• University of Derby Online Learning Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
Cranfield University Featured Masters Courses
Liverpool John Moores University Featured Masters Courses
Birmingham City University Featured Masters Courses
University College London Featured Masters Courses
Swansea University Featured Masters Courses
"vibration" AND "analysis…×
0 miles

Masters Degrees (Vibration Analysis)

We have 28 Masters Degrees (Vibration Analysis)

  • "vibration" AND "analysis" ×
  • clear all
Showing 1 to 15 of 28
Order by 
This specialist option of the . MSc Computational and Software Techniques in Engineering. Read more

This specialist option of the MSc Computational and Software Techniques in Engineering has been developed to deliver qualified engineers to the highest standard into the emerging field of digital signal and image processing who are capable of contributing significantly to this increased demand for both real-time and off-line systems operating over a range of mobile, embedded and workstation platforms.

Who is it for?

Developed for students interested in software development within the wide spectrum of industries in which digital signal processing and/or digital image processing plays a significant role. Suitable for candidates from a broad range of engineering backgrounds, including aeronautical, automotive, mechanical and electrical engineering in addition to the more traditional computational sciences background, who wish to both develop and complement their existing skill-set in this new area. Part-time students have a flexible commencement date.

Why this course?

This option of the MSc in Computational and Software Techniques in Engineering aims to develop your skill-base for the rapidly expanding engineering IT industry sector, not only in the UK but all over the world. Graduates in this option have the opportunity to pursue a wide range of careers embracing telecommunications, the automotive industry, medical imaging, software houses and industrial research where demand for skills is high.

This course additionally forms part of the ESTIA (Ecole Supérieure des Technologies Industrielles Avancées) Cranfield MSc programme which gives ESTIA students the opportunity to study this degree based either at Cranfield University or ESTIA in Bidart, South-West France.

Cranfield University is very well located for visiting part-time students from all over the world, and offers a range of library and support facilities to support your studies. This enables students from all over the world to complete this qualification whilst balancing work/life commitments.

Informed by Industry

The course is directed by an industrial advisory panel who meet twice a year to ensure that it provides the right mix of hands-on skills and up-to-date knowledge suitable for the wide variety of applications that this field addresses.

A number of members also attend the annual student thesis presentations which take place at the end of July. This provides a good opportunity for students to meet key employers.

Course details

The course consists of 12 core modules, including a group design project, plus an individual research project. 

The course is delivered via a combination of structured lectures, tutorial sessions and computer based workshops. Mathematical and computational methods form the basis of the specialist modules, covering the theory and application of DSIP algorithms for the analysis, interpretation and processing of data in diverse fields such as computer vision, robotics, vibro-acoustic condition monitoring, medical diagnosis, remote sensing and data visualisation. This set of specialist modules are designed to provide students with the programming techniques necessary to develop, maintain and use core DSIP solution software over a wide range of industrial settings.

Group project

The group project which takes place in the spring is designed to provide you with invaluable experience of delivering a project within an industry structured team. The project allows you to develop a range of skills including learning how to establish team member roles and responsibilities, project management, delivering technical presentations and gaining experience of working in teams that include members with a variety of expertise and often with members who are based remotely.

Part-time students are encouraged to participate in a group project as it provides a wealth of learning opportunities. However, an option of an individual dissertation is available if agreed with the Course Director.

Recent Group Projects include:

  • Real-time Robotic Sensing
  • Automatic Video Surveillance
  • Face Recognition Systems
  • Applied Digital Signal Processing for Gear Box Analysis
  • Vibro-acoustic Analysis of Turbine Blades.

Individual project

The individual research project allows you to delve deeper into an area of specific interest. It is very common for industrial partners to put forward real world problems or areas of development as potential research project topics. In general you will begin to consider the research project after completing 3-4 modules - it then runs concurrently with the rest of your work.

For part-time students it is common that their research thesis is undertaken in collaboration with their place of work.

Recent Individual Research Projects include:

  • Vision Systems for Real Time Driver Assistance
  • Pattern Recognition for Vibration Analysis
  • Image Stabilisation for UAV Video Footage
  • Presenting Driver Assistance Information Using Augmented Reality
  • Real-time Object Tracking for Intelligent Surveillance Systems
  • 3D Stereo Vision Systems for Robotics and Vehicles.

Assessment

Taught modules 45%, Group project 5%, Individual research project 50%

Your career

The MSc in Computer and Machine Vision attracts enquiries from companies all over the world who wish to recruit high quality graduates. There is considerable demand for students with expertise in engineering software development and for those who have strong technical programming skills in industry standard languages and tools. Graduates of this course will be in demand by commercial engineering software developers, automotive, telecommunications, medical and other industries and research organisations, and have been particularly successful in finding long-term employment.

Some students may go onto degrees, on the basis of their MSc research project. Thesis topics are most often supplied by individual companies on in-company problems with a view to employment after graduation - an approach that is being actively encouraged by a growing number of industries.

A selection of companies that have recruited our graduates include:

  • BAE Systems
  • European Aeronautic Defence and Space Company (EADS)
  • Defence, Science and Technology Laboratory (Dstl)
  • Orange France
  • Microsoft
  • EDS Unigraphics
  • Delcam
  • GKN Technology
  • Logica
  • Oracle Consulting Services
  • National Power
  • Altran Technologies
  • Earth Observation Sciences Ltd
  • Oracle Consulting Services
  • Easams Defence Consultancy
  • Xyratex.


