• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of York Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Sussex Featured Masters Courses
University of Kent Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Aberdeen University Featured Masters Courses
"vehicle" AND "engineerin…×
0 miles

Masters Degrees (Vehicle Engineering)

  • "vehicle" AND "engineering" ×
  • clear all
Showing 1 to 15 of 87
Order by 
This course is delivered in Detroit, MI, US. Although open to non-US students it is the responsibility of the student to arrange suitable visas and cover travel costs. Read more

Course Description

This course is delivered in Detroit, MI, US. Although open to non-US students it is the responsibility of the student to arrange suitable visas and cover travel costs. The course provides education and training at postgraduate level for those who expect to fill technically demanding appointments concerned with the design, development, procurement and operation of vehicles.

It will provide students with the technical knowledge and understanding of weapon systems and military vehicles to make them effective in their specification, design, development and assessment. Special attention will be given to recent advances in defence technology; and to educating students in the analysis and evaluation of systems against changes and developments in the threat.

Course overview

The taught element consists of 14 modules covering major aspects of defence technology, providing a balanced and broad coverage of key aspects, issues and constraints associated with the design, development, performance and integration of weapon and vehicle systems.

In addition to the taught part of the course, students can opt either to undertake an individual project or participate in a group design project. The aim of the project phase is to enable students to develop expertise in engineering research, design or development. The project phase requires a thesis to be submitted and is worth 80 credit points.

Earning the appropriate credits can lead to the following academic awards:

- Postgraduate Certificate (PgCert) – any combination of modules (building a total of 60 credits).
- Postgraduate Diploma (PgDip) – all modules (120 credits).
- Master of Science (MSc) – all modules (120 credits) plus project (80 credits).

The programme is delivered in Detroit by delivering one or two modules per visit. There are three visits in a year (April, June and Nov/Dec). Each standard module consists of a one-week course of lectures, tutorials and practical sessions. Students are required to pass an assessment which includes a written exam (50%) on the last day of the course and course work (50%) to be submitted within eight weeks from the last day of the course.

Modules are taught three times a year in Detroit, USA. This allows 60 credits to be attained in two years and 120 credits over three years.

Core modules (10 Credits)

- Fighting Vehicle Design or Finite Element in Engineering
- Modelling, Simulation and Control in Defence Engineering or Systems Engineering and Assured Performance

Compulsory Module (10 Credits) for MSc and Elective for PGCert

- Armoured Fighting Vehicle and Weapon Systems Study

Elective Modules (100 Credits)

- Fundamentals of Ballistics
- Weapon System Technology
- Vehicle Systems Integration
- Electric Drive Technologies
- Military Autonomous Vehicles
- Light Weapon Design
- Gun Systems Design (Gun Systems Stream)
- Military Vehicle Dynamics (Vehicle Stream)
- Military Vehicle Propulsion and Dynamics (Gun Systems Stream)
- Military Vehicle Propulsion (Vehicle Stream)
- Military Vehicle Propulsion
- Solid Modelling CAD (optional)

Individual Project

In addition to the taught part of the course, students can opt either to undertake an individual project or participate in a group design project. The aim of the project phase is to enable students to develop expertise in engineering research, design or development. The project phase requires a thesis to be submitted and is worth 80 credit points.

Examples of current titles are given below:

- Use of Vibration Absorber to help in Vibration
- Validated Model of UGV Power Usage
- Power and Mobility Enhanced Robotic Platform (PMERP)
- Conceptual Design of a Behind Armour Battery Pack
- Effect of Ceramic Tile Spacing in Lightweight Armour systems
- Investigation of Suspension System for Main Battle Tank
- An Experimental and Theoretical Investigation into a Pivot Adjustable Suspension System as a Low Cost Method of Adjusting for Payload
- Investigation of New Compact Suspension Concepts for the Light Armoured Vehicle III
- Analysis of Amphibious Operation and Waterjet Propulsions for Infantry Combat Vehicle.

Assessment

Continuous assessment, examinations and thesis (MSc only).

Funding

For more information on funding please contact the Programme Director, Dr Amer Hameed, email

Career opportunities

Takes you on to employment within the armed forces or defence research establishments.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/courses/masters/vehicle-and-weapon-engineering.html

Read less
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Read more

Mission and goals

Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc.
The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Professional opportunities

Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_MI.pdf
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are
systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc. The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.
Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas. The programme is taught in English.

Subjects

- Five tracks available: Power Production; Heating, Ventilation and Air-Conditioning; Oil and Gas Engineering; Energy Engineering for an Environmentally Sustainable World (offered on Piacenza campus, see separate leaflet); Energy for Development.

- Subjects and courses common to all the tracks: Heat and Mass Transfer; Fundamentals of Chemical Processes; Advanced Energy Engineering and Thermoeconomics;; Combustion and Safety; Energy Conversion or Refrigeration, Heat Pumps and Thermal Power Systems and Components; Energy Economics or Project Management or Management Control Systems; Graduation Thesis.

- Optional subjects according to the selected track: Development Economy; Engineering and Cooperation for Development; Power Production from Renewable Sources; Engineering of Solar Thermal Processes; Petroleum Reservoir Engineering; Petroleum Technology and Biofuel; Transport Phenomena in the Reservoirs; CFD for Energy Engineering Analysis; System and Electrical Machines; Advanced Energy Systems; Dynamic Behavior and Diagnostics of Machines; Materials for Energy; Turbomachinery; Internal Combustion Engines; Air Conditioning and Room Pollutant-Controlling Plants, Energy Savings and Renewable Energies in Buildings; Applied Acoustics and Lighting; Design of Thermal Systems; Energy Systems and Low-Carbon Technologies; Air Pollutions and Control Engineering; Operation and Control of Machines for Power Generation; Bio-energy and Waste-to-Energy Technologies; Smart Grids and Regulation for Renewable Energy Sources.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The MSc course in Autosport Engineering covers the latest state of-the-art computer based analysis and design techniques used in the automotive industry. Read more
The MSc course in Autosport Engineering covers the latest state of-the-art computer based analysis and design techniques used in the automotive industry. The course has been developed in conjunction with the Automotive Industry and will provide the graduate with an indepth insight into the key technological areas that are driving automotive engineering design.

