• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Northumbria University Featured Masters Courses
Birmingham City University Featured Masters Courses
Cranfield University Featured Masters Courses
Durham University Featured Masters Courses
Birmingham City University Featured Masters Courses
Plymouth Marjon University (St Mark & St John) Featured Masters Courses
"value" AND "engineering"…×
0 miles

Masters Degrees (Value Engineering)

We have 592 Masters Degrees (Value Engineering)

  • "value" AND "engineering" ×
  • clear all
Showing 1 to 15 of 592
Order by 
The global shortage of qualified civil engineers includes specialists in water engineering and this MSc programme helps redress this imbalance by providing graduates with an advanced knowledge and skill base to equip them for senior industry roles. Read more

About the course

The global shortage of qualified civil engineers includes specialists in water engineering and this MSc programme helps redress this imbalance by providing graduates with an advanced knowledge and skill base to equip them for senior industry roles.

Brunel’s MSc in Water Engineering is unique in providing specialist knowledge on the critical sub-topics of water and wastewater management and engineering, desalination systems, building water services engineering, industrial waste water management, and water in health care.

The programme demonstrates the links between theory and practice by including input from our industrial partners and through site visits. This is a key aspect for establishing a competitive and high added value course that provides adequate links with industry.

Features of the course include:

Students’ skills in gathering and understanding complex information from a variety of sources (including engineering, scientific and socio-economic information) will be developed in an advanced research methods module. 

Issues relating to risk and health and safety will be introduced in the research methods module and built on in specialist modules. 

Generic modules in financial and project management will underpin specialist modules focusing on water engineering topics.

Real problem-solving examples – starting from basic principles, to the identified problem, the solution, the implementation process and was implemented and the end result. 

Real case studies – demonstrating how environmental and economic sustainability is considered within civil engineering, particularly in water resources management.

Aims

Problems associated with water resources, access, distribution and quality are amongst the most important global issues in this century. Water quality and scarcity issues are being exacerbated by rising populations, economic growth and climate change*.

Brunel's programme in Water Engineering aims to develop world class and leading edge experts on water sustainability who are able to tackle the industry’s complex challenges at a senior level. During the programme you will also learn about the development and application of models that estimate the carbon and water footprint within the energy and food sector.

The MSc is delivered by experienced industry professionals who bring significant practical experience to the course – and the University’s complete suite of engineering facilities and world-class research experience are set up for development and engineering of advanced systems, testing a variety of processes, designs and software tools.

*Recent figures indicate that 1.1 billion people worldwide do not have access to clean drinking water, while 2.6 billion do not have adequate sanitation (source: WHO/UNICEF 2005). 

Course Content

The primary aim of this programme is to create master’s degree graduates with qualities and transferable skills for demanding employment in the water engineering sector. Graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Specific aims are as follows:

- To provide education at postgraduate level in civil engineering. 
- To develop the versatility and depth to deal with new, complex and unusual challenges across a range of water engineering issues, drawing on an understanding of all aspects of water engineering principles. 
- To develop imagination, initiative and creativity to enable graduates to follow a successful engineering career with national and international companies and organisations. 
- To provide a pathway that will prepare graduates for successful careers including, where appropriate, progression to Chartered Engineer status.

The programme will provide opportunities for students to develop and demonstrate knowledge and understanding, qualities, skills and other attributes in the following areas:

Knowledge and understanding of:

- The principles of water engineering, including fluid mechanics, hydrology, and sustainable design. 
- Specialist areas that impact on the successful application of water engineering knowledge projects, e.g. sustainable construction management, financial management and risk analysis. 
- The interplay between engineering and sustainability in complex, real-world situations.

At the cognitive level students will be able to:

- Select, use and evaluate appropriate investigative techniques.
- Assemble and critically analyse relevant primary and secondary data.
- Recognise and assess the problems and critically evaluate solutions to challenges in managing water engineering projects.
- Evaluate the environmental and financial sustainability of current and potential civil engineering activities.

Personal and transferable skills that students develop will allow them to:

- Define and organise a substantial advanced investigation. 
- Select and employ appropriate advanced research methods. 
- Organise technical information into a concise, coherent document.
- Effectively employ a variety of communication styles aimed at different audiences. 
- Plan, manage, evaluate and orally-presented personal projects. 
- Work as part of, and lead, a team.

Typical Modules

Each taught module will count for 15 credits, approximating to 150 learning hours. The Master's programme can be taken full time, over 12 months. The first eight months of the full time course will eight taught modules. For the final four months, students will complete a dissertation counting for 60 credits. Modules cover:

Sustainable Project Management
GIS and Data Analysis
Water Infrastructure Engineering
Risk and Financial Management
Hydrology & Hydraulics
Water Treatment Engineering
Water Process Engineering
Research Methods
Civil Engineering Dissertation

Teaching

Our philosophy is to underpin theoretical aspects of the subject with hands-on experience in applying water engineering techniques. Although you may move on to project management and supervision roles, we feel it important that your knowledge is firmly based on an understanding of how things are done. To this end, industrial partners will provide guest lectures on specialist topics.

In addition to teaching, water engineering staff at Brunel are active researchers. This keeps us at the cutting edge of developments and, we hope, allows us to pass on our enthusiasm for the subject.

How many hours of study are involved?

Contact between students and academic staff is relatively high at around 20 hours per week to assist you in adjusting to university life. As the course progresses the number of contact hours is steadily reduced as you undertake more project-based work.

How will I be taught?

Lectures:
These provide a broad overview of the main concepts and ideas you need to understand and give you a framework on which to expand your knowledge by private study.
Laboratories:
Practicals are generally two- or three-hour sessions in which you can practise your observational and analytical skills, and develop a deeper understanding of theoretical concepts.
Design Studios:
In a studio you will work on individual and group projects with guidance from members of staff. You may be required to produce a design or develop a solution to an engineering problem. These sessions allow you to develop your intellectual ability and practice your teamwork skills.
Site visits:
Learning from real-world examples in an important part of the course. You will visit sites featuring a range of water engineering approaches and asked to evaluate what you see.
One-to-one:
On registration for the course you will be allocated a personal tutor who will be available to provide academic and pastoral support during your time at university. You will get one-to-one supervision on all project work.

Assessment

Several methods of assessment are employed on the course. There are written examinations and coursework. You will undertake projects, assignments, essays, laboratory work and short tests.

Project work is commonplace and is usually completed in groups to imitate the everyday experience in an engineering firm, where specialists must pool their talents to design a solution to a problem.