Read less
There is increasing pressure to make life quieter and to gain a better understanding of how noise and vibration affect people. Our MSc in Acoustical Engineering is a full-time masters degree that offers an academically challenging exposure to modern developments in sound, vibration and signal processing. Read more

There is increasing pressure to make life quieter and to gain a better understanding of how noise and vibration affect people. Our MSc in Acoustical Engineering is a full-time masters degree that offers an academically challenging exposure to modern developments in sound, vibration and signal processing.

Introducing your degree

Acoustical engineers are in great demand in almost every field of engineering. Whether they’re creating better-sounding concert halls, superior sound reproduction systems, clearer ultrasound scans or quieter aeroplanes, acoustical engineers combine solid understanding of engineering fundamentals with specialist knowledge of sound and vibration to make the world sound better. A unique degree course for those with a passion for sound.

Overview

Learning and teaching

The programme is split into two components: a 'taught' component (October to June) and a research component (February to September). The courses are taught at the Institute of Sound and Vibration Research (ISVR), which is a world-leading centre for acoustical engineering.

Taught Modules

The 'taught' component will consist of a range of modules based on lectures, hands-on demonstrations, laboratory teaching and exercises in small groups.

You are encouraged throughout to contribute your own professional experiences and thoughts to the learning of the whole class through a free exchange of ideas.

Research Project

The research project is the climax of the MSc programme. The project offers an opportunity to perform advanced research supervised by a member of academic staff. A list of projects offered by members of teaching staff is posted during Semester 1. You may also propose your own project.

Work begins on the project in February with the Project Development module. The research itself is mostly carried out during the summer period. A planning and literature review report is submitted at an early stage in the project, and an interview/presentation with the internal examiner is held at around the mid-point. On completion a dissertation is produced. This has to be completed and submitted before the start of the new academic year.

Assessment

Testing of the knowledge base is through a combination of unseen written examinations and assessed coursework in the form of problem solving exercises, laboratory reports, design exercises, essays, and individual and group projects.

Analysis and problem solving skills are assessed through unseen written examinations and problem based exercises. Experimental, research and design skills are assessed through laboratory reports, coursework exercises, project reports and oral presentations.

As a research-led University, we undertake a continuous review of our programmes to ensure quality enhancement and to manage our resources. As a result, this programme may be revised during a student’s period of registration; however, any revision will be balanced against the requirement that the student should receive the educational service expected. Please read our Disclaimer to see why, when and how changes may be made to a student’s programme.

Programmes and major changes to programmes are approved through the University’s programme validation process which is described in the University’s quality handbook.

View the programme specificiation document for this course

Pathway

Through the wide choice of modules available on the MSc Acoustical Engineering course, you have the possibility to specialise in one of the two following areas, after enrolling on the course:

Signal Processing

The Applied Digital Signal Processing pathway provides in-depth training on modern signal processing techniques for biomedical applications and audio signal processing.

Structural Vibration

The Structural Vibration pathway emphasises the advanced techniques to model, measure and control vibration in mechanical systems such as railways and automotive applications.



Read less
This course provides education and training in military vehicle systems, offering students an understanding of the technologies used in the specification, design, development and assessment of weapon systems and military vehicles. Read more

This course provides education and training in military vehicle systems, offering students an understanding of the technologies used in the specification, design, development and assessment of weapon systems and military vehicles. Both armoured and support vehicles are covered within the course.

Who is it for?

This course offers the underpinning knowledge and education to enhance the student’s suitability for senior positions within their organisation.

The course is intended for officers of the armed forces and for scientists and technical officers in government defence establishments and the defence industry. It is particularly suitable for those who, in their subsequent careers, will be involved with the specification, analysis, development, technical management or operation of military vehicles.

Why this course?

Each individual module is designed and offered as a standalone course which allows an individual to understand the fundamental technology required to efficiently perform the relevant, specific job responsibilities. The course also offers a critical depth to undertake engineering analysis or the evaluation of relevant sub systems.

Informed by Industry

The Industrial Advisory Panel is made up of experienced engineers from within the MoD, UK and international defence industry.

Course details

This course is made up of two essential components: the equivalent of 12 taught modules (including some double modules, typically of a two week duration), and an individual project. The aim of the project phase is to enable students to develop expertise in engineering research, design or development.

The project phase requires a thesis to be submitted and is worth 80 credit points. Earning the appropriate credits can lead to the following academic awards: Postgraduate Certificate (PgCert) – building a total of 60 credits / Postgraduate Diploma (PgDip) – two optional modules (120 credits) / Master of Science (MSc) – all modules (120 credits) plus project (80 credits).

Individual project

In addition to the taught part of the course, students undertake an individual project. The aim of the project phase is to enable students to develop expertise in engineering research, design or development. The project phase requires a thesis to be submitted and is worth 80 credit points.