On the Engineering Extended MSc you will spend your first semester studying modules that have been written to provide you with the academic, professional and technical skills that you will need to succeed on your chosen award. All engineering students on the Extended MSc study the same modules for one semester and then study specialist modules depending on their chosen discipline. This means that whether you have chosen the Aeronautical, Automotive, Electrical, Electronic, Mechanical, Mechatronic or Telecommunication route, you will study the following modules in your first semester:

Academic English: This module will help you to develop your English Language speaking, listening, reading and writing skills and will introduce you to the conventions of academic writing.

Study skills & Employability: This module will help you to develop the skills and knowledge required to support study at Masters level. It will also help you to develop skills that will aid you in the job market and will look at things such as writing a C.V. and creating a personal development plan.

Engineering Principles: In this module you will undertake a variety of practical, laboratory based exercises giving you a flavour of your future studies and underpinning your future learning. You will be given experience of software tools that might include product design using solid modelling, CFD analysis for aerodynamics and Finite Element Analysis for structural analysis. This will be complemented by time spent in our new and wellequipped automotive, aeronautical and mechanical laboratories.

Mathematical Applications: As an engineering graduate you should already have a strong mathematical knowledge. This module will revise your existing knowledge and introduce you to some of the more advanced mathematical concepts deployed in the field of professional engineering. Where appropriate you will utilise software to support and enhance the problem solving and analysis techniques met in this module, allowing you to hone an essential skill for the modern industry based working environment

After successfully completing the first semester, you will concentrate on your chosen core engineering discipline. You will study a total of 8 core and option modules as set out in your award structure. For information about the structure of your award and the modules you will study after the first semester, please see the award handbooks.
-Further information on the Extended International Masters Programme
-MSc Extended International Engineering Handbook

Course content

The MSc Autosport Engineering course covers the latest state-of-the-art computer based analysis and design techniques used in the automotive industry. The courses have been developed in conjunction with industry and will provide the graduate with an indepth insight into the key technological areas that are driving automotive engineering design. Students gain a deep understanding of the engineering principles that affect all aspects of vehicle performance including engine, suspension and aerodynamics. The course is based around the use of industry standard engineering software and hardware provided by our partners. The student will gain an in depth understanding of PTC CREO, Cambridge Engineering Selector, ANSYS FEA, Cham Phoenics CFD, Boothroyd Dewhurst DFMA software and will gain hands on experience of related hardware such as Minolta Vi910 laser scanner, TESA coordinate measuring machine, ZCorporation and Startasys rapid prototyping, KRYLE 3 Axis Machining Centre and Beavor Turning Centre, Lister Petter Diesel engine dyno, Race Technology real time data acquisition. Good laboratory support including a design studio with over 70 Design Workstations, Manufacturing facilities including CNC machining and rapid prototyping systems, and fully equipped automotive workshop.

A placement opportunity of up to 12 months is designed as an option within the course.. Unfortunately applicants who require a Tier 4 visa for study in the UK are not able to apply for the Sandwich degree in the first instance due to visa regulations. We encourage International students, once enrolled, to apply for a placement and if successful apply to extend their visa and transfer to the sandwich award.

The course consists of 8 taught modules plus a major personal project leading to a written thesis. The taught modules cover the broad range of activities involved in vehicle design. You will study topics such as solid and surface modelling, rapid prototyping, Finite Element Analysis, advanced engine design and aerodynamics. The subject area of your final thesis can be selected to suit your own aspirations and interests. You will be assigned a supervisor with whom you will work closely to develop an academically challenging portfolio of work. The focus of this project will determine whether you will opt for the title of MSc Automotive or MSc Autosport.

Core modules are:
-Research Methods & Project Management
-Design Technologies for Master
-Structural Integrity
-Advanced Engine Design
-Advanced Vehicle Aerodynamics
-Advanced Vehicle Dynamics
-Control Systems
-Project

Option Modules are:
-Applied Structural Integrity
-Advanced Engineering Materials
-Sustainable Design & Manufacture
-Industrial Placement

Employment opportunities

Upon graduation you will be ideally placed to work in an automotive engineering company at a senior level working towards Chartered (CEng) status. If you prefer the course also gives a good grounding in research techniques which could allow you to continue your personal research interests to PhD level.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Power Engineering and Sustainable Energy at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Power Engineering and Sustainable Energy at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The Master's course in Power Engineering and Sustainable Energy places strong emphasis on state-of-the-art semiconductor devices and technologies, advanced power electronics and drives, and advanced power systems. The Power Engineering and Sustainable Energy course also covers conventional and renewable energy generation technologies. Exciting new developments such as wide band gap electronics, energy harvesting, solar cells and biofuels are discussed and recent developments in power electronics are highlighted.

Key Features of MSc in Power Engineering and Sustainable Energy

The College of Engineering has an international reputation for electrical and electronics research for energy and advanced semiconductor materials and devices.

Greenhouse gas emission and, consequently, global warming are threatening the global economy and world as we know it. A non-rational use of electrical energy largely contributes to these.

Sustainable energy generation and utilisation is a vital industry in today’s energy thirsty world. Energy generation and conversion, in the most efficient way possible, is the key to reducing carbon emissions. It is an essential element of novel energy power generation system and future transportation systems. The core of an energy conversion system is the power electronics converter which in one hand ensures the maximum power capture from any energy source and on another hand controls the power quality delivered to grid. Therefore the converter parameters such as efficiency, reliability and costs are directly affecting the performance of an energy system.

Transmission and distribution systems will encounter many challenges in the near future. Decentralisation of generation and storage systems has emerged as a promising solution. Consequently, in the near future, a power grid will no longer be a mono-directional energy flow system but a bi-directional one, requiring a much more complex management.

