, implement and evaluate co-ordinated control methods

- assess constraints of local public health delivery systems

- manage available resources in the context of the control of infectious diseases

- focus their efforts on particular geographical regions or specific diseases

Structure

Term 1:

After orientation, students take two compulsory modules: Basic Statistics and Introduction to Disease Agents & Their Control, which focus on the life cycle and characteristics of infectious disease agents according to their principal transmission routes; the principal intervention strategies used to combat infectious diseases; and examples of successes, partial successes and failures in intervention programmes against infectious diseases.

In addition, students take one of the following module combinations:

- Basic Epidemiology; Health Economics; and Health Policy, Process and Power

- Extended Epidemiology and Health Economics or Health Policy, Process and Power

An interdisciplinary approach is emphasised which takes account of the social, political and economic context in which health systems operate.

Terms 2 and 3:

Students take a total of five study modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules which may be taken only after consultation with the Course Directors.

*Recommended modules

- Slot 1:

Designing Disease Control Programmes in Developing Countries*

Epidemiology & Control of Malaria*

Health Care Evaluation*

Childhood Eye Disease and Ocular Infections

Clinical Infectious Diseases 1: Bacterial & Viral Diseases & Community Health in Developing Countries

Clinical Virology

Economic Evaluation

Health Promotion Approaches and Methods

Maternal & Child Nutrition

Research Design & Analysis

Study Design: Writing a Study Proposal.

- Slot 2:

Clinical Bacteriology 1*

Conflict and Health*

Design & Analysis of Epidemiological Studies*

Population, Poverty and Environment*

Statistical Methods in Epidemiology*

Advanced Diagnostic Parasitology

Clinical Infectious Diseases 2: Parasitic Diseases & Clinical Medicine

Health Systems

Qualitative Methodologies

- Slot 3:

Applied Communicable Disease Control*

Control of Sexually Transmitted Infections*

Current Issues in Safe Motherhood & Perinatal Health*

Economic Analysis for Health Policy*

Medical Anthropology & Public Health*

Spatial Epidemiology in Public Health*

Tropical Environmental Health*

Vector Sampling, Identification & Incrimination*

Basic Parasitology

Clinical Infectious Diseases 3: Bacterial & Viral Diseases & Community Health in Developing Countries

Modelling & the Dynamics of Infectious Diseases

Nutrition in Emergencies

Organisational Management

Social Epidemiology

- Slot 4:

Clinical Bacteriology 2*

Epidemiology & Control of Communicable Diseases*

Analytical Models for Decision Making

Clinical Infectious Diseases 4: Parasitic Diseases & Clinical Medicine

Ethics, Public Health & Human Rights

Globalisation & Health; Sexual Health

Vector Biology & Parasite Infections

- Slot 5:

AIDS*

Applying Public Health Principles in Developing Countries*

Integrated Vector Management*

Advanced Statistical Methods in Epidemiology

Antimicrobial Chemotherapy

Integrating Module: Health Promotion

Integrating Module: Health Services Management

Mycology

Nutrition Programme Planning

Principles and Practice of Public Health

Further details for the course modules - https://www.lshtm.ac.uk/study/courses/masters-degrees/module-specifications

Project Report:

During the summer months (July - August), students complete a research project studying aspects of an intervention programme, for submission by early September. If appropriate, this may take the form of an optional period in a relevant overseas location. Most students on this course undertake projects overseas. Students undertaking projects overseas will require additional funding of up to £1,500 to cover costs involved.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/mscid.html#sixth



Read less
This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. Read more

This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. The increasing incidence of microbial infections worldwide is being compounded by the rapid evolution of drug-resistant variants and opportunistic infections by other organisms. The course content reflects the increasing importance of genomics and molecular techniques in both diagnostics and the study of pathogenesis.

In response to a high level of student interest in viral infections, the School has decided to offer the opportunity for students who focus on viruses in their module and project choices to be awarded a Master's degree in Medical Microbiology (Virology). This choice will depend on the module selection of the individual student in Terms 2 and 3 and choice of project.

Graduates from this course move into global health careers related to medical microbiology in research or medical establishments and the pharmaceutical industry.

The Bo Drasar Prize is awarded annually for outstanding performance by a Medical Microbiology student. This prize is named after Professor Bohumil Drasar, the founder of the MSc Medical Microbiology course.

The Tsiquaye Prize is awarded annually for the best virology-based project report.

