• Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Oxford Featured Masters Courses
Middlesex University Featured Masters Courses
University of Reading Featured Masters Courses
Coventry University Featured Masters Courses
Imperial College London Featured Masters Courses
Coventry University Featured Masters Courses
"value" AND "engineering"…×
0 miles

Masters Degrees (Value Engineering)

We have 560 Masters Degrees (Value Engineering)

  • "value" AND "engineering" ×
  • clear all
Showing 1 to 15 of 560
Order by 
The global shortage of qualified civil engineers includes specialists in water engineering and this MSc programme helps redress this imbalance by providing graduates with an advanced knowledge and skill base to equip them for senior industry roles. Read more

About the course

The global shortage of qualified civil engineers includes specialists in water engineering and this MSc programme helps redress this imbalance by providing graduates with an advanced knowledge and skill base to equip them for senior industry roles.

Brunel’s MSc in Water Engineering is unique in providing specialist knowledge on the critical sub-topics of water and wastewater management and engineering, desalination systems, building water services engineering, industrial waste water management, and water in health care.

The programme demonstrates the links between theory and practice by including input from our industrial partners and through site visits. This is a key aspect for establishing a competitive and high added value course that provides adequate links with industry.

Features of the course include:

Students’ skills in gathering and understanding complex information from a variety of sources (including engineering, scientific and socio-economic information) will be developed in an advanced research methods module. 

Issues relating to risk and health and safety will be introduced in the research methods module and built on in specialist modules. 

Generic modules in financial and project management will underpin specialist modules focusing on water engineering topics.

Real problem-solving examples – starting from basic principles, to the identified problem, the solution, the implementation process and was implemented and the end result. 

Real case studies – demonstrating how environmental and economic sustainability is considered within civil engineering, particularly in water resources management.

Aims

Problems associated with water resources, access, distribution and quality are amongst the most important global issues in this century. Water quality and scarcity issues are being exacerbated by rising populations, economic growth and climate change*.

Brunel's programme in Water Engineering aims to develop world class and leading edge experts on water sustainability who are able to tackle the industry’s complex challenges at a senior level. During the programme you will also learn about the development and application of models that estimate the carbon and water footprint within the energy and food sector.

The MSc is delivered by experienced industry professionals who bring significant practical experience to the course – and the University’s complete suite of engineering facilities and world-class research experience are set up for development and engineering of advanced systems, testing a variety of processes, designs and software tools.

*Recent figures indicate that 1.1 billion people worldwide do not have access to clean drinking water, while 2.6 billion do not have adequate sanitation (source: WHO/UNICEF 2005). 

Course Content

The primary aim of this programme is to create master’s degree graduates with qualities and transferable skills for demanding employment in the water engineering sector. Graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Specific aims are as follows:

- To provide education at postgraduate level in civil engineering. 
- To develop the versatility and depth to deal with new, complex and unusual challenges across a range of water engineering issues, drawing on an understanding of all aspects of water engineering principles. 
- To develop imagination, initiative and creativity to enable graduates to follow a successful engineering career with national and international companies and organisations. 
- To provide a pathway that will prepare graduates for successful careers including, where appropriate, progression to Chartered Engineer status.

The programme will provide opportunities for students to develop and demonstrate knowledge and understanding, qualities, skills and other attributes in the following areas:

Knowledge and understanding of:

- The principles of water engineering, including fluid mechanics, hydrology, and sustainable design. 
- Specialist areas that impact on the successful application of water engineering knowledge projects, e.g. sustainable construction management, financial management and risk analysis. 
- The interplay between engineering and sustainability in complex, real-world situations.

At the cognitive level students will be able to:

- Select, use and evaluate appropriate investigative techniques.
- Assemble and critically analyse relevant primary and secondary data.
- Recognise and assess the problems and critically evaluate solutions to challenges in managing water engineering projects.
- Evaluate the environmental and financial sustainability of current and potential civil engineering activities.

Personal and transferable skills that students develop will allow them to:

- Define and organise a substantial advanced investigation. 
- Select and employ appropriate advanced research methods. 
- Organise technical information into a concise, coherent document.
- Effectively employ a variety of communication styles aimed at different audiences. 
- Plan, manage, evaluate and orally-presented personal projects. 
- Work as part of, and lead, a team.

Typical Modules

Each taught module will count for 15 credits, approximating to 150 learning hours. The Master's programme can be taken full time, over 12 months. The first eight months of the full time course will eight taught modules. For the final four months, students will complete a dissertation counting for 60 credits. Modules cover:

Sustainable Project Management
GIS and Data Analysis
Water Infrastructure Engineering
Risk and Financial Management
Hydrology & Hydraulics
Water Treatment Engineering
Water Process Engineering
Research Methods
Civil Engineering Dissertation

Teaching

Our philosophy is to underpin theoretical aspects of the subject with hands-on experience in applying water engineering techniques. Although you may move on to project management and supervision roles, we feel it important that your knowledge is firmly based on an understanding of how things are done. To this end, industrial partners will provide guest lectures on specialist topics.

In addition to teaching, water engineering staff at Brunel are active researchers. This keeps us at the cutting edge of developments and, we hope, allows us to pass on our enthusiasm for the subject.

How many hours of study are involved?

Contact between students and academic staff is relatively high at around 20 hours per week to assist you in adjusting to university life. As the course progresses the number of contact hours is steadily reduced as you undertake more project-based work.

How will I be taught?

Lectures:
These provide a broad overview of the main concepts and ideas you need to understand and give you a framework on which to expand your knowledge by private study.
Laboratories:
Practicals are generally two- or three-hour sessions in which you can practise your observational and analytical skills, and develop a deeper understanding of theoretical concepts.
Design Studios:
In a studio you will work on individual and group projects with guidance from members of staff. You may be required to produce a design or develop a solution to an engineering problem. These sessions allow you to develop your intellectual ability and practice your teamwork skills.
Site visits:
Learning from real-world examples in an important part of the course. You will visit sites featuring a range of water engineering approaches and asked to evaluate what you see.
One-to-one:
On registration for the course you will be allocated a personal tutor who will be available to provide academic and pastoral support during your time at university. You will get one-to-one supervision on all project work.