The MSc in Power Engineering and Sustainable Energy is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Power Engineering and Sustainable Energy students must successfully complete Part One before being allowed to progress to Part Two.

Part-time Delivery mode

The part-time scheme is a version of the full-time equivalent MSc in Power Engineering and Sustainable Energy scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules

Modules on the MSc Power Engineering and Sustainable Energy course can vary each year but you could expect to study:

Advanced Power Electronics and Drives
Power Semiconductor Devices
Advanced Power Systems
Energy and Power Engineering Laboratory
Power Generation Systems
Modern Control Systems
Wide Band-Gap Electronics
Environmental Analysis and Legislation
Communication Skills for Research Engineers
Optimisation

Facilities

The new home of MSc in Power Engineering and Sustainable Energy is at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.

Our new WOLFSON Foundation funded Power Electronics and Power System (PEPS) laboratory well-appointed with the state-of the-art equipment supports student research projects.

Careers

Employment in growing renewable energy sector, power electronic and semiconductor sector, electric/hybrid vehicle industry.

The MSc Power Engineering and Sustainable Energy is for graduates who may want to extend their technical knowledge and for professional applicants be provided with fast-track career development. This MSc addresses the skills shortage within the power electronics for renewable energy sector.

Links with industry

BT, Siemens, Plessey, GE Lighting, Schlumberger, Cogsys, Morganite, Newbridge Networks, Alstom, City Technology, BNR Europe, Philips, SWALEC, DERA, BTG, X-Fab, ZETEX Diodes, IQE, IBM, TSMC, IR, Toyota, Hitachi.

As a student on the MSc Power Engineering and Sustainable Energy course, you will learn about numerical simulation techniques and have the opportunity to visit electronics industries with links to Swansea.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.

Read less
The MSc course in Autosport Engineering covers the latest state of-the-art computer based analysis and design techniques used in the automotive industry. Read more
The MSc course in Autosport Engineering covers the latest state of-the-art computer based analysis and design techniques used in the automotive industry. The course has been developed in conjunction with the Automotive Industry and will provide the graduate with an in-depth insight into the key technological areas that are driving automotive engineering design.

On the Engineering Extended MSc you will spend your first semester studying modules that have been written to provide you with the academic, professional and technical skills that you will need to succeed on your chosen award. All engineering students on the Extended MSc study the same modules for one semester and then study specialist modules depending on their chosen discipline. This means that whether you have chosen the Aeronautical, Automotive, Electrical, Electronic, Mechanical, Mechatronic or Telecommunication route, you will study the following modules in your first semester:

Academic English: This module will help you to develop your English Language speaking, listening, reading and writing skills and will introduce you to the conventions of academic writing.

Study skills & Employability: This module will help you to develop the skills and knowledge required to support study at Masters level. It will also help you to develop skills that will aid you in the job market and will look at things such as writing a C.V. and creating a personal development plan.

Engineering Principles: In this module you will undertake a variety of practical, laboratory based exercises giving you a flavour of your future studies and underpinning your future learning. You will be given experience of software tools that might include product design using solid modelling, CFD analysis for aerodynamics and Finite Element Analysis for structural analysis. This will be complemented by time spent in our new and wellequipped automotive, aeronautical and mechanical laboratories.

Mathematical Applications: As an engineering graduate you should already have a strong mathematical knowledge. This module will revise your existing knowledge and introduce you to some of the more advanced mathematical concepts deployed in the field of professional engineering. Where appropriate you will utilise software to support and enhance the problem solving and analysis techniques met in this module, allowing you to hone an essential skill for the modern industry based working environment

After successfully completing the first semester, you will concentrate on your chosen core engineering discipline. You will study a total of 8 core and option modules as set out in your award structure. For information about the structure of your award and the modules you will study after the first semester, please see the award handbooks.
-Further information on theExtended International Masters Programme
-MSc Extended International Engineering Handbook

Course content

MSc Autosport Engineering is based around the use of industry standard engineering software and hardware provided by our partners. The student will gain an in depth understanding of PTC CREO, Cambridge Engineering Selector, ANSYS FEA, Cham Phoenics CFD, Boothroyd Dewhurst DFMA software and will gain hands on experience of related hardware such as Minolta Vi910 laser scanner, TESA coordinate measuring machine, ZCorporation and Startasys rapid prototyping, KRYLE 3 Axis Machining Centre and Beavor Turning Centre, Lister Petter Diesel engine dyno, Race Technology real time data acquisition.

The course consists of 8 taught modules plus a major personal project leading to a written thesis. The taught modules cover the broad range of activities involved in vehicle design. You will study topics such as solid and surface modelling, rapid prototyping, Finite Element Analysis, advanced engine design and aerodynamics.

The subject area of your final thesis can be selected to suit your own aspirations and interests. You will be assigned a supervisor with whom you will work closely to develop an academically challenging portfolio of work. The focus of this project will determine whether you will opt for the title of MSc Automotive or MSc Autosport.

Core modules are:
-Research Methods & Project Management
-Design Technologies for Master
-Structural Integrity
-Advanced Engine Design
-Advanced Vehicle Aerodynamics
-Advanced Vehicle Dynamics
-Control Systems
-Project

Option Modules are:
-Applied Structural Integrity
-Sustainable Design & Manufacture
-Advanced Engineering Materials
-Industrial Placement

The course is based around the use of industry standard engineering software and hardware provided by our partners. The student will gain an in depth understanding of PTC CREO, Cambridge Engineering Selector, ANSYS FEA, Cham Phoenics CFD, Boothroyd Dewhurst DFMA software and will gain hands on experience of related hardware such as Minolta Vi910 laser scanner, TESA coordinate measuring machine, ZCorporation and Startasys rapid prototyping, KRYLE 3 Axis Machining Centre and Beavor Turning Centre, Lister Petter Diesel engine dyno, Race Technology real time data acquisition.