- Full programme specification (pdf) (https://www.lshtm.ac.uk/files/mm_progspec.pdf)

- Intercalating this course (https://www.lshtm.ac.uk/study/courses/ways-study/intercalating-study-masters-degree)

Visit the website https://www.lshtm.ac.uk/study/masters/medical-microbiology

Objectives

By the end of the course students should be able to:

- demonstrate advanced knowledge and understanding of the nature of viruses, bacteria, parasites and fungi and basic criteria used in the classification/taxonomy of these micro-organisms

- explain the modes of transmission and the growth cycles of pathogenic micro-organisms

- demonstrate knowledge and understanding of the mechanisms of microbial pathogenesis and the outcomes of infections

- distinguish between and critically assess the classical and modern approaches to the development of therapeutic agents and vaccines for the prevention of human microbial diseases

- demonstrate knowledge of the laboratory diagnosis of microbial diseases and practical skills

- carry out a range of advanced skills and laboratory techniques, including the purification of isolated microbial pathogens, study of microbial growth cycles and analyses of their proteins and nucleic acids for downstream applications

- demonstrate research skills

Structure

Term 1:

There is a one-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and course-specific sessions, followed by two compulsory modules:

- Bacteriology & Virology

- Analysis & Design of Research Studies

Recommended module: Molecular Biology

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:

Students take a total of five modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules that can be taken only after consultation with the Course Director.

- Slot 1:

Clinical Virology

Molecular Biology & Recombinant DNA Techniques

- Slot 2:

Clinical Bacteriology 1

Molecular Virology

- Slot 3:

Advanced Training in Molecular Biology

Basic Parasitology

- Slot 4:

Clincal Bacteriology 2

Molecular Biology Research Progress & Applications

- Slot 5:

Antimicrobial Chemotherapy

Molecular Cell Biology & Infection

Mycology

Pathogen Genomics

Further details for the course modules - https://www.lshtm.ac.uk/study/courses/masters-degrees/module-specifications

Project Report

During the summer months (July - August), students complete a laboratory-based original research project on an aspect of a relevant organism, for submission by early September. Projects may take place within the School or with collaborating scientists in other colleges or institutes in the UK or overseas.

The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose

Course Accreditation

The Royal College of Pathologists accepts the course as part of the professional experience of both medical and non-medical candidates applying for membership. The course places particular emphasis on practical aspects of the subjects most relevant to current clinical laboratory practice and research.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msmm.html#sixth



Read less
This course offers an integrated approach to the understanding of the nature of viruses and their role in disease pathogenesis, with an emphasis on the understanding of these processes at the molecular level. Read more

This course offers an integrated approach to the understanding of the nature of viruses and their role in disease pathogenesis, with an emphasis on the understanding of these processes at the molecular level.

The objectives of this course are to equip those intending to pursue a career in academic or industrial research with the required knowledge and skills, and to provide a solid foundation for those who aim to go on to study at PhD level.

During the course you will develop an in-depth understanding of the structure and function of viruses and the processes of viral infection and viral diseases at the molecular level.

The course also provides training in laboratory and research skills in a supportive learning environment.

Careers

Many graduates proceed to PhD study, or if medically qualified, to clinical practice or research. As well as scientific training, this course expands your transferable skills, allowing you to enter a variety of other careers including, industry, finance, management and various types of consultancy.

Further information

For full information on this course, including how to apply, see: http://www.imperial.ac.uk/study/pg/medicine/molecular-biology/

If you have any enquiries you can contact our team at:



Read less
Want to be at the forefront of scientific research into microbes and their role in developing new medicines, tackling diseases and improving the environment?. Read more
Want to be at the forefront of scientific research into microbes and their role in developing new medicines, tackling diseases and improving the environment?

Northumbria is the only UK university to offer Microbiology as an individual discipline, giving you the opportunity to develop specialist knowledge and break new ground as a scientist.

Gain hands-on, immersive experience, in high tech facilities, working alongside leading academics. Advance your expertise in clinical and environmental microbiology, studying how viral and bacterial diseases work and how you can use microbes to create new medicines.

You’ll cover microbial taxonomy, bioinformatics and molecular biology, using bacteria and viruses to develop new technologies and substances through data analysis and genome sequencing.

With opportunities to develop your theoretical knowledge, advance your own research, and increase your profile through articles and publications, this course equips you for further PhD study or for a career in microbiology.

This course is also available part time - for more information, please view the web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/microbiology-dtpmgy6/

Learn From The Best

Specialising in a wide range of research areas, from developing enzymes for pharmaceutical, chemical and food industries, to life in extreme environments, your academic team reflect the varied, multi-disciplinary nature of microbiological science.

Tutors are active researchers in their chosen specialisms and share their knowledge through teaching, scientific conferences and publications. Many have established relationships with professional microbiology organisations and lead policy and practice within the profession.