Assessment

Several methods of assessment are employed on the course. There are written examinations and coursework. You will undertake projects, assignments, essays, laboratory work and short tests.

Project work is commonplace and is usually completed in groups to imitate the everyday experience in an engineering firm, where specialists must pool their talents to design a solution to a problem.

In this situation you can develop your management and leadership skills and ensure that all members of the group deliver their best. Group members share the mark gained, so it is up to each individual to get the most out of everyone else.

Special Features

Extensive facilities
Students can make the most of laboratory facilities which are extensive, modern and well equipped. We have recently made a major investment in our Joseph Bazalgette Laboratories which includes hydraulic testing laboratory equipment and facilities such as our open channel flow flumes.

Personal tutors
Although we recruit a large number of highly qualified students to our undergraduate, postgraduate and research degrees each year, we don’t forget that you are an individual. From the beginning of your time here, you are allocated a personal tutor who will guide you through academic and pastoral issues.

World-class research
The College is 'research intensive' – most of our academics are actively involved in cutting-edge research. Much of this research is undertaken with collaborators outside the University, including construction companies, water utilities, and other leading industrial firms. We work with universities in China, Poland, Egypt, Turkey, Italy, Denmark and Japan. This research is fed directly into our courses, providing a challenging investigative culture and ensuring that you are exposed to up-to-date and relevant material throughout your time at Brunel.

Strong industry links
We have excellent links with business and industry in the UK and overseas. This means:
Your degree is designed to meet the needs of industry and the marketplace.
The latest developments in the commercial world feed into your course.
You have greater choice and quality of professional placements.
We have more contacts to help you find a job when you graduate.

Visting Professors 
The Royal Academy of Engineering - UK’s national academy for engineering has appointed senior industrial engineers as visiting professors at Brunel University London.
The Visting Professors Scheme provides financial support for experienced industrial engineers to deliver face-to-face teaching and mentoring at a host of institutions. Our engineering undergraduates will benefit from an enhanced understanding of the role of engineering and the way it is practised, along with its challenges and demands. 

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course has been designed in close consultation with the industry and is accredited as a designated 'technical' MSc degree by the Join Board of Moderators (JBM). The JBM is made up of Institution of Highways and Transport and the Institution of Highway Engineeres respectively.

1. This means this course provides Further Learning for a Chartered Engineer who holds a CEng accredited first degree (full JBM listing of accredited degrees).
2. As a designated ‘technical’ MSc, it will also allow suitable holders of an IEng accredited first degree to meet the educational base for a Chartered Engineer.

Read less
This programme has been designed to meet the challenges of the rapidly changing global market by providing the skills and abilities to contribute to the availability of well-designed products, process and systems. Read more
This programme has been designed to meet the challenges of the rapidly changing global market by providing the skills and abilities to contribute to the availability of well-designed products, process and systems.

As a broad-based Mechanical Engineering degree this programme provides a wide variety of career options in the engineering sector.

Core study areas include experimental mechanics, simulation of advanced materials and processes structural analysis, computer aided engineering, engineering design methods, sustainable development: the engineering context, the innovation process and project management, thermofluids and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/mechanical-engineering/

Programme modules

- Experimental Mechanics
This module introduces the following elements: experimental techniques for analysis and characterisation of various engineering materials and full-field, non-contact optical methods for deformation and strain measurements. Students will learn to identify the most appropriate experimental techniques for evaluating material response in a specific setting and for different types of materials.

- Simulation of Advanced Materials and Processes
The objective of this module is to introduce students to the concepts in numerical simulation of advanced materials and processes. To enable students to gain theoretical and practical experience in simulating mechanical behaviour of advanced materials and modelling processes related to these materials using finite element modelling techniques.

- Structural Analysis
Students will gain an understanding of modern concepts of structural analysis. They will gain practical experience in analyses of structures using finite-element modelling and understand the need for structural analysis in design.

- Computer Aided Engineering
Students will learn how to evaluate, choose and implement CAE systems. Students will learn to select and apply appropriate computer based methods and systems for modelling engineering products; analysing engineering problems; and assisting in the product design process.

- Engineering Design Methods
The aims of this module are to provide students with a working understanding of some of the main methods which may be employed in the design of products and systems. Students will learn to identify appropriate methods and techniques for use at different times and situations within a project.

- Sustainable Development: The Engineering Context
The objective of this module are to provide students with an understanding of the principles and practices of sustainable development and to provide them with an understanding of how engineers can help manufacturing businesses develop into more sustainable enterprises.

- The Innovation Process and Project Management
This module allows students to gain a clear overview of the innovation process and an understanding of the essential elements within it. Students will learn strategies for planning and carrying out innovative projects in any field.

- Thermofluids
In this module students study the fundamentals of combustion processes and understand key aspects relating to performance and emissions. Students develop knowledge and skills required by engineers entering industries involved in the design and use of combustion equipment.

- Project
In addition to the taught modules, all students undertake an individual major project. Part-time students normally undertake a major project that is based on the needs of their employing company.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling and independent research.

The programme consists of eight, week-long, taught lecture modules plus project work. Each taught module is self-contained and covers a complete target. This programme is available in both full-time and part-time forms. Full-time students commence their studies on the first Monday in October for a period of 12 months. Part-time students may commence their registration at any time between October and the following March, and take 3 years (typical) to complete the programme.

On completion of this programme, students should be able to:
- Plan and monitor multi-disciplinary projects;
- appreciate the central role of design within engineering;
- demonstrate competence in using computer based engineering techniques;
- analyse and understand complex engineering problems; and
- use team working skills and communicate effectively at an advanced technical level.

Facilities

As a student within the School of Mechanical and Manufacturing Engineering you will have access to a range of state-of-the-art equipment. Our computer labs are open 24/7 and use some of the latest industry standard software including STAR-CCM and CAD.