Good laboratory support including a design studio with over 70 Design Workstations, Manufacturing facilities including CNC machining and rapid prototyping systems, and fully equipped automotive workshop.

A placement opportunity of up to 12 months is designed as an option within the course. Unfortunately applicants who require a Tier 4 visa for study in the UK are not able to apply for the Sandwich degree in the first instance due to visa regulations. We encourage International students, once enrolled, to apply for a placement and if successful apply to extend their visa and transfer to the sandwich award.

Graduate destinations

Upon graduation you will be ideally placed to work in an automotive engineering company at a senior level working towards Chartered (CEng) status. If you prefer the course also gives a good grounding in research techniques which could allow you to continue your personal research interests to PhD level.

Read less
This course provides education and training in military vehicle systems. The course is intended for officers of the armed forces and for scientists and technical officers in government defence establishments and the defence industry. Read more

Course Description

This course provides education and training in military vehicle systems. The course is intended for officers of the armed forces and for scientists and technical officers in government defence establishments and the defence industry. It is particularly suitable for those who, in their subsequent careers, will be involved with the specification, analysis, development, technical management or operation of military vehicles.

It will provide students with the technical knowledge and understanding of weapon systems and military vehicles to make them effective in their specification, design, development and assessment.

The course is accredited by the Institute of Mechanical Engineers and will contribute towards an application for chartered status.

Course overview

This course is made up of two essential components, the equivalent of 12 taught modules (including some double modules, typically of a two week duration).

In addition to the taught part of the course, students undertake an individual project . The aim of the project phase is to enable students to develop expertise in engineering research, design or development. The project phase requires a thesis to be submitted and is worth 80 credit points.

Earning the appropriate credits can lead to the following academic awards:

- Postgraduate Certificate (PgCert) – any combination of modules (building a total of 60 credits).
- Postgraduate Diploma (PgDip) – all modules (120 credits).
- Master of Science (MSc) – all modules (120 credits) plus project (80 credits).

The Military Vehicle Technology MSc is part of the Vehicle and Weapons Engineering Programme. The course is designed to provide an understanding of the technologies used in the design, development, test and evaluation of military vehicle systems. Both armoured and support vehicles are covered within the course.

This course offers the underpinning knowledge and education to enhance the student’s suitability for senior positions within their organisation.

Each individual module is designed and offered as a standalone course which allows an individual to understand the fundamental technology required to efficiently perform the relevant, specific job responsibilities. The course also offers a critical depth to undertake engineering analysis or the evaluation of relevant sub systems.

Individual Project

In addition to the taught part of the course, students undertake an individual project. The aim of the project phase is to enable students to develop expertise in engineering research, design or development. The project phase requires a thesis to be submitted and is worth 80 credit points.

Examples of current titles are given below:

- Use of Vibration Absorber to help in Vibration
- Validated Model of UGV Power Usage
- Effect of Ceramic Tile Spacing in Lightweight Armour systems
- Investigation of Suspension System for Main Battle Tank
- An Experimental and Theoretical Investigation into a Pivot Adjustable Suspension System as a Low Cost Method of Adjusting for Payload
- Analysis of Amphibious Operation and Waterjet Propulsions for Infantry Combat Vehicle.
- Optimisation of the suspension system for a vehicle.
- Analysis of the off-road performance of a wheeled or tracked vehicle.

Modules

Core -

Introductory Studies
Solid Modelling CAD
Finite Element Methods in Engineering
Modelling, Simulation and Control
Weapon System Technology
Survivability
Vehicle Systems Integration
Armoured Fighting Vehicle and Weapon Systems Study
Military Vehicle Dynamics
Military Vehicle Propulsion

Optional -

Fundamentals of Ballistics
Military Vehicle Propulsion and Dynamics
Gun System Design
Element Design
Guided Weapons
Uninhabited Military Vehicle Systems
Reliability and System Effectiveness
Light Weapon Design
Rocket Motors and Propellants

Assessment

Continuous assessment, examinations and thesis (MSc only). Approximately 30% of the assessment is by examination.

Funding

For more information on funding please contact

Career opportunities

Many previous students have returned to their sponsor organisations to take-up senior programme appointments and equivalent research and development roles in this technical area.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/courses/masters/military-vehicle-technology.html

Read less
The Masters in Aerospace Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen aerospace engineering speciality. Read more
The Masters in Aerospace Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen aerospace engineering speciality.

Why this programme

◾The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having internationally recognised expertise in all areas of Aeronautics and Aerospace Systems.
◾You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾The University of Glasgow is one of the few institutions in the UK, and the only University in Scotland, to offer an Aerospace System MSc.
◾Aeronautical engineering at the University of Glasgow is consistently highly ranked recently achieving 10th in the UK and 1st in Scotland (Complete University Guide 2017).
◾If you have an engineering background, but with little management experience and you are looking to broaden your knowledge of management while also furthering your knowledge of aerospace engineering, this programme is designed for you.
◾Students in this programme can benefit from access to our outstanding facilities: including several wind tunnels, a flight simulation lab, an autonomous unmanned vehicle (UAV) laboratory, helicopter test rig laboratories, structural testing apparatus and computer labs for modelling and simulation.
◾This programme has a September and January intake.

Programme structure

There are two semesters of taught material and a summer session working on a project or dissertation. September entry students start with management courses and January entry students with engineering courses.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen aerospace engineering subjects.

Core courses

◾Integrated systems design project.

Optional courses (four chosen)
◾Autonomous vehicle guidance systems
◾Composite airframe structures
◾Fault detection, isolation and reconfiguration
◾Introduction to aeroelasticity
◾Introduction to computational fluid dynamics
◾Introduction to wind engineering
◾Radar and electro-optic systems
◾Robust control 5
◾Spacecraft systems 2.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to aerospace engineering projects, and January entry students have a choice of aerospace engineering projects.

Projects

To complete the MSc degree you must undertake a project worth 60 credits. This is an integral part of the MSc programme and many have a technical or business focus.

The project will integrate subject knowledge and skills that you acquire during the MSc programme. It is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.