Combining industry experience and research expertise, you’ll benefit from their knowledge and real-life insights as you develop your skills and understanding.

Teaching And Assessment

You’ll enhance your knowledge of this broad subject matter through in-depth, research focused and real-life learning.

You’ll gain skills in applying tools, techniques and methods related to molecular biology, microbial culture and classification and in functional analysis of microbial and viral genomes.

With an emphasis on individual learning and problem solving using the latest research, as part of the course, you’ll undertake a research project based on a currently relevant question. This will allow you to develop your particular specialism or interest and focus your study on practical research.

You’ll be assessed on your ability to apply your subject knowledge to real-world challenges in the form of assessment tasks as well as being measured in key laboratory skills.

Module Overview
AP0700 - Graduate Science Research Methods (Core, 20 Credits)
AP0701 - Molecular Biology (Core, 20 Credits)
AP0702 - Bioinformatics (Core, 20 Credits)
AP0703 - Subject Exploration (Core, 20 Credits)
AP0706 - Microbes and Disease (Core, 20 Credits)
AP0707 - Microbial Diversity (Core, 20 Credits)
AP0708 - Applied Sciences Research Project (Core, 60 Credits)

Learning Environment

You’ll get hands-on experience in our large, modern well-equipped laboratories with audio-visual facilities that help you observe, learn and question techniques and ideas.

High-tech wet and dry labs which are fully equipped for molecular biology manipulations are available to help you work on your own research projects.

While some modules are conventionally taught, you’ll benefit from a mixture of learning experiences including lectures, small group seminars and laboratory sessions, adding a practical edge to your theoretical understanding.

Research-Rich Learning

The internationally recognised and well-established group, led by Professor Iain Sutcliffe, apply scientific approaches to aspects of healthcare and extend understanding of diseases.

Research areas include:
-Bacterial cell envelope architecture and biosynthesis
-Control of parasitic arthropods
-Microbial diagnostics (in collaboration with Applied Chemistry)
-Microbial enzymes as biocatalysts (through our Nzomics Innovation Unit, in collaboration with Applied Chemistry)
-Molecular ecology and microbial community analysis in human health (COPD, cystic fibrosis and necrotising enterocolitis)
-Molecular ecology and microbial community analysis in the environment (Lake Suigetsu, Japan; Polar environments) and in agricultural management
-Genomics and proteomics of prokaryotes
-Novel antimicrobials (in collaboration with Applied Chemistry)
-Systematics and taxonomy of bacteria
-Virulence determinants in pathogenic streptococci

Microbiological and virological based techniques to study; virus-host interactions and phage genomics (through our Nu-omics). Research is funded by companies, charities and research council grants.

Give Your Career An Edge

This course has been designed to help you develop specific knowledge and practical skills in Microbiology based on work-related learning. Teaching and assessment throughout the course is based on problem solving linked to a practical approach to current research.

You’ll have opportunities for work-based learning and to be an ambassador for STEM activities, gaining valuable professional experience and applying your knowledge in real-world situations.

Your research project provides a chance to showcase your interests and ability to define, formulate and test a hypothesis through careful experimental design, method development, data capture and analysis and communicating your findings.

You’ll be able to demonstrate transferable skills valued by employers including critical thinking, working as part of a group, data mining and record keeping, alongside problem solving, independent learning, and communication with both technical and non-technical audiences.

Your Future

The MSc Microbiology course will support and inspire you to high achievement in employment or further education and research in your chosen specialism.

Building on your theoretical knowledge with practical and laboratory skills you’ll show that you can tackle complex problems with confidence, skill and maturity as you develop key strengths in critical thinking and expressing opinions based on evidence.

The practices and procedures of Microbiology and Virology, together with logical thinking, attention to detail and a questioning mind will equip you with skills suitable for a range of careers in human health and disease, environmental studies and industrial or biotechnical industries.

Read less
The MSc course in Microbiology and Immunology was set up to enhance the training of scientists studying the interactions between microbes and the immune system, and for those students wishing to enter a research career and gain high level skills in Microbiology and Immunology. Read more
The MSc course in Microbiology and Immunology was set up to enhance the training of scientists studying the interactions between microbes and the immune system, and for those students wishing to enter a research career and gain high level skills in Microbiology and Immunology.

The course aims to provide training in theoretical and practical aspects of microbiology and immunology, with particular emphasis on molecular biological techniques and the interactions at the interface between microbes and the immune system. Students will gain basic and advanced knowledge of important viral, bacterial and parasitic infections. Alongside this, students will acquire an understanding and knowledge of the immune system and how it detects and responds to pathogens.