Examples of current titles are given below:

  • Use of Vibration Absorber to help in Vibration
  • Validated Model of UGV Power Usage
  • Effect of Ceramic Tile Spacing in Lightweight Armour systems
  • Investigation of Suspension System for Main Battle Tank
  • An Experimental and Theoretical Investigation into a Pivot Adjustable Suspension System as a Low Cost Method of Adjusting for Payload
  • Analysis of Amphibious Operation and Waterjet Propulsions for Infantry Combat Vehicle
  • Optimisation of the suspension system for a vehicle
  • Analysis of the off-road performance of a wheeled or tracked vehicle.

Assessment

Continuous assessment, examinations and thesis (MSc only). Approximately 10-15% of the assessment is by examination

Your career

Many previous students have returned to their sponsor organisations to take-up senior programme appointments and equivalent research and development roles in this technical area.



Read less
Today, structural engineering is more than just design. Expert consultants are needed globally with a complete skill set; the ability to design, manage and maintain structures, but also to enable existing civil infrastructure to operate under changing loading and environment. Read more

Today, structural engineering is more than just design. Expert consultants are needed globally with a complete skill set; the ability to design, manage and maintain structures, but also to enable existing civil infrastructure to operate under changing loading and environment.

This programme will provide you with a solid understanding of the whole process of structural design, analysis and operation. You will discover how to design and manage the dynamic behaviour of structures using state of the art hardware and software for performance assessment, measurement, and instrumentation to withstand normal and extreme operational loads.

The programme is taught by our internationally leading academic team with expertise in structural performance analysis and health monitoring, structural dynamics, control, infrastructure management, systems and informatics.

Successful graduates will be equipped with specialist skills increasingly demanded by employing infrastructure consultants, contractors, operators, and government agencies and can expect to progress into international senior level positions in civil, construction and environmental industries.

Professional accreditation

This degree has been accredited by the Joint Board of Moderators under licence from the UK regulator, the Engineering Council for the purposes of meeting the requirements for Further Learning for registration as a Chartered Engineer for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Programme Structure

This programme is modular and flexible and consists of nine core engineering modules.

Core modules

The core modules can include;

  • Structural Design;
  • Software Modelling;
  • Conceptual Design of Buildings;
  • Conceptual Design of Bridges;
  • Active and Passive Structural Control;
  • Vibration Engineering;
  • Structural Health and Performance Monitoring;
  • Introduction to Earthquake Engineering
  • Structural Engineering Dissertation

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.

A world-class laboratory

The MSc Structural Engineering programme will take advantage of a cutting edge laboratory, with state of the art measurement and testing technology. This purpose-built teaching and research facility is dedicated to better understanding structural performance including in-situ testing and monitoring of prototype and real life structures. Featuring;

• Unique and reconfigurable prototype floor or footbridge structure weighing up to 15 tonnes

• Instruments capable of measuring static and dynamic structural movements from meter to nanometer

• Ambient and forced vibration testing, facilities including equipment and software

• Vibration control systems

• Individual and group human motion tracking and measurement systems

• Motion capture facilities



Read less
This programme. enables you to focus on developing your technical engineering skills, as well as your management skills. Today, structural engineering is more than just design. Read more

This programme enables you to focus on developing your technical engineering skills, as well as your management skills

Today, structural engineering is more than just design. Expert consultants are needed globally with a complete skill set; the ability to design, manage and maintain structures, but also to enable existing civil infrastructure to operate under changing loading and environment.

Alongside the core engineering modules, you will also study two management modules taught by the Business School which will help you develop transferable professional management skills that will enhance your study experience and improve your career prospects.

This programme will provide you with a solid understanding of the whole process of structural design, analysis and operation. You will discover how to design and manage the dynamic behaviour of structures using state of the art hardware and software for performance assessment, measurement, and instrumentation to withstand normal and extreme operational loads.

The programme is taught by our internationally leading academic team with expertise in structural performance analysis and health monitoring, structural dynamics, control, infrastructure management, systems and informatics.

Successful graduates will be equipped with specialist skills increasingly demanded by employing infrastructure consultants, contractors, operators, and government agencies and can expect to progress into international senior level positions in civil, construction and environmental industries.

Professional accreditation

This degree has been accredited by the Joint Board of Moderators under licence from the UK regulator, the Engineering Council for the purposes of meeting the requirements for Further Learning for registration as a Chartered Engineer for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Programme Structure

This programme is modular and flexible and consists of eight core engineering modules and one option module.

Core modules

The core modules can include;

  • Structural Design;
  • Software Modelling;
  • Conceptual Design of Buildings;
  • Conceptual Design of Bridges;
  • Active and Passive Structural Control;
  • Vibration Engineering;
  • Management Concepts
  • Structural Engineering Dissertation

Optional modules

Some examples of the optional modules are

  • Strategic Innovation Management
  • Strategy.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.

A world-class laboratory

The MSc Structural Engineering programme will take advantage of a cutting edge laboratory, with state of the art measurement and testing technology. This purpose-built teaching and research facility is dedicated to better understanding structural performance including in-situ testing and monitoring of prototype and real life structures. Featuring;

• Unique and reconfigurable prototype floor or footbridge structure weighing up to 15 tonnes

• Instruments capable of measuring static and dynamic structural movements from meter to nanometer

• Ambient and forced vibration testing, facilities including equipment and software

• Vibration control systems

• Individual and group human motion tracking and measurement systems

• Motion capture facilities



Read less
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. Read more
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. On completion of these courses students acquire a broad understanding of Engineering with a focus on aerospace engineering.