You can choose a topic from a list of MSc projects in Aeronautical Engineering or the Management portion of your degree. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Students who start in January must choose an engineering focussed project

Industry links and employability

If you are looking to advance to a senior position in industry and to perform well at this level, knowledge and understanding of management principles will give you a competitive edge in the jobs market.

The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, advising on projects, curriculum development, and panel discussion.

During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the aerospace industry.

Career prospects

Career opportunities include positions in aerospace, defence, renewable energy, nuclear energy and management. You can also continue studying, for a research Masters or a PhD.

Read less
Created in partnership with companies such as the Ford Motor Company and Jaguar Land Rover, the programme is also aimed at existing or prospective product development engineers and those working in manufacturing, particularly those working alongside product design personnel in the context of cross-functional teams and simultaneous working practice. Read more
Created in partnership with companies such as the Ford Motor Company and Jaguar Land Rover, the programme is also aimed at existing or prospective product development engineers and those working in manufacturing, particularly those working alongside product design personnel in the context of cross-functional teams and simultaneous working practice.

Students study three compulsory modules and a further three modules from a choice of five. In addition, full-time students undertake a university-based project and part-time students undertake an industry-based project.

An online study support system provides additional information and materials to facilitate student discussion.

The programme is accredited by the Institution of Mechanical Engineers (towards Chartered status).

This course is aimed at engineers working in the automotive industry who wish to extend and deepen their skills and understanding of the field, as well as recent graduates who intend to start a career in the industry.

Though primarily aimed at product development engineers, the course offers significant value to those working in the manufacturing side of the industry and those who work alongside colleagues from product design in the context of cross-functional teams. Individual modules of this MSc can be studied as short courses.

The programme is very much one of technical engineering content, sitting in a systems engineering framework.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/aero-auto/automotive-systems-engineering/

Course structure and teaching

Students study three compulsory modules, three optional taught modules and carry out an individual project. In total the course comprises 180 modular credits, made up from 6 taught modules valued at 20 credits each, plus the project which is valued at 60 credits.

The course is mostly delivered as a series of block taught modules. An online study support system provides additional information and materials to facilitate learning and discussion. Full time students undertake a University based project and part time students undertake an industry based project.

Assessment: Examination, coursework assignments and project dissertation.

Course features

- Incorporates a systems thinking framework, referring to product lifecycle, target setting, requirements capture and cascade, plus elements of business-related drivers for engineering practice.

- Provides clear links between design and manufacture, for example presenting examples where manufacturing capabilities have a large impact on design and system robustness.

- Develops advanced and specialist themes via the optional modules.

- Expertise provided from industry-based specialists.

- Individual modules can be studied as short courses.

- The MSc course was originally developed in partnership with Ford Motor Company, and we continue to work closely with the automotive industry in designing, developing and delivering our courses.

Compulsory modules

- Manufacturing Systems and Integrated Design
- Vehicle and Powertrain Functional Performance
- Vehicle Systems Analysis
- Project

Optional modules (select three)

- Body Engineering
- Powertrain Calibration Optimisation
- Sustainable Vehicle Powertrains
- Vehicle Dynamics and Control (for full time programme only)
- Vehicle Electrical Systems Integration

Careers and further Study

Graduates work primarily in product design and development groups and are sought after by a wide range of automotive companies. Students that wish to pursue other careers are well-equipped to work in a wide range of sectors within the vehicle industry.

Scholarships

Loughborough University offers five merit based competitive scholarships to the value of 10% of the programme tuition fee for international students applying for the MSc in Automotive Systems Engineering. All students applying for the course will be considered for the scholarship.

Why choose aeronautical and automotive engineering at Loughborough?

The Department of Aeronautical and Automotive Engineering is a specialist centre within one of the UK’s largest engineering universities.

The Department has 37 academic staff and nearly 150 postgraduate students on taught and research programmes. In the Government’s External Subject Review, the Department was awarded an excellent score (23/24) for the quality of its teaching.In the most recent Research Excellence Framework our subject areas featured in the top ten nationally.

- Facilities
The Department has extensive laboratories and facilities including: wind tunnels; anechoic chamber; indoor UAV testing; structures testing facilities; gas-turbine engines; eight purpose-built engine test cells; Hawk aircraft; 6-axis simulator (road and aircraft); chassis dynamometer and numerous instrumented test vehicles.
The Department hosts the Rolls-Royce University Technology Centre (UTC) in Combustion Aerodynamics and the Caterpillar Innovation and Research Centre (IRC) in engine systems.

- Research
The Department has four major research groups working across the technologies of automotive and aeronautical engineering. Each group works on a variety of research topics, ranging from the development of new low emissions combustion systems for gas turbine engines, through to fundamental investigations into the operation of hydrogen powered fuel cells.

- Career prospects
Over 87% of our graduates were in employment and/or further study six months after graduating. The Department has particularly close links with BAE Systems, Bentley, British Airways, Ford Motor Company, Group Lotus, Jaguar Land Rover, JCB, MIRA, Perkins Caterpillar, Rolls-Royce and many tier one automotive suppliers

Find out how to apply here http://www.lboro.ac.uk/departments/aae/postgraduate/apply/

Read less
Superb industry links and world-class research come together to make Oxford Brookes one of the best places in the UK to study Mechanical Engineering at postgraduate level. Read more
Superb industry links and world-class research come together to make Oxford Brookes one of the best places in the UK to study Mechanical Engineering at postgraduate level. Being in the heart of one of Europe’s highest concentration of high-tech businesses provides opportunities for industry-focused studies.You will take charge of your career by building on your undergraduate degree and developing your professional skills. It introduces you to research, development and practice in advanced engineering design and equips you for professional practice at senior positions of responsibility.You will gain the skills to take complex products all the way from idea to fully validated designs. Using the most advanced CAD packages, you will learn the techniques required to analyse and test your designs followed by full design implementation. Our teaching is centred around our state-of-the-art laboratories in a purpose-designed engineering building.