Students who have completed the course will acquire relevant transferable skills such as data management, interpretation and presentation, time management and organisation, and effective verbal and written communication skills. In addition, the students' ability for analytical and creative thinking will also be improved whilst undertaking the course.

The MSc will consist of seven taught modules and a laboratory-based project. Successful completion of the course will necessitate accumulation of 180 credits, 120 of which will derive from the taught modules and 60 from the research project. All of the modules are compulsory. There is an additional non-credit bearing module to provide the students with factfinding networking opportunities with each other and the staff alongside navigation of teaching facilities.

Autumn Semester:

Microbiology and Immunology General Sessions
Introduction to Medical Microbiology
Research Methods in Immunology and Microbiology
Viral Pathogenesis and Infections

Spring Semester:

Bacterial Pathogenesis and Infection
Immunity and the Immune System
Therapeutic Immunology
Innate Immune Recognition
Research Project

Read less
This course combines theoretical knowledge and practical training in the immunology of infectious diseases through comprehensive teaching and research methods. Read more

This course combines theoretical knowledge and practical training in the immunology of infectious diseases through comprehensive teaching and research methods. Students will gain specialised skills in applying scientific concepts, evaluating scientific data and carrying out modern immunological techniques. Students will benefit from the unique mix of immunology, vaccinology, molecular biology, virology, bacteriology, parasitology, mycology and clinical medicine at the School.

Infectious diseases represent an increasingly important cause of human morbidity and mortality throughout the world. Vaccine development is thus of great importance in terms of global health. In parallel with this growth, there has been a dramatic increase in studies to identify the innate, humoral or cellular immunological mechanisms which confer immunity to pathogenic viruses, bacteria, fungi and parasites. As a result, increasing numbers of scientists, clinicians and veterinarians wish to develop their knowledge and skills in these areas.

The flexible nature of the course allows students to focus on attaining a broader understanding of infectious disease through attending taught units. Students can also undertake an extended research project within groups led by experienced team leaders. Such projects can involve basic investigations of immune mechanisms or applied field based studies.

Graduates from this course go into research positions in academia and industry, and further training such as PhD study.

- Full programme specification (pdf) (https://www.lshtm.ac.uk/files/iid_progspec.pdf)

- Intercalating this course (https://www.lshtm.ac.uk/study/courses/ways-study/intercalating-study-masters-degree)

Visit the website https://www.lshtm.ac.uk/study/masters/immunology-infectious-diseases

Objectives

By the end of this course students should be able to:

- demonstrate specialist knowledge and understanding of the basic principles of host immunity to infection against the diverse range of pathogens which confront human populations

- apply this specialist knowledge to a range of practical skills and techniques, in particular modern molecular and cellular techniques for assessing immune responses to pathogens

- critically assess, select and apply appropriate research methods to investigate basic immunological mechanisms and applied issues in the immunology of infection

- critically evaluate primary scientific data and the published scientific literature

- integrate and present key immunological concepts at an advanced level, both verbally and in written form

Structure

Term 1:

There is a one-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and an introduction to major groups of pathogens, followed by two compulsory modules:

- Immunology of Infectious Diseases

- Analysis & Design of Research Studies

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:

Students take a total of five study modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules which may be taken only after consultation with the Course Directors.

*Recommended modules

- Slot 1:

Advanced Immunology 1 (compulsory)

- Slot 2:

Advanced Immunology 2 (compulsory)

- Slot 3:

Advanced Training in Molecular Biology*

Clinical Immunology*

Extended Project*

Basic Parasitology

Clinical Infectious Diseases 3: Bacterial & Viral Diseases & Community Health in Developing Countries

- Slot 4:

Extended Project*

Immunology of Parasitic Infection: Principles*

Molecular Biology Research Progress & Applications*

Clinical Infectious Diseases 4: Parasitic Diseases & Clinical Medicine

Epidemiology & Control of Communicable Diseases

Ethics, Public Health & Human Rights

Genetic Epidemiology

- Slot 5:

AIDS*

Antimicrobial Chemotherapy*

Extended Project*

Molecular Cell Biology & Infection*

Mycology*

Further details for the course modules - https://www.lshtm.ac.uk/study/masters/immunology-infectious-diseases#structure

Residential Field Trip

Towards the end of Term 1, students get the opportunity to hear about the latest, most exciting aspects of immunological research at the British Society of Immunology Congress. The cost is included in the £500 field trip fee.