In this situation you can develop your management and leadership skills and ensure that all members of the group deliver their best. Group members share the mark gained, so it is up to each individual to get the most out of everyone else.

Special Features

Extensive facilities
Students can make the most of laboratory facilities which are extensive, modern and well equipped. We have recently made a major investment in our Joseph Bazalgette Laboratories which includes hydraulic testing laboratory equipment and facilities such as our open channel flow flumes.

Personal tutors
Although we recruit a large number of highly qualified students to our undergraduate, postgraduate and research degrees each year, we don’t forget that you are an individual. From the beginning of your time here, you are allocated a personal tutor who will guide you through academic and pastoral issues.

World-class research
The College is 'research intensive' – most of our academics are actively involved in cutting-edge research. Much of this research is undertaken with collaborators outside the University, including construction companies, water utilities, and other leading industrial firms. We work with universities in China, Poland, Egypt, Turkey, Italy, Denmark and Japan. This research is fed directly into our courses, providing a challenging investigative culture and ensuring that you are exposed to up-to-date and relevant material throughout your time at Brunel.

Strong industry links
We have excellent links with business and industry in the UK and overseas. This means:
Your degree is designed to meet the needs of industry and the marketplace.
The latest developments in the commercial world feed into your course.
You have greater choice and quality of professional placements.
We have more contacts to help you find a job when you graduate.

Visting Professors 
The Royal Academy of Engineering - UK’s national academy for engineering has appointed senior industrial engineers as visiting professors at Brunel University London.
The Visting Professors Scheme provides financial support for experienced industrial engineers to deliver face-to-face teaching and mentoring at a host of institutions. Our engineering undergraduates will benefit from an enhanced understanding of the role of engineering and the way it is practised, along with its challenges and demands. 

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course has been designed in close consultation with the industry and is accredited as a designated 'technical' MSc degree by the Join Board of Moderators (JBM). The JBM is made up of Institution of Highways and Transport and the Institution of Highway Engineeres respectively.

1. This means this course provides Further Learning for a Chartered Engineer who holds a CEng accredited first degree (full JBM listing of accredited degrees).
2. As a designated ‘technical’ MSc, it will also allow suitable holders of an IEng accredited first degree to meet the educational base for a Chartered Engineer.

Read less
This programme has been designed to meet the challenges of the rapidly changing global market by providing the skills and abilities to contribute to the availability of well-designed products, process and systems. Read more
This programme has been designed to meet the challenges of the rapidly changing global market by providing the skills and abilities to contribute to the availability of well-designed products, process and systems.

As a broad-based Mechanical Engineering degree this programme provides a wide variety of career options in the engineering sector.

Core study areas include experimental mechanics, simulation of advanced materials and processes structural analysis, computer aided engineering, engineering design methods, sustainable development: the engineering context, the innovation process and project management, thermofluids and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/mechanical-engineering/

Programme modules

- Experimental Mechanics
This module introduces the following elements: experimental techniques for analysis and characterisation of various engineering materials and full-field, non-contact optical methods for deformation and strain measurements. Students will learn to identify the most appropriate experimental techniques for evaluating material response in a specific setting and for different types of materials.

- Simulation of Advanced Materials and Processes
The objective of this module is to introduce students to the concepts in numerical simulation of advanced materials and processes. To enable students to gain theoretical and practical experience in simulating mechanical behaviour of advanced materials and modelling processes related to these materials using finite element modelling techniques.

- Structural Analysis
Students will gain an understanding of modern concepts of structural analysis. They will gain practical experience in analyses of structures using finite-element modelling and understand the need for structural analysis in design.

- Computer Aided Engineering
Students will learn how to evaluate, choose and implement CAE systems. Students will learn to select and apply appropriate computer based methods and systems for modelling engineering products; analysing engineering problems; and assisting in the product design process.

- Engineering Design Methods
The aims of this module are to provide students with a working understanding of some of the main methods which may be employed in the design of products and systems. Students will learn to identify appropriate methods and techniques for use at different times and situations within a project.

- Sustainable Development: The Engineering Context
The objective of this module are to provide students with an understanding of the principles and practices of sustainable development and to provide them with an understanding of how engineers can help manufacturing businesses develop into more sustainable enterprises.

- The Innovation Process and Project Management
This module allows students to gain a clear overview of the innovation process and an understanding of the essential elements within it. Students will learn strategies for planning and carrying out innovative projects in any field.

- Thermofluids
In this module students study the fundamentals of combustion processes and understand key aspects relating to performance and emissions. Students develop knowledge and skills required by engineers entering industries involved in the design and use of combustion equipment.

- Project
In addition to the taught modules, all students undertake an individual major project. Part-time students normally undertake a major project that is based on the needs of their employing company.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling and independent research.

The programme consists of eight, week-long, taught lecture modules plus project work. Each taught module is self-contained and covers a complete target. This programme is available in both full-time and part-time forms. Full-time students commence their studies on the first Monday in October for a period of 12 months. Part-time students may commence their registration at any time between October and the following March, and take 3 years (typical) to complete the programme.

On completion of this programme, students should be able to:
- Plan and monitor multi-disciplinary projects;
- appreciate the central role of design within engineering;
- demonstrate competence in using computer based engineering techniques;
- analyse and understand complex engineering problems; and
- use team working skills and communicate effectively at an advanced technical level.

Facilities

As a student within the School of Mechanical and Manufacturing Engineering you will have access to a range of state-of-the-art equipment. Our computer labs are open 24/7 and use some of the latest industry standard software including STAR-CCM and CAD.

We have high-tech laboratories devoted to:
- Dynamics and control
- Electronics
- Fluid mechanics
- Materials
- Mechatronics
- Metrology
- Optical engineering
- Structural integrity
- Thermodynamics

Careers and further study

The programme will allow students to acquire the technical and transferable skills required to succeed in a career in industry or academic research. Graduates may also study for an MPhil or PhD with the School.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a country outside the European Union. These scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/mechanical-engineering/

Read less
Advance your career with a master’s degree in engineering. Our convenient evening classes provide the flexibility your schedule demands. Read more
Advance your career with a master’s degree in engineering. Our convenient evening classes provide the flexibility your schedule demands.

MSOE’s Master of Science in Engineering (MSE) program is an interdisciplinary engineering program with primary emphases in the areas of electrical engineering (EE) and mechanical engineering (ME). A key component of the MSE program is the breadth of engineering background that students gain in areas of systems engineering, EE and ME. Additionally, each student is offered some degree of concentration through the selection of an engineering option and electives.