Why choose this course?

You will be taught by staff with exceptional knowledge and expertise in their fields, including world-leaders in research on sustainable engineering, materials and joining technology and design engineers leading development of novel products such as carbon and bamboo bike. Our research projects and consultancies are done with partners such as Siemens, Yasa Motors, Stannah Stairlifts, 3M etc. using our facilities including analytical and mechanical test equipment, scanning electron microscope and the latest 3D printing technology. Well-funded research programmes in areas of current concern such as modern composite materials, vehicle end-of-life issues and electric vehicles.

Our research incorporates the latest developments within the sector with high profile visiting speakers contributing to our invited research lectures. In REF 2014 57% of the department's research was judged to be of world leading quality or internationally excellent with 96% being internationally recognised. Visiting speakers from business and industry provide professional perspectives, preparing you for an exciting career, for more information see our industrial lecture series schedule. Our close industry links facilitate industrial visits, providing you with opportunities to explore technical challenges and the latest technology - to get a flavour of activities within our department see 2015 highlights.

You will have the opportunity to join our acclaimed Formula Student team (OBR), where you have a chance to put theory into practice by competing with the best universities from around the world. Find out more about Formula Student at Brookes by visiting the Oxford Brookes Racing website.

Professional accreditation

Accredited by the Institution of Mechanical Engineers (IMechE) and The Institute of Engineering and Technology (The IET) as meeting the academic requirements for full Chartered Engineer status.

This course in detail

The course is structured around three periods: Semester 1 runs from September to December, Semester 2 from January to May, and the summer period completes the year until the beginning of September.

To qualify for a master's degree you must pass the compulsory modules, two optional modules and the Dissertation.

Compulsory modules
-Advanced Mechanical Engineering Design
-Advanced Strength of Components
-Advanced Engineering Management

Optional modules
-Computation and Modelling
-CAD/CAM
-Advanced Materials Engineering and Joining Technology
-Sustainable Engineering Technology
-Noise, Vibration and Harshness
-Vehicle Crash Engineering
-Engineering Reliability and Risk Management

The Dissertation (core, triple credit) is an individual project on a topic from motorsport engineering, offering an opportunity to specialise in a particular area of motorsport. In addition to developing a high level of expertise in a particular area of motorsport, including use of industry-standard software and/or experimental work, the module will also provide you with research skills, planning techniques, project management. Whilst a wide range of industry-sponsored projects are available (e.g. Far-Axon, Clayex/Dymola, Tranquillity Aerospace, Norbar, etc.), students are also able undertake their own projects in the UK and abroad, to work in close co-operation with a research, industrial or commercial organisation.

Please note: As our courses are reviewed regularly as part of our quality assurance framework, the choice of modules available may differ from those described above.

Teaching and learning

Teaching methods include lectures and seminars to provide a sound theoretical base, and practical work designed to demonstrate important aspects of theory or systems operation.

Teaching staff are drawn primarily from the Department of Mechanical Engineering and Mathematical Sciences. Visiting speakers from business and industry provide further input.

Careers and professional development

Our graduates enjoy the very best employment opportunities, with hundreds of engineering students having gone onto successful careers in a wide range of industries.

Read less
The Masters in Aeronautical Engineering focuses on advanced engineering subjects required for understanding modern design of fixed-wing aircraft. Read more
The Masters in Aeronautical Engineering focuses on advanced engineering subjects required for understanding modern design of fixed-wing aircraft.

Why this programme

◾The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having internationally recognised expertise in all areas of Aeronautics and Aerospace Systems.
◾Aeronautical engineering at the University of Glasgow is consistently highly ranked recently achieving 10th in the UK and 1st in Scotland (Complete University Guide 2017).
◾If you are an aerospace engineering graduate wanting to improve your skills and knowledge; a graduate of a related engineering discipline or physical science and you want to change field; or you are looking for a well rounded postgraduate qualification in aeronautical engineering to enhance your career prospects, this programme is designed for you.
◾You will benefit from access to our outstanding facilities: including several wind tunnels, a flight simulation lab, an autonomous unmanned vehicle (UAV) laboratory, helicopter test rig laboratories, structural testing apparatus and computer labs for modelling and simulation.

Programme structure

Modes of delivery of the MSc in Aeronautical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work. You will attend taught courses and take part in laboratory-based assignments and field visits. You will be further assessed in coursework, report writing and oral presentations.

The summer period is dedicated to project work, with either academic or industrial placements providing the context for your project.

Semester 1 courses
◾Aerospace control 1
◾Aircraft flight dynamics
◾Navigation systems
◾Space flight dynamics 1
◾Viscous shear flows.

Semester 2 courses (five chosen)
◾Autonomous vehicle guidance systems
◾Composites airframe structures
◾Introduction to aeroelasticity
◾Introduction to computational fluid dynamics
◾Introduction to wind engineering
◾Robust control 5
◾Spacecraft systems 2
◾Aerospace design project.

]]Projects]]
◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Aeronautical Engineering. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

[[Accreditation ]]

MSc Aeronautical Engineering is accredited by the Royal Aeronautical Society (RAeS)

Career prospects

Career opportunities include positions in aerospace, defence, renewable energy, control design, structural engineering. You can also continue studying, for a research Masters or a PhD.

Graduates of this programme have gone on to positions such as:

◾Teaching Assistant at a university
◾Graduate Engineer at UTC Aerospace Systems
◾Scientist at Fluid Gravity Engineering Ltd.

Read less
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. Read more
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. On completion of these courses students acquire a broad understanding of Engineering with a focus on aerospace engineering.

The University has been running automotive degree courses for almost forty years and is very well-established within the automotive industry. We have some 250 undergraduate and postgraduate students reading automotive engineering so are one of the largest providers of automotive engineering degree courses in the UK. We have excellent facilities in automotive engineering technology including an automotive centre with engine test facilities.