Project Report

During the summer months (July - August), students complete a research project on an immunological subject, for submission by early September. Some of these projects may take place with collaborating scientists overseas or in other colleges or institutes in the UK. Students undertaking projects overseas will require additional funding of up to £1,500 to cover costs involved.

The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msiid.html#sixth



Read less
Global infectious diseases are rarely out of the news, as new communicable diseases - Ebola, Zika, bird flu - along with some old familiar ones - tuberculosis (TB), cholera, HIV, malaria - raise concerns about outbreaks and global pandemics. Read more

Global infectious diseases are rarely out of the news, as new communicable diseases - Ebola, Zika, bird flu - along with some old familiar ones - tuberculosis (TB), cholera, HIV, malaria - raise concerns about outbreaks and global pandemics. In our ever-changing, rapidly globalising world, the free movement of people and goods, social change, urbanisation and environmental degradation mean that microorganisms can move quickly between and across populations, crossing natural and human-made borders with ease. A communicable disease that develops in one country has the potential for global impact. On top of this, microorganisms are constantly adapting and developing resistance to existing antibiotic and other treatments, leading to the resurgence of old diseases and the evolution of new ones. 

In response, new and improved treatments are constantly required to combat parasitic, bacterial and viral infections. These pathogens have the potential to adversely affect the health of millions of people and they challenge scientists, particularly in the field of microbiology, to respond swiftly and preemptively. 

This course is ideal if you have an undergraduate degree in a relevant scientific subject and you would like to develop an academic or professional career as a researcher into global infectious diseases. The course is research-focused and it will help you develop the research skills and subject-specific, laboratory-based expertise you need to develop as a microbiological researcher. You will develop the knowledge and learn the skills you need to undertake an original, independent research project and dissertation. 

In addition to your own laboratory work, you will attend group laboratory meetings and seminars, to deepen your theoretical knowledge and practical skills, and to contextualise your research. 

Why study this course at Birkbeck?

HIGHLIGHTS

  • Develop a range of research skills and subject-matter expertise in global infectious diseases.
  • Undertake a laboratory project in a research-intensive environment, under the guidance of leading-edge researchers.
  • The Department of Biological Sciences is part of the Institute of Structural and Molecular Biology (ISMB), a joint initiative with University College London.
  • In the 2014 Research Excellence Framework (REF), in a joint submission with UCL, Biological Sciences at Birkbeck were ranked 11th in the UK, with a research environment supporting world-leading and internationally excellent research.
  • Ideal if you want to gain qualifications necessary for pursuing a research career.
  • You will join an existing research group under the guidance of a research supervisor.

COURSE STRUCTURE

The research component of this degree occupies about two-thirds of the programme. The remaining third comprises postgraduate taught modules that will provide the necessary theoretical and practical background for you to pursue your chosen research topic.

You take the compulsory module Research in Microbiology (30-credit taught module, taught in the day), choose taught option modules (worth 30 credits) and complete a research project and dissertation (120 credits, full-time laboratory work, attendance at seminars, journal club, etc.).

COMPULSORY MODULES

OPTION MODULES



Read less
This course offers both taught components and extensive research experience for students with backgrounds in biological, chemical and physical sciences. Read more
This course offers both taught components and extensive research experience for students with backgrounds in biological, chemical and physical sciences. It is particularly suitable for those who wish to gain both theoretical and practical research experience in the techniques of structural biology or biocomputing.

Our research areas include:

Molecular chaperones, amyloid fibrils, pore-forming toxins
M. tuberculosis, cytoskeletal proteins
Signal transduction, bacterial pathogenesis and DNA replication
Electron microscopy, cytoskeletal dynamics and function
Electron cryo-microscopy; electron tomography and image processing; development of methods for recognition and separation of heterogeneous molecular complexes; bacteriophage assembly; structural analysis of the transcription factor p53
Hsp90, the kinetochore
DNA repair
Protein folding and misfolding, in particular at the point of synthesis on intact ribosomes
Viral protein-nucleic acid interactions.

Read less
Research profile. This programme is organised by Edinburgh Infectious Diseases (EID), which is hosted by the College of Medicine and Veterinary Medicine and the College of Science and Engineering. Read more

Research profile

This programme is organised by Edinburgh Infectious Diseases (EID), which is hosted by the College of Medicine and Veterinary Medicine and the College of Science and Engineering.