This interdisciplinary approach is a distinguishing feature of MSOE’s program and students are encouraged to take engineering courses both within and outside of their discipline. Courses cover topics like simulation and modeling, operations research, quality engineering, advanced engineering mathematics, finite element analysis, advanced mechanics, fluid power systems, data communications, control systems and advanced electronic systems.

The MSE program’s major emphasis is on the further development of engineering knowledge and skills in an effort to enhance the productivity of the practicing engineer. The program provides a flexible platform for students to take either an integrated approach or a specialized approach to meet the demands of their career. The course work emphasizes engineering concepts and theory through presentation, and faculty bring extensive industry experience to the classroom.

A nine-credit capstone engineering project option is included as part of the program. A non-project option is also available, which includes two specialty courses and a three-credit engineering paper in the specialty.

Curriculum Format

All classes are offered in the evening, providing convenient scheduling. The program is designed for individuals who hold bachelor degrees in engineering, engineering technology or other closely related areas. Each student works with the program director to plan a course of study tailored to his or her needs. Typically, a total of 45 graduate credits is required to complete the program, but degree requirements may vary depending upon the type of bachelor’s degree.

MSE Program Options

Each student selects either a capstone engineering project or the non-project option.

The engineering project option can either draw from the multiple disciplines studied within the program or focus more on technical areas within the student’s chosen engineering discipline. After consulting with a faculty advisor, each student develops an engineering project proposal and presents it for approval before a committee.

The non-project option requires a two-course sequence in 700- or 800-level EE/ME specialty courses and a final course (GE-791) in which a specialty paper is written. Each student completes an analysis/design of a certain aspect of the chosen specialty and presents it both orally and in writing.

100% Online delivery

Geography is not a constraint for students interested in completing the MSE at a distance. In addition to the face-to-face class format, there is also the option to take courses via 100% online distance delivery. The rich faculty, student interaction that is the hallmark of the MSE is replicated in online classes creating dynamic and flexible learning environments. Students can choose which format best fits their lives, while advancing their learning and professional skills.

Objectives and Outcomes

Program Educational Objectives

- Graduates create new value in a process or product at their workplace through application of advanced engineering skills and knowledge
- Graduates advance in their careers as a direct result of completing the degree

Student Outcomes

Graduates of the MSE program will:
- be able to utilize advanced mathematics, with a primary focus on numerical methods and models, to solve engineering problems involving multivariate differential systems
- have demonstrated an ability to apply advanced engineering principles to complex problems in his or her chosen specialty
- have demonstrated an ability to integrate and analyze information in a chosen specialty in the form of scholarly work, either as an independent specialty paper or as an independent engineering project
- have the ability to effectively present and communicate technical concepts, both orally and in writing

Read less
IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN. - Skills and know-how in the latest technologies in electrical engineering. Read more

IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN:

- Skills and know-how in the latest technologies in electrical engineering

- Practical guidance from electrical engineering experts in the field

- Knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college

- Credibility as the local electrical engineering expert in your firm

- Networking contacts in the industry

- Improved career prospects and income

- An Advanced Diploma of Applied Electrical Engineering (Electrical Systems)

Next intake starts July 02, 2018. Registrations are now open.

Payment is not required until 2 to 4 weeks before the start of the program.

The EIT Advanced Diploma of Applied Electrical Engineering (Electrical Systems) is recognized worldwide and has been endorsed by the International Society of Automation (ISA). Please ask us about specific information on accreditation for your location.

OVERVIEW

Join the next generation of electrical engineers and technicians and embrace a well paid, intensive yet enjoyable career by embarking on this comprehensive course on electrical engineering. It is presented in a practical and useful manner - all theory covered is tied to a practical outcome. Leading electrical engineers who are highly experienced engineers from industry, having 'worked in the trenches' in the various electrical engineering areas present the course over the web in a distance learning format using our acclaimed live e-learning techniques.

The course starts with an overview of the basic principles of electrical engineering and then goes on to discuss the essential topics in depth. With a total of 16 modules, everything that is of practical value from electrical distribution concepts to the equipment used, safety at work to power quality are all looked at in detail. Each module contains practical content so that the students can practice what they learn including the basic elements of designing a system and troubleshooting.

Most academic courses deal with engineering theory in detail but fall short when it comes to giving practical hints on what a technician is expected to know for a job in the field. In this course, the practical aspects receive emphasis so that when you go out into the field you will have the feeling that ‘you have seen it all.

*JOB OUTCOMES, INTERNATIONAL RECOGNITION AND PROFESSIONAL MEMBERSHIP:

A range of global opportunities awaits graduates of the Advanced Diploma of Applied Electrical Engineering (Electrical Systems). Pending full accreditation you may become a full member of Engineers Australia and your qualification will be recognized by Engineers Australia and (through the Dublin Accord) by leading professional associations and societies in Australia, Canada, Ireland, Korea, New Zealand, South Africa, United Kingdom and the United States. The Dublin Accord is an agreement for the international recognition of Engineering Technician qualifications.

For example, current enrolled students can apply for free student membership of Engineers Australia. After graduation, you can apply for membership to become an Engineering Associate, while graduates interested in UK recognition can apply for membership of the Institution of Engineering and Technology (IET) as a Technician Member of the Institution of Engineering and Technology.

This professional recognition greatly improves the global mobility of graduates, and offers you the opportunity of a truly international career.

You will be qualified to find employment as an Engineering Associate in public and private industry including transportation, manufacturing, process, construction, resource, energy and utilities industries. Engineering Associates often work in support of professional engineers or engineering technologists in a team environment. If you prefer to work in the field you may choose to find employment as a site supervisor, senior technician, engineering assistant, or similar.

WHO SHOULD COMPLETE THIS PROGRAM?

- Electrical Engineers and Technicians

- Project Engineers

- Design Engineers

- Instrumentation and Design Engineers

- Electrical Technicians

- Field Technicians

- Electricians

- Plant Operators

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Instrument Fitters and Instrumentation Engineers

- Consulting Engineers

- Production Managers

- Chemical and Mechanical Engineers

- Instrument and Process Control Technicians

In fact, anyone who wants to gain solid knowledge of the key elements of electrical engineering – to improve work skills and to create further job prospects. Even those of you who are highly experienced in electrical engineering may find it useful to attend some of the topics to gain key, up to date perspectives on electrical engineering.