The development of skills and advancement of knowledge focus on:
-The selection of materials, process and techniques for the structural analysis and the design and construction of automotive components such as body and chassis, in relation to vibration and vehicle dynamics
-Understanding of alternative power train and fuel technologies, their impact on vehicle performance and environment
-The construction of CAE models and to assess implications of the results, the limitations of present techniques and the potential future direction of developments in the CAE field
-Appreciation of the need for process and product development relevant to the introduction of products in a cost effective and timely manner
-Critical review of the present knowledge base, its applicability, usage and relevance to enhance product and enterprise performance

Why choose this course?

This pioneering programme consists of a number of “specialist” Masters awards with an expectation that students will have studied a STEM related discipline to a Bachelor’s level or equivalent, as opposed to a “traditional” masters philosophy aimed at students from an engineering background. The programme offers options with separate entry routes for candidates transitioning from ‘Near STEM’ and ‘Far STEM’ disciplines:The Far STEM route is for first degrees where statistical analysis was a dominant feature of their analytical studies. Students will spend one to two semesters studying appropriate Level 4/5 modules in the first year then joining the Near STEM cohort (e.g., chemistry or biology). The Far STEM route is for first degrees where statistical analysis was a dominant feature of their analytical studies. Students will spend one to two semesters studying appropriate Level 4/5 modules in the first year then joining the Near STEM cohort (e.g., chemistry or biology).

Careers

The successful postgraduates of the programme will acquire the knowledge and understanding, intellectual, practical and transferable skills necessary for the analysis and synthesis of problems in engineering through a combination of experimental, simulation, research methods and case studies. They can expect to gain work in a range of disciplines within a variety of industries from specialist technical roles to positions of management responsibility.

Teaching methods

The School has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility.
The online StudyNet is accessible 24/7 and allows students to access electronic teaching and learning resources, and conduct electronic discussion's with staff and other students. A heavy emphasis is placed on theory and practice, and the School has a policy of using industrial standard software wherever possible. The School also operate an open access laboratory, and computer policy, that will help students complete coursework and assignments, at a scheduled pace and on time.

Structure

Year 1
Core Modules
-Automotive Materials & Manufacture
-CFD Techniques
-Computing for Business and Technology
-Dynamics
-Engineering Application of Mathematics
-Engineering Fundamentals
-Mechanical Experimental Engineering
-Mechanical Science
-Operations Management

Year 2
Core Modules
-Advanced Engines & Power Systems
-Automotive Chassis & Powertrain Technology
-Automotive Dynamics & Safety
-Automotive Electrical Systems
-Integrated Product Engineering
-Operations Research

Read less
The MSc by research ­ Engineering provides a flexible framework if you're an engineering graduate intending to specialise in a specific area of interest, such as aircraft design, robotics system development, vehicle performance or intelligent systems. Read more
The MSc by research ­ Engineering provides a flexible framework if you're an engineering graduate intending to specialise in a specific area of interest, such as aircraft design, robotics system development, vehicle performance or intelligent systems. You will study an engineering research topic in depth during your project dissertation, while working closely with academic experts in the related field and taking advantage of our world-class facilities.

Course detail

UWE Bristol Engineering's strong industry and international academic links give you the opportunity to gain additional industrial experience through an industry-linked project. The course also provides a solid platform for those who wish to pursue higher postgraduate degrees, such as an MPhil or PhD, or gain the necessary skills to become a professional engineering practitioner with additional specialisation in your own field of interest.

Structure

You qualify for the awards MSc Research (Engineering), and Postgraduate Certificate by accumulating credits completion modules as follows:

• The MSc Research (Engineering) requires 180 credits, including 120 credits from the dissertation and 60 credits from the taught component.

• The Postgraduate Certificate in Engineering requires 60 credits, all from the taught part of the course (no dissertation is completed).

Modules

• Project Dissertation
• Research Investigation, Planning and Methods for Change
• Research Portfolio
• Research Methods
• Computer Vision and Modern Control
• Innovations in Operations Management
• Design of Fluid Systems
• Structural Integrity in Design
• Industrial Applications of Vision and Automation
• Robotics Mechanics, Intelligence and Programming
• Lean Engineering and Decision Support Tools for Continuous Improvement
• Electromechanical Systems Integration
• Concurrent Engineering
• Flight Test and Airworthiness
• Aerospace Manufacturing Technology
• Aerodynamics C
• Aircraft Structural Design
• Aero-elasticity
• Aero-acoustics
• Embedded Real Time Control Systems
• Wireless and Mobile Communications
• Safety Critical Embedded Systems
• System Design Using HDLs
• Advanced Control and Dynamics
• Wireless Sensor Networks

Format

In common with other MScs in the faculty, MSc Research (Engineering) is delivered through a combination of taught modules and an in-depth dissertation.

Assessment

You are usually assessed through a combination of examinations, coursework and the dissertation.

Careers / Further study

This course produces graduates capable of ground-breaking research with an in-depth specialisation in a particular area of engineering interest.

On completing this course you will be equally ready to continue onto MPhil and PhD programmes or take a role in a senior technical position in a wide range of industry sectors.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
Full time. 12 months. Full time. 24 months including a preliminary year. The Sustainable Transport Engineering MSc is a mainstream mechanical engineering course with a focus on vehicles and drive systems, and energy sources and management. Read more

Profile

Full time: 12 months
Full time: 24 months including a preliminary year

The Sustainable Transport Engineering MSc is a mainstream mechanical engineering course with a focus on vehicles and drive systems, and energy sources and management. For anyone wishing to specialise in railways, the course also has a rail option.

This course is intended for honours graduates (or an international equivalent) in mechanical or mechanical-related engineering (eg automotive, aeronautical or design), maths, physics or a related discipline.

Course structure:
All Sustainable Transport Engineering MSc students will undertake taught modules in the following core subjects:
•mechanical power transmission
•vehicle drives and dynamics
•human-systems integration
•energy sources and storage
•sustainable energy management

You then have the option to take further general engineering modules or rail transport modules. See the module page for more information.