It provides an introduction to research methodology for biologists, medics and veterinarians. The training also provides an entry into PhD studies. Previous students have undertaken projects in the following areas:

  • antibiotic resistance and hospital-acquired infections
  • arthropod vector biology and vectorborne diseases
  • epidemiology and mathematical modelling of animal and human infections
  • functional genomics and bioinformatics
  • molecular diagnosis and point-of-care detection of infectious diseases
  • the immunology of bacterial and parasitic infections (including major tropical diseases such as malaria, lymphatic filariasis and river blindness)
  • the immunology of ruminant infections (for example Johne's Disease)
  • the pathogenesis of prion and viral diseases (animal and human, including herpes and HIV)

The learning process includes a one-year research project and during the study period students will be required to attend research seminars and lectures, including those on the related areas of immunology, microbiology and pathology. Training will also be given in generic skills including: statistics; project management and planning; oral and written presentational skills.

Depending on the project selected, students will learn how to apply modern molecular and biochemical techniques to the investigation of pathogenesis of infections, or the use of statistics and mathematical models to study the epidemiology of diseases.

Programme structure

The learning process includes a one-year research project and during the study period students will be required to attend research seminars and lectures, including those on the related areas of immunology, microbiology and pathology. Training will also be given in generic skills including: statistics; project management and planning; oral and written presentational skills.



Read less
This Biomedical Sciences degree offers research training for students in order to gain all the required Biomedical Sience entry requirements to proceed to a PhD. Read more

This Biomedical Sciences degree offers research training for students in order to gain all the required Biomedical Sience entry requirements to proceed to a PhD. It is largely based on individual research projects rather than coursework, and allows you to specialise in a particular area of study.

Why this programme

◾Ranked world top 100 for Biological Sciences

◾The Masters in Biomedical Science provides training in a wide range of modern molecular biology techniques required to pursue a research career.

◾You will gain valuable practical research experience by using the skills and techniques acquired during the programme to complete two extensive research projects.

◾The Biomedical Science programme is distinctive in that students complete two different extensive research projects of their choice, allowing them to acquire a wide range of knowledge and skills directly relevant to the study of human disease.

◾If you are aiming to study for a higherBiomedical Science degree , this programme is designed for you.

◾If you want to enter the pharmaceutical and biotechnology industries, this programme provides excellent training; and is an ideal introduction for overseas students who may wish to proceed to PhD biomedical science studies in the UK.

◾You can choose to specialise within a particular discipline or area, which can be important for career development, see programme structure below for more information.

Programme structure

The overall aims of the programme are:

◾to provide students with the knowledge, skills and confidence needed to pursue a career in laboratory research.

◾to provide students with a theoretical and practical understanding of advanced techniques used in modern biomedical sciences research.

◾to provide students with the opportunity to practice research skills in the laboratory by completing two extensive research projects.

MRes students have the opportunity to specialise in a particular discipline or area, which can be important for their career development. The specialisations are:

◾Biotechnology

◾Cancer Studies

◾Cardiovascular Studies

◾Cell Engineering

◾Integrative Mammalian Biology SFC funded places available

◾Medical Biochemistry and Molecular Biology

◾Molecular Genetics

◾Neuroscience

◾Proteomics

To qualify for a specialisation, students must select two research projects in a cognate research area.

Research projects

The central and most important part of the MRes is the two research projects that students undertake. Students choose both projects themselves in the subject areas that interest them and that will allow them to follow the career path they wish to follow. The MRes programme has a huge number of projects which students can choose from, across a wide spectrum of biomedical science.

The following are examples of the types of projects offered, to illustrate the range of subject areas.

• Making blood from human embryonic stem cells

• A gene-microarray based approach to the detection of recombinant human erythropoietin doping in endurance athletes

• Neuropathology of trypanosomiasis

• Development of a new technique for stem cell transfection

• Cloning and analysis of an inflammatory factor in cancer and autoimmune disease

• Analysis of viral induced cancer

Each year students have about 100 different projects to choose from and all students find research topics that interest them.



Read less
The MRes in Bioinformatics involves the use of computational methods to study molecular evolution using sequence data now available in online databases. Read more
The MRes in Bioinformatics involves the use of computational methods to study molecular evolution using sequence data now available in online databases. Research areas within which projects are available include: the use of secondary structure models to investigate evolutionary relationships in the molluscs; evolution of mobile DNAs; studies on the evolution of spider silk gene families; the application of molecular clocks to microbial sequences, in particular the investigation of rate variation in foraminifera lineages and the estimation of the age of viral radiations.

APPLICATION PROCEDURES

After identifying which Masters you wish to pursue please complete an on-line application form
http://www.nottingham.ac.uk/pgstudy/apply/apply-online.aspx

Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS
http://www.nottingham.ac.uk/studywithus/international-applicants/scholarships-fees-and-finance/scholarships/masters-scholarships.aspx

Read less
Gain the expertise to operate within a global economy and develop your writing and presentation skills to engage with audiences across the world on this accredited course. Read more

Gain the expertise to operate within a global economy and develop your writing and presentation skills to engage with audiences across the world on this accredited course.