We have high-tech laboratories devoted to:
- Dynamics and control
- Electronics
- Fluid mechanics
- Materials
- Mechatronics
- Metrology
- Optical engineering
- Structural integrity
- Thermodynamics

Careers and further study

The programme will allow students to acquire the technical and transferable skills required to succeed in a career in industry or academic research. Graduates may also study for an MPhil or PhD with the School.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a country outside the European Union. These scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/mechanical-engineering/

Read less
Advance your career with a master’s degree in engineering. Our convenient evening classes provide the flexibility your schedule demands. Read more
Advance your career with a master’s degree in engineering. Our convenient evening classes provide the flexibility your schedule demands.

MSOE’s Master of Science in Engineering (MSE) program is an interdisciplinary engineering program with primary emphases in the areas of electrical engineering (EE) and mechanical engineering (ME). A key component of the MSE program is the breadth of engineering background that students gain in areas of systems engineering, EE and ME. Additionally, each student is offered some degree of concentration through the selection of an engineering option and electives.

This interdisciplinary approach is a distinguishing feature of MSOE’s program and students are encouraged to take engineering courses both within and outside of their discipline. Courses cover topics like simulation and modeling, operations research, quality engineering, advanced engineering mathematics, finite element analysis, advanced mechanics, fluid power systems, data communications, control systems and advanced electronic systems.

The MSE program’s major emphasis is on the further development of engineering knowledge and skills in an effort to enhance the productivity of the practicing engineer. The program provides a flexible platform for students to take either an integrated approach or a specialized approach to meet the demands of their career. The course work emphasizes engineering concepts and theory through presentation, and faculty bring extensive industry experience to the classroom.

A nine-credit capstone engineering project option is included as part of the program. A non-project option is also available, which includes two specialty courses and a three-credit engineering paper in the specialty.

Curriculum Format

All classes are offered in the evening, providing convenient scheduling. The program is designed for individuals who hold bachelor degrees in engineering, engineering technology or other closely related areas. Each student works with the program director to plan a course of study tailored to his or her needs. Typically, a total of 45 graduate credits is required to complete the program, but degree requirements may vary depending upon the type of bachelor’s degree.

MSE Program Options

Each student selects either a capstone engineering project or the non-project option.

The engineering project option can either draw from the multiple disciplines studied within the program or focus more on technical areas within the student’s chosen engineering discipline. After consulting with a faculty advisor, each student develops an engineering project proposal and presents it for approval before a committee.

The non-project option requires a two-course sequence in 700- or 800-level EE/ME specialty courses and a final course (GE-791) in which a specialty paper is written. Each student completes an analysis/design of a certain aspect of the chosen specialty and presents it both orally and in writing.

100% Online delivery

Geography is not a constraint for students interested in completing the MSE at a distance. In addition to the face-to-face class format, there is also the option to take courses via 100% online distance delivery. The rich faculty, student interaction that is the hallmark of the MSE is replicated in online classes creating dynamic and flexible learning environments. Students can choose which format best fits their lives, while advancing their learning and professional skills.

Objectives and Outcomes

Program Educational Objectives

- Graduates create new value in a process or product at their workplace through application of advanced engineering skills and knowledge
- Graduates advance in their careers as a direct result of completing the degree

Student Outcomes

Graduates of the MSE program will:
- be able to utilize advanced mathematics, with a primary focus on numerical methods and models, to solve engineering problems involving multivariate differential systems
- have demonstrated an ability to apply advanced engineering principles to complex problems in his or her chosen specialty
- have demonstrated an ability to integrate and analyze information in a chosen specialty in the form of scholarly work, either as an independent specialty paper or as an independent engineering project
- have the ability to effectively present and communicate technical concepts, both orally and in writing

Read less
IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN. - Skills and know-how in the latest technologies in electrical engineering. Read more
IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN:

- Skills and know-how in the latest technologies in electrical engineering
- Practical guidance from electrical engineering experts in the field
- Knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college
- Credibility as the local electrical engineering expert in your firm
- Networking contacts in the industry
- Improved career prospects and income
- An Advanced Diploma of Applied Electrical Engineering (Electrical Systems)

Next intake starts October 09, 2017. Registrations are now open.

Payment is not required until 2 to 4 weeks before the start of the program.

The EIT Advanced Diploma of Applied Electrical Engineering (Electrical Systems) is recognized worldwide and has been endorsed by the International Society of Automation (ISA). Please ask us about specific information on accreditation for your location.

OVERVIEW

Join the next generation of electrical engineers and technicians and embrace a well paid, intensive yet enjoyable career by embarking on this comprehensive course on electrical engineering. It is presented in a practical and useful manner - all theory covered is tied to a practical outcome. Leading electrical engineers who are highly experienced engineers from industry, having 'worked in the trenches' in the various electrical engineering areas present the course over the web in a distance learning format using our acclaimed live e-learning techniques.

The course starts with an overview of the basic principles of electrical engineering and then goes on to discuss the essential topics in depth. With a total of 16 modules, everything that is of practical value from electrical distribution concepts to the equipment used, safety at work to power quality are all looked at in detail. Each module contains practical content so that the students can practice what they learn including the basic elements of designing a system and troubleshooting.

Most academic courses deal with engineering theory in detail but fall short when it comes to giving practical hints on what a technician is expected to know for a job in the field. In this course, the practical aspects receive emphasis so that when you go out into the field you will have the feeling that ‘you have seen it all.

*JOB OUTCOMES, INTERNATIONAL RECOGNITION AND PROFESSIONAL MEMBERSHIP:

A range of global opportunities awaits graduates of the Advanced Diploma of Applied Electrical Engineering (Electrical Systems). Pending full accreditation you may become a full member of Engineers Australia and your qualification will be recognized by Engineers Australia and (through the Dublin Accord) by leading professional associations and societies in Australia, Canada, Ireland, Korea, New Zealand, South Africa, United Kingdom and the United States. The Dublin Accord is an agreement for the international recognition of Engineering Technician qualifications.