PROGRAM STRUCTURE

The course is composed of 16 modules. These cover the following seven main threads to provide you with maximum practical coverage in the field of electrical engineering

- Electrical technology fundamentals

- Distribution equipment and protection

- Rotating machinery and transformers

- Power electronics

- Energy efficiency

- Earthing and safety regulations

- Operation and maintenance of electrical equipment

The 16 modules will be completed in the following order:

- Electrical Circuits

- Basic Electrical Engineering

- Fundamentals of Professional Engineering

- Electrical Drawings

- Electrical Power Distribution

- Transformers, Circuit Breakers and Switchgear

- Electrical Machines

- Power Cables and Accessories

- Earthing and Lightning / Surge Protection

- Power System Protection

- Electrical Safety and Wiring Regulations

- Testing, Troubleshooting and Maintenance of Electrical Equipment

- Energy Efficiency and Energy Use

- Power Quality

- Power Electronics and Variable Speed Drives

- DC and AC High Reliability Power Supplies

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located all around the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. We aim to give you a rapid response regarding course fees that are relevant to your individual circumstances.

We understand that cost is a major consideration before a student begins to study. For a rapid reply to your query regarding course fees and payment options, please contact a Course Advisor in your region via the below button and we will respond within two (2) business days.



Read less
Your programme of study. This is a highly specialised area of oil and gas engineering in which you learn the discipline and wider areas that feed into it. Read more

Your programme of study

This is a highly specialised area of oil and gas engineering in which you learn the discipline and wider areas that feed into it. You are taught by industry respected researchers and academics who have followed the oil and gas industry since the 1970s and its inception in Aberdeen city. Aberdeen is at the heart of the oil and gas industry in Europe and is known worldwide as a major energy hub.

Reservoir Engineering is a highly specialised but essential part of upstream oil and gas extraction process. It requires detailed knowledge of geology, performance and management of reserves. Often these reserves are deep in oceans or land and in very difficult and hard to reach locations with complex geology  so it is essential to have a high degree of skills and knowledge to understand how best these reserves can be tapped into in critically sensitive environments.

There is a recognised, global shortage of practitioners in the area of reservoir engineering which is addressed by the programme. You study a wide spectrum of reservoir phenomena, and to evaluate them in the context of petroleum engineering and cognate areas of petroleum Geoscience, within the economic context of the hydrocarbon industry. You have employment options worldwide in the oil and gas industry with plenty of options to travel to growth markets and untapped areas of reserves within multinationals and consultancies. 

Courses listed for the programme

Semester 1

  • Fundamentals of Petroleum Geo-science
  • PetroPhysics, Core Analysis, and Formation Evaluation
  • Reservoir Engineering
  • Introduction to Energy Economics

Semester 2

  • Reservoir Sedimentology and Structure
  • Group Project and Research Skills

Semester 3

  • Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You study with world renowned researchers at University of Aberdeen which has had a close connection with the energy industry based in the city since the 1970s
  • You take part in a field trip to experience application of theory and practical understanding of elements to the programme
  • You learn a wide range of skills applicable to this programme but also employable in their own right such as Energy Economics, Petrophysics, Core Analysis and Formation Evaluation. This adds value to your specialism in reservoir engineering.

Where you study

  • University of Aberdeen
  • 12 Months Full Time
  • September start

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs

Other engineering disciplines you may be interested in:



Read less
Your programme of study. The energy industry has historically provided immense rewards and immense challenges in terms of infrastructure development in very challenging environments. Read more

Your programme of study

The energy industry has historically provided immense rewards and immense challenges in terms of infrastructure development in very challenging environments. Over time there have been many learning points as a result of process which did not address the challenge sufficiently resulting in new standards of safety, assessing risk and managing the challenges presented in mineral extraction. The industry has come a long way since its inception in Aberdeen in the 1970s and globally and University of Aberdeen has acquired this knowledge and research to work with industry and train the next Safety and Reliability Engineers to continuously improve safety. This programme is highly regarded from a well known provider in the industry. You visit industry and receive technical lectures with practical sessions to provide further awareness of the responsibility involved in the energy industry.

The programme is ideal if you are from an engineering, physics or mathematics background but it is also relevant to you if you studied stress analysis and thermodynamics with experience from the industry. The added value of this programme is that you can apply the discipline to other industries such as nuclear, defence, transport, aerospace, manufacturing and process industries, making you more employable and allowing wider scope for career options at graduation.

Courses listed for the programme

Semester 1

  • Fundamental Safety Engineering, and Risk Management Concepts
  • Statistics and Probability for Safety, Reliability and Quality
  • Fire and Explosion Engineering
  • Subsea Integrity

Semester 2

  • Advanced Methods for Risk and Reliability Assessments
  • Applied Risk Analysis and Management
  • Process Design, Layout and Materials
  • Human Factors Engineering

Semester 3

  • Safety Engineering Project

Find out more detail by visiting the programme web page

or on campus delivery:

Why study at Aberdeen?

  • This is a highly regarded programme by the industry which is informed by the energy industry in Aberdeen city
  • Aberdeen is at the heart of the European and world oil and gas industry with many multinational FTS 100 companies located in the city
  • This is a world class programme which informs the Lloyds Register Foundation Centre for Safety and Reliability Engineering
  • You are taught by industry professionals with worldwide industry experience

Where you study

  • Online
  • Full Time or Part Time
  • 5 Months or 27 Months
  • September or January start

*• There is an online programme available from University of Aberdeen

International Student Fees 2017/2018

Find out about fees:

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the latest opportunities page

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs

Other engineering disciplines you may be interested in:



Read less
The Civil Engineering Graduate Diploma enables applicants with a degree in a related subject (for example mathematics, physics or geology) to take a qualifying year before moving into a Civil or Structural Engineering MSc programme. Read more

The Civil Engineering Graduate Diploma enables applicants with a degree in a related subject (for example mathematics, physics or geology) to take a qualifying year before moving into a Civil or Structural Engineering MSc programme. It offers a unique opportunity to be awarded a fully recognised Civil Engineering MSc after two years of study, opening the path to a career in civil engineering as a chartered engineer.

About this degree

This bespoke programme provides grounding in fluids, soils, structures and materials engineering, and consists of second and third-year undergraduate core civil engineering subjects. Students are also allocated a civil engineering project which they are required to complete in pairs.

Students undertake modules to the value of 120 credits.