The University has been running automotive degree courses for almost forty years and is very well-established within the automotive industry. We have some 250 undergraduate and postgraduate students reading automotive engineering so are one of the largest providers of automotive engineering degree courses in the UK. We have excellent facilities in automotive engineering technology including an automotive centre with engine test facilities.

The development of skills and advancement of knowledge focus on:
-The selection of materials, process and techniques for the structural analysis and the design and construction of automotive components such as body and chassis, in relation to vibration and vehicle dynamics
-Understanding of alternative power train and fuel technologies, their impact on vehicle performance and environment
-The construction of CAE models and to assess implications of the results, the limitations of present techniques and the potential future direction of developments in the CAE field
-Appreciation of the need for process and product development relevant to the introduction of products in a cost effective and timely manner
-Critical review of the present knowledge base, its applicability, usage and relevance to enhance product and enterprise performance

Why choose this course?

This pioneering programme consists of a number of “specialist” Masters awards with an expectation that students will have studied a STEM related discipline to a Bachelor’s level or equivalent, as opposed to a “traditional” masters philosophy aimed at students from an engineering background. The programme offers options with separate entry routes for candidates transitioning from ‘Near STEM’ and ‘Far STEM’ disciplines:The Far STEM route is for first degrees where statistical analysis was a dominant feature of their analytical studies. Students will spend one to two semesters studying appropriate Level 4/5 modules in the first year then joining the Near STEM cohort (e.g., chemistry or biology). The Far STEM route is for first degrees where statistical analysis was a dominant feature of their analytical studies. Students will spend one to two semesters studying appropriate Level 4/5 modules in the first year then joining the Near STEM cohort (e.g., chemistry or biology).

Careers

The successful postgraduates of the programme will acquire the knowledge and understanding, intellectual, practical and transferable skills necessary for the analysis and synthesis of problems in engineering through a combination of experimental, simulation, research methods and case studies. They can expect to gain work in a range of disciplines within a variety of industries from specialist technical roles to positions of management responsibility.

Teaching methods

The School has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility.
The online StudyNet is accessible 24/7 and allows students to access electronic teaching and learning resources, and conduct electronic discussion's with staff and other students. A heavy emphasis is placed on theory and practice, and the School has a policy of using industrial standard software wherever possible. The School also operate an open access laboratory, and computer policy, that will help students complete coursework and assignments, at a scheduled pace and on time.

Structure

Year 1
Core Modules
-Automotive Materials & Manufacture
-CFD Techniques
-Computing for Business and Technology
-Dynamics
-Engineering Application of Mathematics
-Engineering Fundamentals
-Mechanical Experimental Engineering
-Mechanical Science
-Operations Management

Year 2
Core Modules
-Advanced Engines & Power Systems
-Automotive Chassis & Powertrain Technology
-Automotive Dynamics & Safety
-Automotive Electrical Systems
-Integrated Product Engineering
-Operations Research

Read less
This flexible MSc programme is suitable for individuals who already have an accredited undergraduate civil engineering degree and who are seeking to further their engineering skills and achieve chartered status. Read more

This flexible MSc programme is suitable for individuals who already have an accredited undergraduate civil engineering degree and who are seeking to further their engineering skills and achieve chartered status.

This degree is accredited by the Joint Board of Moderators as meeting the requirements for further learning for a chartered engineer (CEng) for candidates who have already acquired a partial CEng-accredited undergraduate first degree and for holders of an IEng-accredited first degree, to meet the educational base for a chartered engineer.

You will study a range of advanced civil engineering subjects linked to cutting-edge research. These include earthquake engineering dynamics and design, advanced geotechnics and rock mechanics, bridge engineering and advanced hydraulics. You will also develop the skills demanded in civil engineering consultancy offices around the world.

On the course, you will have the opportunity to use state-of-the-art laboratories and advanced technical software for numerical modelling.

The course is flexible and allows you to combine advanced civil engineering with related subjects including water environmental management, construction management and sustainable construction.

All of the taught modules are delivered by research-active staff and pave the way for a career at the forefront of ambitious civil engineering projects.

Course structure

The course has an emphasis on practical applications of advanced civil engineering concepts. You will make use of our advanced laboratories, modern computer facilities and technical software.

The MSc requires successful completion of six modules together with a dissertation on an agreed technical subject; a dissertation is not required, however, for the PGDip.

The taught component of the course comprises six core modules, and you can either take all six of these modules or choose four with an additional two approved modules from other MSc courses in the School of Environment and Technology. You can use this flexibility to study related subjects including water and waste-water treatment technology, construction management and sustainable construction.

Core modules cover geotechnical earthquake engineering, dynamics of structures with earthquake engineering applications, seismic design of reinforced concrete members, random vibrations of structures, bridge loads and analysis, rock mechanics, hydrogeology, coastal engineering and wave loading.

Areas of study

Coastal Engineering and Wave Loading

This module provides a basic understanding of different wave theories and their applications in coastal engineering practice.

You will develop an understanding of the coastal sediment transport processes and the means to deal with issues associated with coastal protection and sea defence.

Geotechnical Earthquake Engineering

This module provides an understanding of advanced geotechnical design methods with an emphasis on seismic design. It focuses on current design methods for soil and rock structures and foundation systems subject to complex loading conditions.