For example, current enrolled students can apply for free student membership of Engineers Australia. After graduation, you can apply for membership to become an Engineering Associate, while graduates interested in UK recognition can apply for membership of the Institution of Engineering and Technology (IET) as a Technician Member of the Institution of Engineering and Technology.

This professional recognition greatly improves the global mobility of graduates, and offers you the opportunity of a truly international career.

You will be qualified to find employment as an Engineering Associate in public and private industry including transportation, manufacturing, process, construction, resource, energy and utilities industries. Engineering Associates often work in support of professional engineers or engineering technologists in a team environment. If you prefer to work in the field you may choose to find employment as a site supervisor, senior technician, engineering assistant, or similar.

WHO SHOULD COMPLETE THIS PROGRAM?

- Electrical Engineers and Technicians
- Project Engineers
- Design Engineers
- Instrumentation and Design Engineers
- Electrical Technicians
- Field Technicians
- Electricians
- Plant Operators
- Maintenance Engineers and Supervisors
- Energy Management Consultants
- Automation and Process Engineers
- Design Engineers
- Project Managers
- Instrument Fitters and Instrumentation Engineers
- Consulting Engineers
- Production Managers
- Chemical and Mechanical Engineers
- Instrument and Process Control Technicians

In fact, anyone who wants to gain solid knowledge of the key elements of electrical engineering – to improve work skills and to create further job prospects. Even those of you who are highly experienced in electrical engineering may find it useful to attend some of the topics to gain key, up to date perspectives on electrical engineering.

PROGRAM STRUCTURE

The course is composed of 16 modules. These cover the following seven main threads to provide you with maximum practical coverage in the field of electrical engineering

- Electrical technology fundamentals
- Distribution equipment and protection
- Rotating machinery and transformers
- Power electronics
- Energy efficiency
- Earthing and safety regulations
- Operation and maintenance of electrical equipment

The 16 modules will be completed in the following order:

- Electrical Circuits
- Basic Electrical Engineering
- Fundamentals of Professional Engineering
- Electrical Drawings
- Electrical Power Distribution
- Transformers, Circuit Breakers and Switchgear
- Electrical Machines
- Power Cables and Accessories
- Earthing and Lightning / Surge Protection
- Power System Protection
- Electrical Safety and Wiring Regulations
- Testing, Troubleshooting and Maintenance of Electrical Equipment
- Energy Efficiency and Energy Use
- Power Quality
- Power Electronics and Variable Speed Drives
- DC and AC High Reliability Power Supplies

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located all around the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. We aim to give you a rapid response regarding course fees that are relevant to your individual circumstances.

We understand that cost is a major consideration before a student begins to study. For a rapid reply to your query regarding course fees and payment options, please contact a Course Advisor in your region via the below button and we will respond within two (2) business days.

Read less
Your programme of study. This is a highly specialised area of oil and gas engineering in which you learn the discipline and wider areas that feed into it. Read more

Your programme of study

This is a highly specialised area of oil and gas engineering in which you learn the discipline and wider areas that feed into it. You are taught by industry respected researchers and academics who have followed the oil and gas industry since the 1970s and its inception in Aberdeen city. Aberdeen is at the heart of the oil and gas industry in Europe and is known worldwide as a major energy hub.

Reservoir Engineering is a highly specialised but essential part of upstream oil and gas extraction process. It requires detailed knowledge of geology, performance and management of reserves. Often these reserves are deep in oceans or land and in very difficult and hard to reach locations with complex geology  so it is essential to have a high degree of skills and knowledge to understand how best these reserves can be tapped into in critically sensitive environments.

There is a recognised, global shortage of practitioners in the area of reservoir engineering which is addressed by the programme. You study a wide spectrum of reservoir phenomena, and to evaluate them in the context of petroleum engineering and cognate areas of petroleum Geoscience, within the economic context of the hydrocarbon industry. You have employment options worldwide in the oil and gas industry with plenty of options to travel to growth markets and untapped areas of reserves within multinationals and consultancies. 

Courses listed for the programme

Semester 1

  • Fundamentals of Petroleum Geo-science
  • PetroPhysics, Core Analysis, and Formation Evaluation
  • Reservoir Engineering
  • Introduction to Energy Economics

Semester 2

  • Reservoir Sedimentology and Structure
  • Group Project and Research Skills

Semester 3

  • Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You study with world renowned researchers at University of Aberdeen which has had a close connection with the energy industry based in the city since the 1970s
  • You take part in a field trip to experience application of theory and practical understanding of elements to the programme
  • You learn a wide range of skills applicable to this programme but also employable in their own right such as Energy Economics, Petrophysics, Core Analysis and Formation Evaluation. This adds value to your specialism in reservoir engineering.

Where you study

  • University of Aberdeen
  • 12 Months Full Time
  • September start

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs 

Other engineering disciplines you may be interested in:



Read less
This programme enables graduates and engineers to develop their technical knowledge and skills to meet the future demands of the construction industry. Read more
This programme enables graduates and engineers to develop their technical knowledge and skills to meet the future demands of the construction industry. It will give you the opportunity to develop your professional, analytical and management skills to an advanced level. It provides a broad, subject-specific curriculum with the chance to specialise through a variety of course options and an individual project. Topics for the project cover a variety of industrial applications and are inspired by the consultancy and research activities of academic staff. The programme is run by a team of research-active staff and is supported by world-class experimental facilities, including the largest concrete slab testing rig in Europe, geotechnical and hydraulics laboratories, and one of the largest environmental chambers in the country. This environment will provide you with unique support and enable you to undertake course-related activities that involve analytical and experimental tasks as well as computer simulations. Our staff work hard to support learning and are committed to student satisfaction. In return, we have received very positive feedback: No.1 in the UK for student satisfaction with the quality of teaching for civil engineering from the Complete University Guide 2016.