The use of the internet, mobile technology and social media has had a huge impact on our lives and the way we communicate ? information is quite literally available at our fingertips and word of mouth is spreading faster than ever before. This trend is leading to a greater demand for communications professionals who can plan strategic PR campaigns and implement social media and viral campaigns in order to drive businesses forward in the digital age.

You will be paired with an experienced mentor from industry, who will offer valuable advice on your future career and the latest developments in the field. You will also take on a live public relations consultancy project for a client.

You will have the option to undertake a work placement module in your second semester. 

Research Excellence Framework 2014

Research Excellence Framework 2014: twice as many of our staff - 220 - were entered into the research assessment for 2014 compared to the number entered in 2008.

Course Benefits

Your employability will be enhanced by a three-step system - a work placement, real-life project and through guidance from your mentor. A study abroad option enables you to undertake part of your studies at a partner university in Europe and these opportunities will help you build a strong CV for a career in PR and corporate communication.

This course forms part of our Leeds Business School which has been at the forefront of public relations education, both nationally and internationally, since 1990. We are a centre for excellence for public relations and communications teaching in the UK and Europe and our academics have substantial professional experience in the subject. The late Alan Rawel, who was Head of Education at the Chartered Institute of Public Relations (CIPR), described us as 'one of the leading university PR departments in Europe'.

The bestselling textbook 'Exploring Public Relations' is edited by our very own Prof Ralph Tench and Liz Yeomans, with chapters written by members of our subject group. It is now in its second edition and has been adopted as a standard text by many universities all over the world as well as by the CIPR professional courses.

Our strong relationships with employers and professionals give you the opportunity to do a placement with PR consultancies and in-house PR departments. A study abroad option enables you to undertake part of your studies at a partner university in Europe. These opportunities will help you build a strong CV for a career in PR and corporate communication.

Core Modules

  • Digital Communication Management
  • Dissertation
  • Corporate Communication in an Intercultural Context
  • Public Relations Skills
  • Strategic Communication Planning & Management
  • Communications Audit

Option modules

  • Marketing Communications Strategy
  • Work Placement
  • International Marketing - Emerging Markets
  • Global Business Environment

Job prospects

With guidance from your mentor and backed by the experiences gleaned from your work placement and consultancy project, your career prospects will be significantly strengthened. A study abroad option will enable you to undertake part of your studies at a partner university in Europe. These opportunities will help you build a strong CV for a career in PR and strategic communication.

  • Digital communications manager
  • Public relations manager
  • Press officer
  • Social media manager


Read less
This programme combines taught modules with extensive research training, increasing your scientific understanding of Medical Microbiology whilst developing your critical and analytical skills. Read more

This programme combines taught modules with extensive research training, increasing your scientific understanding of Medical Microbiology whilst developing your critical and analytical skills.

You will study theoretical aspects of Medical Microbiology which encompass: the biological and pathogenic properties of microbes; their role in health and disease; the reactions of the host to infection; and the scientific basis for the detection, control and antimicrobial treatment of infectious disease.

The extensive research experience you receive differentiates this Euromasters programme from all other UK MSc Medical Microbiology programmes, and allows us to produce graduates highly sought-after by employers.

Programme structure

This programme is studied full-time over two academic years. It consists of twelve taught modules and a research project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Short courses

Most of our lecture modules are offered as stand-alone short courses and are accredited by the Institute of Biomedical Sciences for the purposes of Continuing Professional Development (CPD).

You may take up to three modules as stand-alone courses before registering retrospectively for the MSc and counting the accumulated credits towards your degree.

The fee structure for short courses is different to that for registered students and details may be obtained upon enquiry to the programme administrator. Also contact the programme administrator for information regarding the timing of each module.

Career prospects

Medical Microbiology (Euromasters) graduates are working in senior research positions in industry, academia or the public sector in the UK and around the world. Others have gone on to apply the extensive research experience obtained during the programme to study for a PhD.

Many part-time students already working in the public or private sector receive a promotion as a result of their qualification, having significantly improved their practice during the course.

Educational aims of the programme

This full-time two year programme is intended primarily for those who already have some practicalexperience in medical microbiology or a closely related field. Those who undertake this MSc will aspire to become leaders in their profession.

The programme therefore aims to provide a strong scientific and intellectual platform on which further development can be built, including the ability to evaluate and exploit new technology.

The programme will develop students’ ability to conceive, execute and manage full-time research projects with the aim of equipping students for careers in microbiology research.