You will gain experience in using a variety of commercial software.

Rock Mechanics

The module gives you an understanding of the behaviour of rocks and rock mass and enables you to evaluate the instability of rock slopes and tunnels in order to design reinforcements for unstable rock.

Dynamics of Structures with Earthquake Engineering Applications

You will be introduced to the fundamental concepts of dynamics of structures. The module then focuses on analytical and numerical methods used to model the response of civil engineering structures subjected to dynamic actions, including harmonic loading, blast and impact loading, and earthquake ground motion.

Random Vibration of Structures

The module gives you the confidence to model uncertainties involved in the design of structural systems alongside a framework to critically appraise probabilistic-based Eurocode approaches to design.

Stochastic models of earthquake ground motion, wind and wave loading are explored. Probabilistic analysis and design of structures is undertaken through pertinent random vibration theory.

You will become confident with the probabilistic analysis for the design against earthquake, wind and wave loadings through various checkable calculations.

Repair and Strengthening of Existing Reinforced Concrete Structures

The module gives you an understanding of the types and causes of damage to reinforced concrete structures. It then focuses on current techniques for repair and strengthening of existing structures.

Employability

The course is particularly appropriate for work in structural, geotechnical and coastal engineering.

Graduates have gone on into roles as structural engineers and civil engineers in a number of structural design offices around the world.

Others have been motivated by the research component of the course and followed a PhD programme after graduation.



Read less
This MSc programme combines specialist earthquake and structural engineering study with a focus on engineering approaches for structural and geotechnical seismic analysis and design. Read more

This MSc programme combines specialist earthquake and structural engineering study with a focus on engineering approaches for structural and geotechnical seismic analysis and design.

You will learn with a course team who are both active in research and experts in the repair and strengthening of existing structures and random vibration. Their research will help inform your learning through case studies, experimental results, and design and analysis theories. You will also develop your own advanced research, analytical and communication skills through independent research project.

Your learning and research is supported by access to facilities such as our dynamics lab equipped with a shake table (earthquake simulator), centrifuge, modal hammer, shaker and acquisition system, and our heavy structures lab, soil mechanics lab and hydraulics lab.

You will gain the knowledge, skills and critical understanding of the nature and significance of advanced structural and earthquake engineering principles in protecting structures against natural hazards – creating engineering design solutions to ensure quality of life for future generations in earthquake zones across the globe. 

Course structure

The course consists of taught and research components which run in parallel throughout the academic year:

  • As part of the taught component you will focus primarily on advanced topics in Earthquake and Structural engineering. Lectures will introduce conceptual and methodological materials, lab sessions and computing work using our specialist facilities enable you to put the theory in to practice. You will work in interdisciplinary groups enabling you to develop teamwork, and leadership skills as well as developing the ability to work independently to support continued professional learning. 
  • The research component is based on your masters dissertation. Your dissertation represents your individual and independent research, extending and bringing together your understanding of the taught topics, and enabling you to devise or recommend creative and appropriate solutions in the area of Earthquake and Structural Engineering.

Areas of study

Core modules

  • MSc Earthquake and Structural Engineering Dissertation
  • Repair and Strengthening of Existing Reinforced Concrete Structures
  • Random Vibration of Structures
  • Dynamics of Structures with Earthquake Engineering applications
  • Bridge Loads and Analysis
  • Geotechnical Earthquake Engineering

Option modules

  • Rock Mechanics
  • Sustainable Construction
  • Construction Management 

Careers and employability

On successful completion of the programme, you will graduate with a critical awareness of, and the ability to employ, current structural and earthquake engineering practices around the world. 



Read less
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. Read more
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. On completion of these courses students acquire a broad understanding of Engineering with a focus on aerospace engineering.

The University has been running automotive degree courses for almost forty years and is very well-established within the automotive industry. We have some 250 undergraduate and postgraduate students reading automotive engineering so are one of the largest providers of automotive engineering degree courses in the UK. We have excellent facilities in automotive engineering technology including an automotive centre with engine test facilities.

The development of skills and advancement of knowledge focus on:
-The selection of materials, process and techniques for the structural analysis and the design and construction of automotive components such as body and chassis, in relation to vibration and vehicle dynamics
-Understanding of alternative power train and fuel technologies, their impact on vehicle performance and environment
-The construction of CAE models and to assess implications of the results, the limitations of present techniques and the potential future direction of developments in the CAE field
-Appreciation of the need for process and product development relevant to the introduction of products in a cost effective and timely manner
-Critical review of the present knowledge base, its applicability, usage and relevance to enhance product and enterprise performance

Why choose this course?

This pioneering programme consists of a number of “specialist” Masters awards with an expectation that students will have studied a STEM related discipline to a Bachelor’s level or equivalent, as opposed to a “traditional” masters philosophy aimed at students from an engineering background. The programme offers options with separate entry routes for candidates transitioning from ‘Near STEM’ and ‘Far STEM’ disciplines:The Far STEM route is for first degrees where statistical analysis was a dominant feature of their analytical studies. Students will spend one to two semesters studying appropriate Level 4/5 modules in the first year then joining the Near STEM cohort (e.g., chemistry or biology). The Near STEM route is for admission of relevant first degree candidates and whose programme would have made extensive use of applied mathematics to design and explain engineering and/or scientific concepts (e.g., physics or maths).