The Department of Engineering Science, part of the Faculty of Engineering & Science, has built strong links with local and national employers. We enjoy the support of an industrial board, a forum which enables us to constantly revise our programmes to reflect the changing needs of industry. Our students leave equipped with the skills and practical experience that employers value. We have invested in the very latest facilities and industry-standard equipment, so you will graduate with hands-on experience of the technology being used in the workplace. Many of our programmes are accredited or recognised by relevant professional bodies, which can widen your career options and increase your opportunities for career progression. Our success has been widely acknowledged.

The aims of the programme are:

- To enhance specialist knowledge in selected areas of civil engineering which build upon studies at the undergraduate level

- To develop a broader insight into aspects of civil engineering design

- To develop critical insight into broader management issues relating to civil engineering in particular and construction in general.

Visit the website http://www2.gre.ac.uk/study/courses/pg/engciv/civeng

Engineering - Civil

Our programmes offer graduates and engineers an opportunity to update technical knowledge and enhance skills to serve the future demands of the construction industry, to participate in professional development and to achieve career progression. The School of Engineering seeks to make the postgraduate experience both challenging and rewarding, and, by working closely with industry, strive to uphold our tradition of the high level of industrial relevance of our programmes.

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

Computer Modelling of Civil Engineering Problems (15 credits)
Highway Engineering (15 credits)
Principles of Management for Civil Engineering. (15 credits)
Analysis and Management of Risk in Civil Engineering (15 credits)
Individual Research Project for Civil and Environmental Engineering (60 credits)
Research, Planning and Communication (15 credits)
Dynamics of Structures (15 credits)

Students are required to choose 15 credits from this list of options.

Advanced Materials Engineering for Construction (15 credits)
Water and Wastewater Engineering (15 credits)

Students are required to choose 15 credits from this list of options.

Analysis and Design for Seismic Action (15 credits)
Advanced Geotechnical Engineering (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Computer Modelling of Civil Engineering Problems (15 credits)
Highway Engineering (15 credits)
Analysis and Management of Risk in Civil Engineering (15 credits)
Dynamics of Structures (15 credits)

- Year 2:
Students are required to study the following compulsory courses.

Principles of Management for Civil Engineering. (15 credits)
Individual Research Project for Civil and Environmental Engineering (60 credits)
Research, Planning and Communication (15 credits)

Students are required to choose 15 credits from this list of options.

Advanced Materials Engineering for Construction (15 credits)
Water and Wastewater Engineering (15 credits)

Students are required to choose 15 credits from this list of options.

Analysis and Design for Seismic Action (15 credits)
Advanced Geotechnical Engineering (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Assessment

You will be assessed through examinations, case studies, assignments, practical work and a dissertation.

Professional recognition

This programme is accredited by the Joint Board of Moderators (comprising the Institution of Civil Engineers, the Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and the Institute of Highway Engineers) as fully satisfying the further learning requirement for chartered engineer (CEng) registration. An individual holding an accredited MSc must also hold a CEng-accredited honours degree to have the full exemplifying qualifications for CEng status.

Career options

You may join world-class engineering consultants, contractors and clients with established, accredited training programmes and continuing professional development opportunities worldwide.

Find out about the teaching and learning outcomes here - http://www2.gre.ac.uk/?a=643911

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
Your programme of study. The energy industry has historically provided immense rewards and immense challenges in terms of infrastructure development in very challenging environments. Read more

Your programme of study

The energy industry has historically provided immense rewards and immense challenges in terms of infrastructure development in very challenging environments. Over time there have been many learning points as a result of process which did not address the challenge sufficiently resulting in new standards of safety, assessing risk and managing the challenges presented in mineral extraction. The industry has come a long way since its inception in Aberdeen in the 1970s and globally and University of Aberdeen has acquired this knowledge and research to work with industry and train the next Safety and Reliability Engineers to continuously improve safety. This programme is highly regarded from a well known provider in the industry. You visit industry and receive technical lectures with practical sessions to provide further awareness of the responsibility involved in the energy industry.

The programme is ideal if you are from an engineering, physics or mathematics background but it is also relevant to you if you studied stress analysis and thermodynamics with experience from the industry. The added value of this programme is that you can apply the discipline to other industries such as nuclear, defence, transport, aerospace, manufacturing and process industries, making you more employable and allowing wider scope for career options at graduation.

Courses listed for the programme

Semester 1

Fundamental Safety Engineering, and Risk Management Concepts

Statistics and Probability for Safety, Reliability and Quality

Fire and Explosion Engineering

Subsea Integrity

Semester 2

Advanced Methods for Risk and Reliability Assessments

Applied Risk Analysis and Management

Process Design, Layout and Materials

Human Factors Engineering

Semester 3

Safety Engineering Project

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1078/safety-and-reliability-engineering/

or on campus delivery:

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/935/safety-and-reliability-engineering/

Why study at Aberdeen?

  • This is a highly regarded programme by the industry which is informed by the energy industry in Aberdeen city
  • Aberdeen is at the heart of the European and world oil and gas industry with many multinational FTS 100 companies located in the city
  • This is a world class programme which informs the Lloyds Register Foundation Centre for Safety and Reliability Engineering
  • You are taught by industry professionals with worldwide industry experience

Where you study

  • Online
  • Full Time or Part Time
  • 5 Months or 27 Months
  • September or January start

*• There is an online programme available from University of Aberdeen

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php

Other engineering disciplines you may be interested in:



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Engineering at Swansea University has key research strengths in materials for aerospace applications and steel technology. As a student on the Master's course in Materials Engineering, you will be provided with the depth of knowledge and breadth of abilities to meet the demands of the international materials industry.

Key Features of MSc in Materials Engineering

Through the MSc Materials Engineering course you will be provided with training and experience in a broad range of topic areas, including metallurgy and materials selection, modern methods used for engineering design and analysis, the relationship between structure, processing and properties for a wide range of materials, materials and advanced composite materials, structural factors that control the mechanical properties of materials, and modern business management issues and techniques.