The programme consists of six core modules, one optional module and a research project.

Core modules

  • Structural Analysis and Design
  • Materials II and Applied Fluid Mechanics II
  • Soil Mechanics and Engineering Geology
  • Civil Engineering in Practice
  • Structure and Materials
  • Civil Engineering Project

Optional modules

You will need to choose one module from the optional list:

  • Mathematics Modelling II
  • Fluids & Soils III

Dissertation/report

Students conduct a civil engineering research project over two terms, usually working in pairs. 

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, seminars and laboratory classes. The civil engineering project involves individual research and can include laboratory, computational or fieldwork depending on the nature of your project and your supervisor. It is usually completed in pairs. The programme also includes a field trip and a one-week Constructionarium visit.

Fieldwork

Constructionarium

  • Constructionarium is held as a 6 day working field course. The participants construct scaled down versions of bridges, buildings, dams and civil engineering projects. Students are assessed on the final day in terms of budgetary control, methodology and timely completion.
  • The basic model consists of a university, contractor and consultant working in partnership to deliver a unique learning experience, where students gain practical site experience.
  • Students are supported and mentored by employees from two partner organisations. One is a contractor and the other a consulting agent.

Further information on modules and degree structure is available on the department website: Civil Engineering Grad Dip

Careers

Civil engineering graduates are readily employed by consultancies, construction companies and government departments.

Students who complete both this pre-qualifying year and a Civil Engineering MSc or an Earthquake Engineering and Disaster Management MSc, have excellent career prospects with leading civil and structural engineering companies.

Employability

The are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting multidisciplinary department with a long tradition of excellence in teaching and research, situated at the heart of London.

Our innovative research is at the forefront of engineering development. Our staff are leaders in their fields and often called upon for their detailed knowledge by the media, industry and policymakers.

This programme offers applicants without a first degree in civil engineering a unique opportunity to be awarded a fully recognised Civil Engineering MSc after two years of study, opening the path to a civil engineering career as a chartered engineer.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Engineering at Swansea University has key research strengths in materials for aerospace applications and steel technology. As a student on the Master's course in Materials Engineering, you will be provided with the depth of knowledge and breadth of abilities to meet the demands of the international materials industry.

Key Features of MSc in Materials Engineering

Through the MSc Materials Engineering course you will be provided with training and experience in a broad range of topic areas, including metallurgy and materials selection, modern methods used for engineering design and analysis, the relationship between structure, processing and properties for a wide range of materials, materials and advanced composite materials, structural factors that control the mechanical properties of materials, and modern business management issues and techniques.

The MSc Materials Engineering course is an excellent route for those who have a first degree in any scientific or technical subject and would like to become qualified in this field of materials engineering.

MSc in Materials Engineering programme is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students must successfully complete Part One before being allowed to progress to Part Two.

The part-time scheme is a version of the full-time equivalent MSc scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules

Modules on the MSc Materials Engineering course can vary each year but you could expect to study:

Composite Materials

Polymer Processing

Environmental Analysis and Legislation

Communication Skills for Research Engineers

Simulation Based Product Design

Aerospace Materials Engineering

Structural Integrity of Aerospace Metals

Ceramics

Environmental Analysis and Legislation

Physical Metallurgy of Steels

Accreditation

The MSc Materials Engineering course at Swansea University is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Within Engineering at Swansea University there are state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.

- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.

- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Careers

Materials engineering underpins almost all engineering applications and employment prospects are excellent.

Employment can be found in a very wide range of sectors, ranging from large-scale materials production through to R&D in highly specialised advanced materials in industries that include aerospace, automotive, manufacturing, sports, and energy generation, as well as consultancy and advanced research.

Materials engineering knowledge is vital in many fields and our graduates go on to successful careers in research and development, product design, production management, marketing, finance, teaching and the media, and entrepreneurship.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce

Airbus

Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production?… Read more

Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production? Would you like to know whether it is possible to produce bio-polymers (plastics) and biofuels from municipal or agricultural waste? If you are thinking of a career in the pharma or biotech industries, the Biochemical Engineering MSc could be the right programme for you.

About this degree

Our MSc programme focuses on the core biochemical engineering principles that enable the translation of advances in the life sciences into real processes or products. Students will develop advanced engineering skills (such as bioprocess design, bioreactor engineering, downstream processing), state-of-the-art life science techniques (such as molecular biology, vaccine development, microfluidics) and essential business and regulatory knowledge (such as management, quality control, commercialisation).

Three distinct pathways are offered tailored to graduate scientists, engineers, or biochemical engineers.

Students undertake modules to the value of 180 credits.

The programme offers three distinct pathways tailored to: graduate scientists ("Engineering Stream"); graduate engineers from other disciplines ("Science Stream"); or graduate biochemical engineers ("Biochemical Engineering Stream"). The programme for all three streams consists of a combination of core and optional taught modules (120 credits) and a research or design project (60 credits).

Core modules

Students are allocated to one of the three available streams based on their academic background (life science/science, other engineering disciplines, biochemical engineering). The programme for each stream is tailored to the background of students in that stream. Core modules may include the following (depending on stream allocation). 

  • Advanced Bioreactor Engineering
  • Dissertation on Bioprocess Research
  • Fundamental Biosciences
  • Integrated Downstream Processing
  • Sustainable Industrial Bioprocesses and Biorefineries

Please go to the "Degree Structure" tab on the departmental website for a full list of core modules.

Optional modules

Optional modules may include the following (details will vary depending on stream allocation).

  • Bioprocess Management – Discovery to Manufacture
  • Bioprocess Microfluidics
  • Bioprocess Systems Engineering
  • Bioprocess Validation and Quality Control
  • Commercialisation and Bioprocess Research
  • Vaccine Bioprocess Development

Please go to the "Degree Structure" tab on the departmental website for a full list of optional modules

Research project/design project

Students allocated to the "Engineering" stream will have to complete a bioprocess design project as part of their MSc dissertation.

Students allocated to the "Science" and "Biochemical Engineering" streams will have to complete a research project as part of their MSc dissertation.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, and individual and group activities. Guest lectures delivered by industrialists provide a professional and social context. Assessment is through unseen written examinations, coursework, individual and group project reports, individual and group oral presentations, and the research or design project.