Alongside students undertaking other mechanical engineering MSc courses, you will also be introduced to engineering software and computational methods, ie Computer-Aided Design (CAD) and Finite Element Analysis (FEA).

Your research project is chosen from an extensive range of subjects. Project work can range from fundamental studies in areas of basic engineering science, to practical design-make-test investigations.

If you are specialising in the rail option, you will undertake a railway-themed research project. Newcastle University is actively involved in a wide range of railway research projects.

Some research may be undertaken in collaboration with industry.

There is an established programme of research seminars. These are delivered by guest speakers from academia and industry (both national and international), providing excellent insights into a wide variety of engineering research.

Two year MSc:
A two year MSc is available for non-native speakers of English. This consists of the standard one-year MSc and an initial year that:
•covers a selection of final-year undergraduate modules (a useful preparation for the Masters-level modules in the second year)
•provides opportunities to improve and gain confidence in English

Delivery:
The taught component of the course makes use of a combination of lectures, tutorials/labs and seminars. Assessment is by written examination and submitted in-course assignments.

The research project (worth 60 credits) is undertaken throughout the duration of the Master's level course. Project work is assessed by dissertation and oral/poster presentations. You will be allocated, and meet regularly with, project supervisors.

Effective communication is an important skill for the modern professional engineer, and this course includes sessions to help develop your ability, both through formal guidance sessions dedicated to good practice in report writing, and through oral/poster presentations of project work.

Accreditation:
The one year course has been accredited by the Institution of Mechanical Engineers (IMechE) under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC).

An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as a Chartered Engineer (CEng).

Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities:
The School of Mechanical and Systems Engineering is based in the Stephenson Building. It has both general and specialist laboratories and workshop facilities. These are used for training, course delivery and the manufacture of materials/components needed to support project work.

The Stephenson Building houses one of the largest networked computer clusters on campus (120+ PCs), which supports all of the specialist software introduced and used within the course (eg CAD, stress analysis, fluid dynamics, signal processing packages) in addition to the School’s own cluster (60+ PCs) used for instrumentation and data acquisition laboratories.

Read less
An exciting collaboration between the University’s Business School and School of Engineering, this course aims to give engineers a deeper understanding of business and management. Read more

Description

An exciting collaboration between the University’s Business School and School of Engineering, this course aims to give engineers a deeper understanding of business and management. You will study a number of engineering units to help keep your business skills and knowledge in an engineering context. The flexible nature of the course means you can choose any advanced engineering units. The business units cover the key components of business management and give engineers valuable knowledge and insights into how people and organisations behave, an understanding of financial issues facing business and know-how to improve your management skills. You will carry out a research project which can be academic or industry-based.

Core units

- Management Practice
- MSc Engineering Project

Option units

- Digital Signal Processing
- Automotive Engineering and Vehicle Dynamics
- Bioengineering
- Computational Mechanics
- Computer Engineering and CPU Design
- Embedded Systems and Systems on Chip
- Engineering Structural Integrity
- Manufacturing Systems Management
- Sensing and Imaging
- Industrial Communication Systems
- Advanced Control and Instrumentation
- Sustainable Energy Systems
- Smart Technologies for Power Management
- Rail Infrastructure and Engineering Strategy

You will be assessed through a combination of written reports, oral presentations, practical assignments and written examinations. There is a dual start date of September (main intake) and January available for this course.

Career prospects

Our engineering Masters programmes are designed to meet the needs of an industry which looks to employ postgraduates who can learn independently and apply critical thinking to real-world problems.

Engineers with a strong grasp of modern management techniques as well as technical expertise are highly sought after by industry. They can work high up in the operational level of a company to implement lean, best value manufacturing techniques. The industries you will be able to enter are wide ranging and include production, process, transport, power, consumer goods, media, leisure, pharmaceutical and chemical sectors.

You will also be well-placed to pursue further study such as a PhD or an Engineering doctorate.

Careers support is available from the moment you join us, throughout your time here, and for up to three years after the completion of your course. We have a range of services available through the School of Engineering and the University Careers Service including dedicated careers and employability advisors.

Read less
This programme provides a dynamic opportunity to develop engineering skills for the automotive industry. Aims to provide in-depth understanding of modern developments in vehicle design, vehicle dynamic control systems, vehicle propulsion systems and vehicle structures. Read more

Description

This programme provides a dynamic opportunity to develop engineering skills for the automotive industry. Aims to provide in-depth understanding of modern developments in vehicle design, vehicle dynamic control systems, vehicle propulsion systems and vehicle structures. You will build, test and analyse the performance of vehicle control systems, dynamic systems and automotive sub-systems. You will have the opportunity to showcase your specialist skills and interests and demonstrate independent learning via an automotive-focused project, assessed through the production and examination of a thesis, which completes the MSc.

The automotive sector offers a unique and exciting career for graduates. The UK automotive sector alone employs 770,000 people and has 13 research and development centres. According to a report published by the Automotive Council UK, ‘up to 5,000 vacancies are unfilled in the automotive industry due to skills shortages’. This is further reflected in announcements from Ford, Rolls-Royce, Bentley and Jaguar Land Rover in recent years regarding investment in the UK automotive sector.

Core units

- Automotive Engineering and Vehicle Dynamics
- MSc Engineering Project

Option units

- Management Practice
- Manufacturing Systems Management
- Engineering Structural Integrity
- Computational Mechanics
- Bioengineering
- Sustainable Energy System
- Rail Infrastructure and Engineering Strategy
- Smart Technologies for Power Management

Optional units listed in the following curriculum structures are all approved for delivery, but may not all run/be available in any one academic session.

Career prospects

The automotive sector offers graduates a unique and exciting career. This course aims to increase your employability in the industry and enable you to target specific roles that fit your own expertise. The job market in engineering and technology fields is buoyant with most maintaining good economic performance.

Alternatively, you may pursue a placement with partners or further study such as a PhD or an Engineering Doctorate.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X