Careers

The successful postgraduates of the programme will acquire the knowledge and understanding, intellectual, practical and transferable skills necessary for the analysis and synthesis of problems in engineering through a combination of experimental, simulation, research methods and case studies. They can expect to gain work in a range of disciplines within a variety of industries from specialist technical roles to positions of management responsibility.

Teaching methods

The School has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility.
The online StudyNet is accessible 24/7 and allows students to access electronic teaching and learning resources, and conduct electronic discussion's with staff and other students. A heavy emphasis is placed on theory and practice, and the School has a policy of using industrial standard software wherever possible. The School also operate an open access laboratory, and computer policy, that will help students complete coursework and assignments, at a scheduled pace and on time.

Structure

Year 1
Core Modules
-Advanced Engines & Power Systems
-Automotive Chassis & Powertrain Technology
-Automotive Dynamics & Safety
-Automotive Materials & Manufacture
-CFD Techniques
-Dynamics
-Operations Management
-Operations Research

Year 2
Core Modules
-Individual Masters Project

Read less
This course is designed to respond to a growing shortage of workforce in manufacturing sector. Read more

Why take this course?

This course is designed to respond to a growing shortage of workforce in manufacturing sector. It intends to equip our students with relevant and up-to-date knowledge and skills of advanced design tools, materials, manufacturing processes and systems in conjunction with developing efficient operation and effective management skills. Integrating these will ensure our students to develop the technological and practical ability to meet manufacturing demand for product, company and market needs.

What will I experience?

On this course you can:

Use simulation and modelling application software for virtual design and manufacturing
Utilise our strong links with companies and investigate real industrial problems to enhance your understanding of the profession
Tie in the topic of your individual project with one of our research groups and benefit from the expertise of our actively researching academics

What opportunities might it lead to?

This course has been accredited by the Institution of Mechanical Engineers (IMechE) meeting the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). It will provide you with some of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Here are some routes our graduates have pursued:

Design
Research and development
Product manufacture
Project management

Module Details

This course aims to provide you with the inter-disciplinary knowledge, attributes and skills necessary to apply the principles of advanced manufacturing systems within the manufacturing industry. You will study several key topics and also complete a four-month individual project tailored to your individual interests that can take place in our own laboratories or, by agreement, in industry.

Here are the units you will study:

Integrated Manufacturing Systems: Systems concepts and techniques are developed in logistics and manufacturing areas with a strong emphasis on simulation techniques and practical case study analysis.

Operations and Quality Management: A strategic approach is used with modern inventory and supply chain management and logistics tools and techniques. Management strategies are developed for quality, including quality systems and quality control.

Advanced Materials: This unit is designed to deal with a wide range of advanced materials for engineering applications. Teaching will address analytical and numerical methods to assess the strength, stiffness, toughness, non-linearity behaviours, vibration and failures of engineering materials for component and structure design.

Supply Chain Management: Supply chain management involves the coordination of production, inventory, location and transportation, among participants in a supply chain. This unit considers the principles and tools of supply chain management, with an emphasis on lean six sigma methods.

Virtual Systems Design and Simulation for Production: This unit is particularly designed to enhance students’ analytical knowledge and practical skills focusing on a sustainable development of systematic approaches and lean production methods to support manufacturing systems analysis, design and performance evaluation with an aid of using advanced computer design and modelling simulation tools.

CAD/CAM Systems: An integrated approach is used towards CAD and CAM. Significant practical hands-on experience is given with commercial level software. Emphasis is placed on case study analysis and system selection and evaluation.

Individual Project: A strong feature that comprises a third of the course. You will be encouraged to undertake projects where possible in industrial companies. However, we also use our extensive resources and staff skills to undertake them within the University.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis with a significant amount of your time spent our laboratories. We pride ourselves on working at the leading-edge of technology and learning practices.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

The demand for more highly skilled manufacturing engineers is always present and it is generally accepted that there is a current shortage of engineers.

This course has a record of almost 100 per cent of our graduates gaining employment in relevant areas such as manufacturing and logistics management, systems engineering, production engineering, design engineering and project management. You could work for a large company, in the Armed Forces or in one of the many small companies within this sector. You could even start your own specialist company.

Roles our graduates have taken on include:

Manufacturing engineer
Product design engineer
Aerospace engineer
Application engineer

Read less
Learn the analytical and design skills needed to create successful structures in challenging environments. This is the largest academic concrete research centre in the UK so you’ll benefit from some great facilities. Read more

About the course

Learn the analytical and design skills needed to create successful structures in challenging environments.

This is the largest academic concrete research centre in the UK so you’ll benefit from some great facilities.

We have international-level expertise in cement chemistry, aggregate science, binder technology, concrete durability, alternative concrete materials, structural performance and design, earthquake and nuclear reactor design, and finite element analysis.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Core modules

Linear Systems and Structural Analysis
Structural Dynamics (Earthquakes and Vibration)
Computational Structural 
Analysis and Research Skills
Advanced Concrete Design
Sustainable Concrete Technology
Innovations in Structural Concrete
Structural Design

Examples of optional modules

Blast and Impact Effects on Structures
Advanced Simulation of High Strain Rate Dynamics
Geotechnical Design

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

All courses use lectures by academic staff and industrial partners, laboratory work, site visits, design projects and dissertation. Assessment is by formal examinations, coursework assignments and a dissertation with oral examination.