Further information on modules and degree structure is available on the department website: Biochemical Engineering MSc

Careers

The rapid advancements in biology and the life sciences create a need for highly trained, multidisciplinary graduates possessing technical skills and fundamental understanding of both the biological and engineering aspects relevant to modern industrial bioprocesses. Consequently, UCL biochemical engineers are in high demand, due to their breadth of expertise, numerical ability and problem-solving skills. The first destinations of those who graduate from the Master's programme in biochemical engineering reflect the highly relevant nature of the training delivered.

Approximately three-quarters of our graduates elect either to take up employment in the relevant biotechnology industries or study for a PhD or an EngD, while the remainder follow careers in the management, financial or engineering design sectors.

Recent career destinations for this degree

  • Biopharmaceutical Processing Engineer, Johnson & Johnson
  • Process Engineer, ExxonMobil
  • PhD Biochemical Engineering, UCL
  • Bio-Pharmaceutical Engineer, GSK (GlaxoSmithKline)
  • Research Analyst, CIRS (Centre for Innovation in Regulatory Science)

Employability

The department places great emphasis on its ability to assist its graduates in taking up exciting careers in the sector. UCL alumni, together with the department’s links with industrial groups, provide an excellent source of leads for graduates. Over 1,000 students have graduated from UCL with graduate qualifications in biochemical engineering at Master’s or doctoral levels. Many have gone on to distinguished and senior positions in the international bioindustry. Others have followed independent academic careers in universities around the world.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL was a founding laboratory of the discipline of biochemical engineering, established the first UK department and is the largest international centre for bioprocess teaching and research. Our internationally recognised MSc programme maintains close links with the research activities of the Advanced Centre for Biochemical Engineering which ensures that lecture and case study examples are built around the latest biological discoveries and bioprocessing technologies.

UCL Biochemical Engineering co-ordinates bioprocess research and training collaborations with more than a dozen UCL departments, a similar number of national and international university partners and over 40 international companies. MSc students directly benefit from our close ties with industry through their participation in the Department’s MBI® Training Programme.

The MBI® Training Programme is the largest leading international provider of innovative UCL-accredited short courses in bioprocessing designed primarily for industrialists. Courses are designed and delivered in collaboration with 70 industrial experts to support continued professional and technical development within the industry. Our MSc students have the unique opportunity to sit alongside industrial delegates, to gain deeper insights into the industrial application of taught material and to build a network of contacts to support their future careers. 

Accreditation

Our MSc is accredited by the Institute of Chemical Engineers (IChemE).

The “Science” and “Biochemical Engineering” streams are accredited by the IChemE as meeting the further learning requirements, in full, for registration as a Chartered Engineer (CEng, MIChemE).



Read less
This programme enables graduates and engineers to develop their technical knowledge and skills to meet the future demands of the construction industry. Read more

This programme enables graduates and engineers to develop their technical knowledge and skills to meet the future demands of the construction industry. It will give you the opportunity to develop your professional, analytical and management skills to an advanced level. It provides a broad, subject-specific curriculum with the chance to specialise through a variety of course options and an individual project. Topics for the project cover a variety of industrial applications and are inspired by the consultancy and research activities of academic staff.

Facilities and staff

The programme is run by a team of research-active staff and is supported by world-class experimental facilities, including the largest concrete slab testing rig in Europe, geotechnical and hydraulics laboratories, and one of the largest environmental chambers in the country. This environment will provide you with unique support and enable you to undertake course-related activities that involve analytical and experimental tasks as well as computer simulations.

Ranking

Our staff work hard to support learning and are committed to student satisfaction. In return, we have received very positive feedback:

Professional development

The Department of Engineering Science, part of the Faculty of Engineering and Science, has built strong links with local and national employers. We enjoy the support of an industrial board, a forum that enables us to constantly revise our programmes to reflect the changing needs of industry. Our students leave equipped with the skills and practical experience that employers value. We have invested in the very latest facilities and industry-standard equipment, so you will graduate with hands-on experience of the technology being used in the workplace. Many of our programmes are accredited or recognised by relevant professional bodies, which can widen your career options and increase your opportunities for career progression. Our success has been widely acknowledged.

Outcomes

The aims of the programme are to:

  • Enhance specialist knowledge in selected areas of civil engineering which build upon studies at the undergraduate level
  • Develop a broader insight into aspects of civil engineering design
  • Develop critical insight into broader management issues relating to civil engineering in particular and construction in general.

Full time

Year 1

Students are required to study the following compulsory courses.

Students are required to choose 15 credits from this list of options.

Part time

Year 1

Students are required to study the following compulsory courses.

Year 2

Students are required to study the following compulsory courses.

Students are required to choose 15 credits from this list of options.

Assessment

You will be assessed through

  • Examinations
  • Case studies
  • Assignments
  • Practical work
  • Dissertation.

Professional recognition

This programme is accredited by the Joint Board of Moderators (comprising the Institution of Civil Engineers, the Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and the Institute of Highway Engineers) as fully satisfying the further learning requirements for chartered engineer (CEng) registration. An individual holding an accredited MSc must also hold a CEng-accredited honours degree to have the full exemplifying qualifications for CEng status.

Careers

You may join world-class engineering consultants, contractors and clients with established, accredited training programmes and continuing professional development opportunities worldwide.



Read less
This programme enables students to work effectively in an engineering design role, whether that role concerns the design of products, processes or systems, at an overall or detail level. Read more
This programme enables students to work effectively in an engineering design role, whether that role concerns the design of products, processes or systems, at an overall or detail level. A balance of theory and practice is applied to the solving of real engineering design problems. All projects meet the product design requirements of one of our many co-operating companies.

Core study areas include structural analysis, engineering management and business studies, computer aided engineering, product design and human factors, engineering design methods, sustainable product design, the innovation process and project management, sustainable development: the engineering context and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/engineering-design/

Programme modules

Compulsory Modules:
- Structural Analysis
- Engineering Management and Business Studies
- Computer Aided Engineering
- Product Design and Human Factors
- Engineering Design Methods
- Sustainable Product Design
- The Innovation Process and Project Management
- Sustainable Development: The Engineering Context
- Project

Careers and further study

Engineering design related jobs in product, process and system design environments, providing project management and communication skills and direct technical input. Graduates may also study for an MPhil or PhD with the School.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/engineering-design/

Read less
This MSc will equip you with state-of-the-art knowledge of biomaterials, bioengineering, tissue engineering, medical engineering and related management topics. Read more

This MSc will equip you with state-of-the-art knowledge of biomaterials, bioengineering, tissue engineering, medical engineering and related management topics. Delivered by experts from across UCL and eminent visiting lecturers from industry and medical charities, this interdisciplinary programme attracts physical sciences, engineering and life sciences graduates, including those with qualifications in medicine.