The MSc Materials Engineering course is an excellent route for those who have a first degree in any scientific or technical subject and would like to become qualified in this field of materials engineering.

MSc in Materials Engineering programme is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students must successfully complete Part One before being allowed to progress to Part Two.

The part-time scheme is a version of the full-time equivalent MSc scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules

Modules on the MSc Materials Engineering course can vary each year but you could expect to study:

Composite Materials

Polymer Processing

Environmental Analysis and Legislation

Communication Skills for Research Engineers

Simulation Based Product Design

Aerospace Materials Engineering

Structural Integrity of Aerospace Metals

Ceramics

Environmental Analysis and Legislation

Physical Metallurgy of Steels

Accreditation

The MSc Materials Engineering course at Swansea University is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Within Engineering at Swansea University there are state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.

- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.

- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Careers

Materials engineering underpins almost all engineering applications and employment prospects are excellent.

Employment can be found in a very wide range of sectors, ranging from large-scale materials production through to R&D in highly specialised advanced materials in industries that include aerospace, automotive, manufacturing, sports, and energy generation, as well as consultancy and advanced research.

Materials engineering knowledge is vital in many fields and our graduates go on to successful careers in research and development, product design, production management, marketing, finance, teaching and the media, and entrepreneurship.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce

Airbus

Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
The Civil Engineering Graduate Diploma enables applicants with a degree in a related subject (for example mathematics, physics or geology) to take a qualifying year before moving into a Civil or Structural Engineering MSc programme. Read more
The Civil Engineering Graduate Diploma enables applicants with a degree in a related subject (for example mathematics, physics or geology) to take a qualifying year before moving into a Civil or Structural Engineering MSc programme. It offers a unique opportunity to be awarded a fully recognised Civil Engineering MSc after two years of study, opening the path to a career in civil engineering as a chartered engineer.

Degree information

This bespoke programme provides grounding in fluids, soils, structures and materials engineering, and consists of second and third-year undergraduate core civil engineering subjects. Students are also allocated a civil engineering project which they are required to complete in pairs.

Students undertake modules to the value of 120 credits. The programme consists of seven core modules and a research project. There are no optional modules for this programme.

Core modules
-Structural Analysis and Design
-Materials II and Applied Fluid Mechanics II
-Mathematical Modelling and Analysis II
-Soil Mechanics and Engineering Geology
-Civil Engineering in Practice
-Structure and Materials
-Civil Engineering Project

Dissertation/report
Students conduct a civil engineering research project over two terms, usually working in pairs. Assessment is by a final report (78%), interim report (10%) and final presentation (10%).

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, seminars and laboratory classes. The civil engineering project involves individual research and can include laboratory, computational or fieldwork depending on the nature of your project and your supervisor. It is usually completed in pairs. The programme also includes a field trip and a one-week Constructionarium visit.

Other information for overseas students
Overseas students requiring a visa to study should note that the Graduate Diploma (pre-qualifying year) and the Civil Engineering MSc are treated as TWO separate programmes. You will only be able to obtain a one-year visa for the Graduate Diploma and then you will need to apply for a second visa for the MSc. You will almost certainly have to leave the UK between finishing the Graduate Diploma in June and commencing the MSc in September.

Careers

Civil engineering graduates are readily employed by consultancies, construction companies and government departments.

Students who complete both this pre-qualifying year and a Civil Engineering MSc or an Earthquake Engineering and Disaster Management MSc, have excellent career prospects with leading civil and structural engineering companies.

Employability
The are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting multidisciplinary department with a long tradition of excellence in teaching and research, situated at the heart of London.

Our innovative research is at the forefront of engineering development. Our staff are leaders in their fields and often called upon for their detailed knowledge by the media, industry and policymakers.

This programme offers applicants without a first degree in civil engineering a unique opportunity to be awarded a fully recognised Civil Engineering MSc after two years of study, opening the path to a civil engineering career as a chartered engineer.

Read less
This programme enables students to work effectively in an engineering design role, whether that role concerns the design of products, processes or systems, at an overall or detail level. Read more
This programme enables students to work effectively in an engineering design role, whether that role concerns the design of products, processes or systems, at an overall or detail level. A balance of theory and practice is applied to the solving of real engineering design problems. All projects meet the product design requirements of one of our many co-operating companies.

Core study areas include structural analysis, engineering management and business studies, computer aided engineering, product design and human factors, engineering design methods, sustainable product design, the innovation process and project management, sustainable development: the engineering context and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/engineering-design/

Programme modules

Compulsory Modules:
- Structural Analysis
- Engineering Management and Business Studies
- Computer Aided Engineering
- Product Design and Human Factors
- Engineering Design Methods
- Sustainable Product Design
- The Innovation Process and Project Management
- Sustainable Development: The Engineering Context
- Project

Careers and further study

Engineering design related jobs in product, process and system design environments, providing project management and communication skills and direct technical input. Graduates may also study for an MPhil or PhD with the School.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/engineering-design/

Read less
The PG Dip in Pharmaceutical and Biopharmaceutical Engineering is a part-time modular degree which can be taken over 24 months to 60 months. Read more
The PG Dip in Pharmaceutical and Biopharmaceutical Engineering is a part-time modular degree which can be taken over 24 months to 60 months. You will have the opportunity to gain a formal qualification in areas of particular concern to the bio/pharmaceutical industry that you may not have benefited from before, including issues such as product containment, powder/particle technology, design of API and secondary production facilities, current Good Manufacturing Practice (cGMP), design of classified facilities, aseptic processing facility design and validation.

Visit the website: http://www.ucc.ie/en/ckp08/

Course Details

Many graduates working in the pharmaceutical industries with a scientific background find themselves working in areas which increasingly overlap with engineers and engineering. Many would like to develop an engineering-based understanding of processes and production in a formal manner. This course offers you the opportunity to do this, developing your skills set and employability across a wider range of roles.