September–June: taught modules and preparation for your dissertation.
June–August: complete your dissertation.

Your research dissertation gives you the opportunity to work with an academic on a piece of research in a subdiscipline. We’ll give you training in research skills.

Read less
About the course. Learn how to deal with structural dynamics problems in areas of earthquake engineering, civil vibration engineering, and blast and impact. Read more

About the course

Learn how to deal with structural dynamics problems in areas of earthquake engineering, civil vibration engineering, and blast and impact.

Our teaching is based on the expertise of The Concrete and Earthquake Engineering Research Group, known internationally for its applied approach to civil engineering dynamics.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Specialist facilities

Our laboratories are equipped to a very high standard:

Large-scale tri-axial apparatus for stress path and cyclic load testing; flexible walled tri-axial calibration chambers; optical microscopy, digital camera and measurement software; model pile testing and durability testing facilities. We have recently established the Centre for Energy and Infrastructure Ground Research that is home to our world leading 4m diameter beam centrifuge and complementary £1m teaching facility.

Core modules

  • Linear Systems and Structural Analysis
  • Structural Dynamics and Applications to
  • Earthquake Engineering and Vibration
  • Computational Structural Analysis
  • Structural Design
  • Design of Earthquake Resistant Structures
  • Advanced Simulation of High Strain Rate Dynamics
  • Civil Engineering Research Proposal

Examples of optional modules

  • Advanced Concrete Design
  • Sustainable Concrete Technology
  • Structural Design and Fire Resistance of Medium Rise Steel Framed Buildings
  • Innovations in Structural Concrete
  • Blast and Impact Effects on Structures
  • Geotechnical Design
  • Fatigue and Fracture
  • Risk and Extreme Events

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

All courses use lectures by academic staff and industrial partners, laboratory work, site visits, design projects and dissertation. Assessment is by formal examinations, coursework assignments and a dissertation with oral examination.

September–June: taught modules and preparation for your dissertation.

June–August: complete your dissertation.

Your research dissertation gives you the opportunity to work with an academic on a piece of research in a subdiscipline. We’ll give you training in research skills.



Read less
Develop skills in the analysis and design of steel and concrete structures. You can tailor the course to your specific interests, so it’s ideal for practising structural engineers who want to enhance their skills or for anyone pursuing a career in this field. Read more

About the course

Develop skills in the analysis and design of steel and concrete structures. You can tailor the course to your specific interests, so it’s ideal for practising structural engineers who want to enhance their skills or for anyone pursuing a career in this field.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Core modules

Linear Systems and Structural Analysis; Structural Design; Computational Structural Analysis and Research Skills; Structural Dynamics and Applications to Earthquake Engineering and Vibration.

Examples of optional modules

Innovations in Structural Concrete; Advanced Concrete Design; Structural Design and Fire Resistance of Medium Rise Steel-framed Buildings; Advanced Simulation of High Strain Rate Dynamics; Blast and Impact Effects on Structures; Design of Earthquake Resistant Structures; Geotechnical Design; Sustainable Concrete Technology.

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

All courses use lectures by academic staff and industrial partners, laboratory work, site visits, design projects and dissertation. Assessment is by formal examinations, coursework assignments and a dissertation with oral examination.

September–June: taught modules and preparation for your dissertation.
June–August: complete your dissertation.

Your research dissertation gives you the opportunity to work with an academic on a piece of research in a subdiscipline. We’ll give you training in research skills.

Read less
This course is designed to respond to a growing shortage of workforce in mechanical engineering sectors. It intends to equip our students with relevant and up-to-date knowledge and skills for their engineering competencies and careers. Read more

Why take this course?

This course is designed to respond to a growing shortage of workforce in mechanical engineering sectors. It intends to equip our students with relevant and up-to-date knowledge and skills for their engineering competencies and careers. Students have a chance to broaden and deepen their knowledge in wide range of mechanical engineering subjects. This enables our students to undertake an advanced treatment of core mechanical engineering disciplines such as design and critical evaluation of structural integrity, computation fluid dynamics, advanced materials, energy and control systems.

What will I experience?

On this course you can:

Use simulation and modelling application software for virtual design and manufacturing
Utilise our strong links with companies and investigate real industrial problems to enhance your understanding of the profession
Tie in the topic of your individual project with one of our research groups and benefit from the expertise of our actively researching academics

What opportunities might it lead to?

This course has been accredited by the Institution of Mechanical Engineers (IMechE) and Institution of Engineering and Technology (IET), meeting the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). It will provide you with some of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Here are some routes our graduates have pursued:

Design
Research and development
Product manufacture
Project management

Module Details

You will study several key topics that will help equip you to work as a mechanical engineer in a broad spectrum of mechanical engineering business activity management, research, design and development roles. You will also complete a four-month individual project tailored to your individual interests that can take place in our own laboratories or, by agreement, in industry.

Here are the units you will study:

Structural Integrity: Contemporary approaches are applied to the evaluation of mixed mode fracture and fatigue failure. Dynamic plastic responses of structures and the performance of composite structures are evaluated.