About this degree

You will develop an advanced knowledge of topics in biomaterials and tissue engineering alongside an awareness of the context in which healthcare engineering operates, in terms of safety, environmental, social and economic aspects. You will also gain a wide range of intellectual, practical and transferable skills necessary for a career in this field.

Students undertake modules to the value of 180 credits.

The programme consists of eight core modules (120 credits) and a research dissertation (60 credits).

Core modules

  • Biomaterials
  • Tissue Engineering
  • Biofluids and Medical Devices
  • Biomechanics and Biostructures
  • Applications of Biomedical Engineering
  • Bioengineering
  • Medical Imaging (ionising and non-ionising)
  • Evaluation and Planning of Business Opportunities

Optional modules

There are no optional modules for this programme.

Dissertation/report

Culminating in a substantial dissertation and oral presentation, the research project focuses your research interests and develops high-level presentation, critical thinking and problem-solving skills. The project can be based in any relevant UCL department.

Teaching and learning

This dynamic programme is delivered through lectures, tutorials, individual and group projects, and practical laboratory work. Assessment is through written, oral and viva voce examinations, the dissertation and coursework (including the evaluation of laboratory reports, technical and project reports, problem-solving exercises, assessment of computational and modelling skills, and oral presentations).

Further information on modules and degree structure is available on the department website: Biomaterials and Tissue Engineering MSc

Careers

There are many career opportunities and the programme is suitable for students wishing to become academics, researchers or professionals and for those pursuing senior management careers, in manufacturing or healthcare engineering

Recent career destinations for this degree

  • Dentist, Dental Life
  • Good Manufacturing Process Scientist, RMS (Regenerative Medical System)
  • Postgraduate Research Assistant, University of Cambridge
  • PhD in Biomaterials and Tissue Engineering, UCL
  • PhD in Surgery, UCL

Employability

Delivered by leading researchers from across UCL, as well as industrial experts, you will have plenty of opportunities to network and keep abreast of emerging ideas in biomaterials and tissue engineering. Collaborating with companies and bodies such as the NHS, JRI Orthopaedics and Orthopaedics Research (UK) is key to our success and you will be encouraged to develop networks through the programme itself and through the department’s careers programme which includes employer-led events and individual coaching. We equip our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

There are internationally renowned research groups in biomaterials and bioengineering in UCL Engineering and you will have access to a state-of-the-art research portfolio.

In recent years, UCL Mechanical Engineering has seen unprecedented activity in refurbishing and re-equipping our laboratories. For example, six new biomaterials and bioengineering laboratories have been set up with funding from the Royal Society and Wolfson Foundation. A new biomaterials processing and forming laboratory is also available in the Materials Hub in the Engineering Building.

The programme is also delivered by leading researchers across UCL's Division of Medicine, Eastman Dental Institute, the Institute of Biomedical Engineering and visiting experts from other UK organisations.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Mechanical Engineering

90%: Aeronautical, Mechanical, Chemical and Manufacturing Engineering subjects; 95%: General Engineering subjects rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Mechanical Engineering MSc is designed to offer an advanced level of study in specific aspects of mechanical engineering that are in demand from industry. Read more

The Mechanical Engineering MSc is designed to offer an advanced level of study in specific aspects of mechanical engineering that are in demand from industry. The degree comprises study in analysis and design of power machinery systems, engineering structures, vibration, control and the use of computers in advanced engineering analysis.

About this degree

You will develop an advanced knowledge of mechanical engineering and associated disciplines, alongside an awareness of the context in which engineering operates, in terms of safety, environmental, social and economic aspects. Alongside this you will gain a range of intellectual, practical and transferable skills necessary to develop careers in this field.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), optional modules (15 credits), and a research project (75 credits).

Core modules

  • Advanced Computer Applications in Engineering
  • Group Project
  • Materials and Fatigue
  • Vibrations, Acoustics and Control
  • Project Management
  • Power Transmission and Auxiliary Machinery Systems

Optional modules

One of the following subject to availability:

  • Applied Thermodynamics and Turbomachinery
  • Heat Transfer and Heat Systems
  • New and Renewable Energy Systems

Dissertation/report

Culminating in a substantial dissertation, the research project, which often has industry input, focuses your research interests and develops high-level presentation and critical thinking skills.

Teaching and learning

This dynamic programme is delivered through a combination of lectures, seminars, tutorials and example classes all of which frequently draw upon real-life industrial case studies. Each module is assessed by coursework submission alone or a combination of examination and coursework. Some include an oral presentation of project or assignment work.

Further information on modules and degree structure is available on the department website: Mechanical Engineering MSc

Careers

Engineering graduates with good analytical abilities are in high demand and our graduates have little difficulty gaining employment across many industries. The programme specifically aims to equip students with skills in analysis and design such that they can be employed as professional engineers in virtually any sector of the mechanical engineering industry.

Recent career destinations for this degree

  • Graduate Mechanical Engineer, Babcock
  • Graduate Trainee, Jaguar Land Rover
  • Petroleum Engineer, Total
  • Facility Engineer, Nigerian Agip Oil Company (NAOC)
  • PhD in Mechanical Engineering, UCL

Employability

Delivered by leading researchers from across UCL, you will definitely have plenty of opportunities to network and keep abreast of emerging ideas. Collaborating with companies and bodies such as the Ministry of Defence and industry leaders such as BAE Systems and Shell are key to our success and we will encourage you to develop networks through the programme itself and via the department’s careers programme which includes employer-led events and individual coaching. We equip our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Mechanical Engineering scored highly in the UK's most recent Research Excellence Framework survey with research in such diverse areas as Formula 1, biomedical engineering and naval architecture. The department is located in the centre of one of the most dynamic cities in the world.

The department has an international reputation for the excellence of its research which is funded by numerous bodies including: the Royal Society, the Leverhulme Trust, UK Ministry of Defence, BAE Systems, Cosworth Technology, Shell, BP, Lloyds Register Educational Trust, and many others.