The course also presents the pharmaceutical and biopharmaceutical industry with an opportunity to enable greater cohesion and understanding among inter- and multi-disciplinary teams as graduates with science backgrounds receive a formal qualification in engineering.

Format

The PGDip involves taking 12 modules to the value of ECTS 60 credits. Taught modules are offered on a cyclical basis. Six modules are taken per annum over a two year period if you opt for full registration, although the course can be taken over a maximum of five years. The choice of modules is subject to the approval of the course coordinator. Candidates who achieve an average of 50% in all taught modules may apply for entry to the MEngSc to complete a thesis.

Part I

Students take 60 credits from the following:

Offered in 2015/16

PE6010 Pharmaceutical Engineering (5 credits)
PE6011 Biopharmaceutical Engineering (5 credits)
PE6012 Pharmaceutical Process Equipment, Materials and Mechanical Design (5 credits)
PE6013 Powder & Particle Technology and Unit Operations (5 credits)
PE6014 Chemical Kinetics, Reactor Design and Bioreactor Engineering (5 credits)
PE6015 Environmental Engineering in the Pharmaceutical Sector (5 credits)
PE6023 Pharmaceutical and Biopharmaceutical Utilities (5 credits)
PE6025 Advanced Health & Safety Management (5 credits)

Offered in 2016/17

PE6016 Pharmaceutical Industry, Manufacturing and Optimisation (5 credits)
PE6017 Pharmaceutical Plant Design and Project Management (5 credits)
PE6018 Pharmaceutical Process Validation and Quality (5 credits)
PE6019 Process Analytical Technology (5 credits)
PE6022 Aseptic Manufacturing Design (5 credits)
PF6302 Introduction to Pharmaceutics: Formulation Science (5 credits)
PE6024 Advanced Process Design & Safety Engineering (5 credits)
PE6025 Advanced Health & Safety Management (5 credits)

Part II (MEngSc only)

PE6021 Dissertation in Pharmaceutical and Biopharmaceutical Engineering (30 credits)

These are subject to change. For full course information see programme website - http://www.ucc.ie/en/processeng/postgrads/taughtmasters/mengsc//

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/engineering/page08.html

Placement and study abroad

Students will study at a UCC partner university in China and take the equivalent of 60 credits there in the Third Year.

Assessment

Assessment is by continuous assessment and end of period exams.

Careers

The course offers graduates working in the pharmaceutical industry the opportunity to further develop your skills set and employability across a wider range of roles in the industry through enhanced continuing professional development.

Through the opportunities provided by participation on the programme, you are provided with opportunities to enable greater cohesion and understanding among inter-and multi-disciplinary teams while earning a formal qualification in engineering.

Read less
Structural engineers help to make, shape and maintain the built environment. They are professionals who enjoy innovation, a challenge, opportunities, responsibility and, excitement in a varied and very satisfying career. Read more

About the course

Structural engineers help to make, shape and maintain the built environment. They are professionals who enjoy innovation, a challenge, opportunities, responsibility and, excitement in a varied and very satisfying career.

The MSc programme in Structural Engineering is designed to attract both international and home students, who wish to pursue their career in civil and structural engineering. To meet the increasing demand for structural engineers to design more safe, economic and environmental friendly buildings, the programme content has specifically been designed to give a thorough grounding on current practice with regards to dealing with structural fire and earthquake resistances and design of carbon neutral buildings.

A particular feature of the course content lies with the emphasis on the performance-based, structural design philosophy. The strong focus on these aspects will appeal to any students who intend to become the next generation of structural engineers after graduation.

Aims

Structural engineering is a profession that provides a tremendous opportunity to make a real difference to people's lives and their environment. In the current century, climate change is an increasingly important issue which needs to be tackled - and the role of the structural engineer in tackling climate change is immense.

To meet these challenges, structural engineers need to combine traditional structural engineering expertise with an understanding of a wide range of issues related to design of zero carbon buildings. There is a significant shortage of structural engineers with the requisite knowledge, skills, and experience to deal efficiently with complex issues for designing structurally sound, elegantly simple and environmentally sustainable buildings. The skills shortage and its effects on the construction industry will be further exacerbated by the huge demand from some rising economic powers.

This new MSc programme has been developed in response to this growing need for graduates aware of current challenges in structural engineering. The primary aim of this programme is to create master’s degree graduates with qualities and transferable skills for demanding employment in the construction and civil engineering sector. The graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Course Content

The programme is currently taken full-time, over 12 months. Each taught module will count for 15 credits, approximating to 150 learning hours. The modules will be taught over the first eight months and during the final four months, students will conduct an individual research project worth 60 credits (Dissertation).

Compulsory Modules:

Nonlinear Structural Analysis & Finite Element Method
Structural Dynamics & Seismic Design
Advanced Construction Materials and Structural Retrofitting Technology
Advanced Reinforced and Prestressed Concrete Design
Advanced Steel Design
Case Studies of Modern Structures and Sustainable Structural Design
Research Methods and Professional Studies
Msc Civil Engineering Dissertation

Optional Modules:

Structural Design for Fire
Foundation, Earthworks and Pavement Design and Construction

Teaching

Our Philosophy

The philosophy behind the teaching and learning strategy we use is largely underpinned by high quality and accessible learning opportunities developing over the years by the University and the College, which are highly acclaimed standards and practices for learning and teaching.

In addition to teaching, the academics staff of this MSc programme are active in research. Teaching is therefore informed by research, giving you the opportunity to learn about the latest developments in structural engineering from leading experts in their chosen fields of specialisation.

Contact between students and academic staff is relatively high at around 20 hours per week initially to assist you in adjusting to university life. As the programme progresses the number of contact hours is steadily reduced as you undertake more project-based work. You will be taught by various approaches that complement each other in achieving the set learning outcomes.

How you will be taught

Lectures: These provide a broad overview of the main concepts and principles you need to understand, give you with a framework on which to build and expand your knowledge on through private studies.
Laboratories: Practical’s are generally two or three-hour sessions in which you can practice your observational and analytical skills, and develop a deeper understanding of theoretical concepts.