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • Medical Microbiology and its underlying scientific basis
  • Analytical skills to allow interpretation of data and formulation of conclusions
  • Managerial and research skills required for further professional development as scientists

Intellectual / cognitive skills

  • Appraise scientific literature
  • Critically analyse new developments in technology
  • Formulate hypothesis
  • Critically analyse experimental data
  • Design experiments

Professional practical skills

  • Analyse numerical data using appropriate statistical packages and computer packages
  • Articulate experimental data effectively through oral and written work
  • Apply key Medical Microbiology laboratory skills to academic research
  • Compose an original experiment independently

Key / transferable skills

  • Critically analyse literature and data
  • Solve problems
  • Evaluate and exploit new technology
  • Reason effectively
  • Time management whilst working independently and as a team member
  • Interrogate data using statistical and numerical skills
  • Prepare high quality assignments using Information Technology including specialist packages

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Learn more about opportunities that might be available for this particular programme by using our student exchanges search tool.



Read less
This programme is intended for graduates already working in Medical Microbiology laboratories, or in a closely-related field, who want to enhance their understanding of the role of microorganisms in health and disease. Read more

This programme is intended for graduates already working in Medical Microbiology laboratories, or in a closely-related field, who want to enhance their understanding of the role of microorganisms in health and disease.

You will study the theoretical aspects of medical microbiology, which encompasses: the biological and pathogenic properties of microbes; their role in health and disease; the reactions of the host to infection; and the scientific basis for the detection, control and antimicrobial treatment of infectious disease.

Upon successful completion of the course, you will possess a deeper knowledge of medical microbiology and highly developed management and research skills which will enhance your professional activities.

Programme structure

This programme is studied part-time over two academic years. It consists of eight taught modules and a research project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Short courses

All our lecture modules are offered as stand-alone short courses and are accredited by the Institute of Biomedical Sciences for the purposes of Continuing Professional Development (CPD).

Each module lasts for five or six weeks, with the lectures taking place on Wednesdays throughout the academic year. Individuals wishing only to attend the lectures may do so; alternatively, you may decide to take the assessment and acquire credits which may contribute to a postgraduate qualification, either at the University of Surrey or elsewhere.

You may take up to three modules as stand-alone courses before registering retrospectively for the MSc and counting the accumulated credits towards your degree.

The fee structure for short courses is different to that for registered students and details may be obtained upon enquiry to the programme administrator. Also contact the programme administrator for information regarding the timing of each module.

Who is the programme for?

The programme is intended for graduates already working in medical microbiology laboratories, or in a closely-related field, who want to enhance their understanding of the role of microorganisms in health and disease. This includes:

  • Diagnostic microbiology staff
  • Pharmaceutical research personnel
  • Veterinary laboratory staff
  • Food and water laboratory personnel

Other applicants seeking an understanding of the advances in modern medical microbiology and its associated disciplines will also be considered. This includes:

  • Clinicians
  • Public health personnel
  • Nurses

Educational aims of the programme

This part-time two year programme is intended primarily for those who are already working in the field of Medical Microbiology who aspire to become leaders in their profession.

The programme has been designed to increase your scientific understanding of medical microbiology and develop your critical and analytical skills so that you may identify problems, formulate hypotheses, design experiments, acquire and interpret data, and draw conclusions.

It will allow you to study theoretical aspects of medical microbiology encompassing the biological and pathogenic properties of microbes, their role in health and disease, the reactions of the host to infection, and the scientific basis for the detection, control and anti-microbial treatment of infectious disease.

Programme learning outcomes

Knowledge and understanding

  • Medical Microbiology and its underlying scientific basis
  • Analytical skills to allow interpretation of data and formulation of conclusions
  • Managerial and research skills required for further professional development as scientists

Intellectual / cognitive skills

  • Appraise scientific literature
  • Critically analyse new developments in technology
  • Formulate hypothesis
  • Critically analyse experimental data
  • Design experiments

Professional practical skills

  • Analyse numerical data using appropriate statistical packages and computer packages
  • Articulate experimental data effectively through oral and written work
  • Apply key Medical Microbiology laboratory skills to academic research
  • Compose an original experiment independently

Key / transferable skills

  • Critically analyse literature and data
  • Solve problems
  • Evaluate and exploit new technology
  • Reason effectively
  • Time management whilst working independently and as a team member
  • Interrogate data using statistical and numerical skills
  • Prepare high quality assignments using Information Technology including specialist packages

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Learn more about opportunities that might be available for this particular programme by using our student exchanges search tool.



Read less

Show 10 15 30 per page



Cookie Policy    X