The Mechanical Engineering MSc has been accredited by the Institute of Mechanical Engineers (IMechE) and the Institute of Marine Engineering, Science & Technology (IMarEST) as meeting the further learning requirements, in full, for registration as a Chartered Engineer for a period of five years, from the 2017 student cohort intake.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Mechanical Engineering

90%: Aeronautical, Mechanical, Chemical and Manufacturing Engineering subjects; 95%: General Engineering subjects rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
This programme pathway is designed for students with an interest in the engineering aspects of technology that are applied in modern medicine. Read more

This programme pathway is designed for students with an interest in the engineering aspects of technology that are applied in modern medicine. Students gain an understanding of bioengineering principles and practices that are used in hospitals, industries and research laboratories through lectures, problem-solving sessions, a research project and collaborative work.

About this degree

Students study in detail the engineering and physics principles that underpin modern medicine, and learn to apply their knowledge to established and emerging technologies in medical imaging and patient monitoring. The programme covers the engineering applications across the diagnosis and measurement of the human body and its physiology, as well as the electronic and computational skills needed to apply this theory in practice.

Students undertake modules to the value of 180 credits.

The programme consists of seven core modules (105 credits), one optional module (15 credits), and a research project (60 credits).

A Postgraduate Diploma (120 credits) is offered.

A Postgraduate Certificate (60 credits) is offered.

Core modules

  • Ionising Radiation Physics: Interactions and Dosimetry
  • Imaging with Ionising Radiation
  • MRI and Biomedical Optics
  • Ultrasound in Medicine
  • Medical Electronics and Control
  • Clinical Practice
  • Medical Device Enterprise Scenario

Optional modules

Students choose one of the following:

  • Applications of Biomedical Engineering
  • Materials and Engineering for Orthopaedic Devices
  • Computing in Medicine
  • Programming Foundations for Medical Image Analysis

Dissertation/report

All MSc students undertake an independent research project within the broad area of physics and engineering in medicine which culminates in a written report of 10,000 words, a poster and an oral examination.

Teaching and learning

The programme is delivered through a combination of lectures, demonstrations, practicals, assignments and a research project. Lecturers are drawn from UCL and from London teaching hospitals including UCLH, St. Bartholomew's, and the Royal Free Hospital. Assessment is through supervised examination, coursework, the dissertation and an oral examination.

Further information on modules and degree structure is available on the department website: Physics and Engineering in Medicine: Biomedical Engineering and Medical Imaging MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

Graduates from the Biomedical Engineering and Medical Imaging stream of the MSc programme have obtained employment with a wide range of employers in health care, industry and academia sectors.

Employability

Postgraduate study within the department offers the chance to develop important skills and acquire new knowledge through involvement with a team of scientists or engineers working in a world-leading research group. Graduates complete their study having gained new scientific or engineering skills applied to solving problems at the forefront of human endeavour. Skills associated with project management, effective communication and teamwork are also refined in this high-quality working environment.

Why study this degree at UCL?

The spectrum of medical physics activities undertaken in UCL Medical Physics & Biomedical Engineering is probably the broadest of any in the United Kingdom. The department is widely acknowledged as an internationally leading centre of excellence and students receive comprehensive training in the latest methodologies and technologies from leaders in the field.

The department operates alongside the NHS department which provides the medical physics and clinical engineering services for the UCL Hospitals Trust, as well as undertaking industrial contract research and technology transfer.

Students have access to a wide range of workshop, laboratory, teaching and clinical facilities in the department and associated hospitals. A large range of scientific equipment is available for research involving nuclear magnetic resonance, optics, acoustics, X-rays, radiation dosimetry, and implant development, as well as new biomedical engineering facilities at the Royal Free Hospital and Royal National Orthopaedic Hospital in Stanmore.



Read less
This MSc aims to equip students with the skills of analysis and design necessary for employment as professional civil engineers, and give them a solid academic background for becoming chartered engineers. Read more

This MSc aims to equip students with the skills of analysis and design necessary for employment as professional civil engineers, and give them a solid academic background for becoming chartered engineers. The programme combines traditional lectures with group projects and an individual research project in the student's chosen specialist field. The Civil Engineering MSc at UCL now offers six additional routes.

About this degree

Students develop advanced knowledge of civil engineering and associated engineering and scientific disciplines (structure dynamics, sustainable building design, transport, fluids, geotechnics, water and drainage, environmental and coastal engineering, planning and construction). They gain awareness of the context in which engineering operates, in terms of design, construction and the environment, alongside transferable skills, which leads to careers in industry and research.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits), and a research project (60 credits).

Core modules

  • Advanced Soil Mechanics
  • Advanced Structures
  • Roads and Underground Infrastructure
  • Project Management (Professional Development Module)

Optional modules

Students choose four from the following:

  • Advance Research Writing
  • Advanced Civil Engineering Materials
  • Advanced Soil Mechanics
  • Advanced Structural Analysis
  • Applied Building Information Modelling
  • Building Engineering Physics
  • Data analysis
  • Design and Analysis of Structural Systems
  • Engineering & International Development
  • Engineering Study of Rail Systems and Infrastructure
  • Environmental Systems
  • Financial Aspects of Project Engineering and Contracting
  • Finite Element Modelling and Numerical Methods
  • GIS Principles & Technology
  • Infrastructure business case
  • Introduction to Seismic Design of Structures
  • Natural and Environmental Disasters
  • Offshore and Coastal Engineering
  • Planning, Policies & Organization of the Railways within the UK
  • Principles & Practices of Surveying

Please note: combinations of different modules will be determined by timetable constraints.

Dissertation/report

All students undertake an independent research project, which culminates in a dissertation of approximately 12,000 words.

Teaching and learning

The programme is delivered through lectures, tutorials, seminars, laboratory classes and field trips. The design project includes collective and individual studio work, while the research project includes laboratory, computational or fieldwork depending on the nature of the project. Assessment is through examinations, coursework, project reports and the research project.

Further information on modules and degree structure is available on the department website: Civil Engineering MSc

Careers

There are excellent employment prospects for our graduates. Civil Engineering graduates are readily employed by consultancies, construction companies and government departments.

Why study this degree at UCL?

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting multidisciplinary department with a tradition of excellence in teaching and research, situated within the heart of London.

This MSc reflects the broad range of expertise available within the department and its strong links with the engineering industry and places emphasis on developing skills within a teamwork environment. The programme provides a clear route to a professional career in civil engineering.

In addition, students wishing to combine the general MSc in Civil Engineering can now apply to one of six specialist pathways in related disciplines (Seismic Design, Environmental Systems, GIS, Surveying, Integrated Design and Infrastructure Planning).

Accreditation

This degree is accredited, as a Technical MSc, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. See http://www.jbm.org.uk for further information.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less

Show 10 15 30 per page



Cookie Policy    X