Industrial Control Systems: This unit covers mathematical representation of control system models is developed principally using Laplace transforms. System behaviour and simulation is analysed with practical case studies, leading to control system specifications.

Advanced Materials: This unit is designed to deal with a wide range of advanced materials for engineering applications. Teaching will address analytical and numerical methods to assess the strength, stiffness, toughness, non-linearity behaviours, vibration and failures of engineering materials for component and structure design.

Energy Systems: This unit is designed to study the principles and techniques of operation of thermodynamics and combustion systems, as well as the provision and management of energy. The current and future requirements and trends in energy production and consumption are addressed.

Structural Application of Finite Elements: The use of finite element analysis techniques and software applied to structural problems is developed. Modelling with both isotropic and orthotropic materials is investigated, as well as such topics as cracking in dissimilar materials and composite laminates.

Computational Fluid Dynamics: A practical case study analysis approach is used for model formulation and CFD simulation. Fundamental principles are used to appraise the results of CFD analysis of problems with industrial applications.

Individual Project: A strong feature of the course is the individual project, which comprises a third of the course. We encourage students to undertake projects in industrial companies, but we can also use our extensive resources and staff skills to undertake projects within the University.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis with a significant amount of your time spent our laboratories. We pride ourselves on working at the leading-edge of technology and learning practices.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

The demand for more highly skilled mechanical engineers is always present and it is generally accepted that there is a current shortage of engineers.

When you graduate from this course you could find employment in a wide range of mechanical engineering-based careers, such as design, research and development and manufacturing. You could work for a large company, in the Armed Forces or in one of the many small companies within this sector. You could even start your own specialist company.

Roles our graduates have taken on include:

Mechanical engineer
Product design engineer
Aerospace engineer
Application engineer

Read less
The Mechanical Engineering MSc is designed to offer an advanced level of study in specific aspects of mechanical engineering that are in demand from industry. Read more

The Mechanical Engineering MSc is designed to offer an advanced level of study in specific aspects of mechanical engineering that are in demand from industry. The degree comprises study in analysis and design of power machinery systems, engineering structures, vibration, control and the use of computers in advanced engineering analysis.

About this degree

You will develop an advanced knowledge of mechanical engineering and associated disciplines, alongside an awareness of the context in which engineering operates, in terms of safety, environmental, social and economic aspects. Alongside this you will gain a range of intellectual, practical and transferable skills necessary to develop careers in this field.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), optional modules (15 credits), and a research project (75 credits).

Core modules

  • Advanced Computer Applications in Engineering
  • Group Project
  • Materials and Fatigue
  • Vibrations, Acoustics and Control
  • Project Management
  • Power Transmission and Auxiliary Machinery Systems

Optional modules

One of the following subject to availability:

  • Applied Thermodynamics and Turbomachinery
  • Heat Transfer and Heat Systems
  • New and Renewable Energy Systems

Dissertation/report

Culminating in a substantial dissertation, the research project, which often has industry input, focuses your research interests and develops high-level presentation and critical thinking skills.

Teaching and learning

This dynamic programme is delivered through a combination of lectures, seminars, tutorials and example classes all of which frequently draw upon real-life industrial case studies. Each module is assessed by coursework submission alone or a combination of examination and coursework. Some include an oral presentation of project or assignment work.

Further information on modules and degree structure is available on the department website: Mechanical Engineering MSc

Careers

Engineering graduates with good analytical abilities are in high demand and our graduates have little difficulty gaining employment across many industries. The programme specifically aims to equip students with skills in analysis and design such that they can be employed as professional engineers in virtually any sector of the mechanical engineering industry.

Recent career destinations for this degree

  • Graduate Mechanical Engineer, Babcock
  • Graduate Trainee, Jaguar Land Rover
  • Petroleum Engineer, Total
  • Facility Engineer, Nigerian Agip Oil Company (NAOC)
  • PhD in Mechanical Engineering, UCL

Employability

Delivered by leading researchers from across UCL, you will definitely have plenty of opportunities to network and keep abreast of emerging ideas. Collaborating with companies and bodies such as the Ministry of Defence and industry leaders such as BAE Systems and Shell are key to our success and we will encourage you to develop networks through the programme itself and via the department’s careers programme which includes employer-led events and individual coaching. We equip our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Mechanical Engineering scored highly in the UK's most recent Research Excellence Framework survey with research in such diverse areas as Formula 1, biomedical engineering and naval architecture. The department is located in the centre of one of the most dynamic cities in the world.

The department has an international reputation for the excellence of its research which is funded by numerous bodies including: the Royal Society, the Leverhulme Trust, UK Ministry of Defence, BAE Systems, Cosworth Technology, Shell, BP, Lloyds Register Educational Trust, and many others.

The Mechanical Engineering MSc has been accredited by the Institute of Mechanical Engineers (IMechE) and the Institute of Marine Engineering, Science & Technology (IMarEST) as meeting the further learning requirements, in full, for registration as a Chartered Engineer for a period of five years, from the 2017 student cohort intake.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Mechanical Engineering

90%: Aeronautical, Mechanical, Chemical and Manufacturing Engineering subjects; 95%: General Engineering subjects rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less

Show 10 15 30 per page



Cookie Policy    X