Design Studios: In a studio you will work on individual and group projects with guidance from members of staff. You may be required to produce a design or develop a solution to an engineering problem. These sessions allow you to develop your intellectual ability and practice your teamwork skills.

Computer Sessions: These allow for the opportunity to develop knowledge and experience of structural analysis and design software packages and apply them to structural engineering problems. Students have access to computers outside scheduled sessions to allow them to develop their transferable skills and learn at their own pace and time as well.

One-to-one Tutoring: On registration for the course you will be allocated a personal tutor who will be available to provide academic and pastoral support during your time at university. You will get one-to-one supervision on all project work.

Input from Guest Lecturers: Industry practitioners are invited to present lectures on the real structural engineering projects at regular seminars. The seminars are designed to facilitate informal interactions between students and guest lecturers, encouraging student active engagement in the discussions.

Site Visits: Learning from real-world examples is an important part of the course. You will visit sites featuring a range of structural engineering approaches. This exposure will provide you with invaluable experience including opportunities to debate on the real projects.

Assessment

Each of the taught modules is assessed either by formal examination, an assignment, or a balanced combination of two. Methods of assessing assignments include essay, individual/group report, oral presentation and class test.

Information on assignments in terms of the aims, learning outcomes, assessment criteria and submissions requirements are clearly specified at the beginning of the academic year. Detailed feedback on assignments is provided to students to assist them in achieving the required learning outcomes. The research project is assessed by dissertation and oral presentation.

Special Features

Emphasis on safety and sustainability: This MSc programme is distinctive because of its emphasis on building safety and sustainability and disaster mitigation of civil structures – with four taught modules totalling 60 credits. The dissertation projects will also be closely linked to ongoing research in these areas.

Industry support: Brunel has a very active Industrial Liaison Panel, which is immensely supportive of our programmes. The Panel and the companies have also shown keen interest in offering industrial support for the new programme through assistance such as support with project dissertations and site visits.

Guest speakers: Our strong contact with industry is also used to invite experienced industry practitioners to come and give talks on specialist topics at regularly organised seminars. The seminars also serve as a platform for student project presentations, which goes to build their confidence level because of the recognition and value their project gains through such dissemination.

Supporting professional development: Under a professional development module, you will be required to actively pursue your personal development planning through continuously recording and record keeping of progress being made throughout the course duration. Personal tutors will offer support to their tutees by regularly checking these records (i.e. a Personal Development Log (PDL) and discussing any relevant issues with the aim of supporting them to find solutions.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This new course has been designed in close consultation with industry and we are currently in the process of seeking accreditation for it from the major professional institutions (JBM). Related courses in the College of Engineering, Design and Physical Sciences are already accredited.

To ensure the programme addresses current industry concerns, it was developed in compliance with international standards, using Civil Engineering Body of Knowledge as a guide. The programme also satisfies the requirements of the major civil engineering professional bodies (JBM) as stipulated in their guidelines on coverage given to the teaching of structural engineering.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

This MRes degree includes modules covering a range of areas within the Materials discipline, which are linked to the College of Engineering’s main research strengths of aerospace materials, environmental materials and steel technology.

Key Features of MRes in Materials Engineering

Through this course in Materials Engineering, you will be provided with training and experience in a broad range of topic areas, including metallurgy and materials selection, aerospace materials, recycling techniques, and modern business management issues and techniques.

The Materials Engineering course will provide you with the depth of knowledge and breadth of abilities to meet the demands of the international materials industry.

Combination of taught modules (60 credits) and a research thesis, which presents the outcome of a significant research project (120 credits) over 12 months full-time study. An MRes (Master of Research) provides relevant training to acquire the knowledge, techniques and skills required for a career in industry or for further research.

Modules

Modules on the Materials Engineering programme can vary each year but you could expect to study:

Strategic Project Planning

Communication Skills for Research Engineers

Aerospace Materials Engineering

Materials Recycling Techniques

Environmental Analysis and Legislation

Physical Metallurgy of Steel

MSc Research Thesis

Accreditation

This degree is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University provides state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.

- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.

- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Careers

Through this Materials Engineering scheme, you will be provided with the detailed technical knowledge and experience required for a successful career at a technical or management level within the modern steel industry.

At the end of the course, you will have a higher level qualification along with crucial experience of industry allowing you to more quickly enter into the world of work and contribute fully to this important sector.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce

Airbus

Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Engineering Leadership and Management at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Engineering Leadership and Management at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

It is a well-known fact that engineers and technical graduates have the potential to reach the very pinnacle of management and leadership within business and industry.

The MSc in Engineering Leadership and Management programme, through consultation with business and industry (both large and small), is set to establish the key graduate skills and attributes required to succeed in a management and/or leadership role in the engineering sector.

Key Features of MSc Engineering Leadership and Management

The content of this multidisciplinary engineering management course will be very much informed by industry. Key modules on the Engineering Leadership and Management programme will deliver a broad introduction to management, alongside detailed engineering specific modules on:

- Project Management

- Compliance

- Health & Safety

- Operations Management

- Asset Management

- Strategy

- Sustainability

- Innovation

The Engineering Leadership and Management programme will incorporate traditional classroom teaching, online learning, interactive workshops and seminars. Multidisciplinary group work will be a key component of the course, along with industry-focused projects. All of the modules on the Engineering Leadership and Management course will be delivered on an “intense” basis, i.e. in isolation over 2-week periods.

Accreditation for the MSc in Engineering Leadership and Management will be sought with key Engineering and other relevant professional bodies.

As a student on the Master’s course in Engineering and Leadership Management, you will gain and build upon the key skills and knowledge required for a management and/or leadership role in the engineering sector.

Facilities

The new home of the Engineering Leadership and Management programme is at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce

Airbus

Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
This programme pathway is designed for students with an interest in the engineering aspects of technology that are applied in modern medicine. Read more
This programme pathway is designed for students with an interest in the engineering aspects of technology that are applied in modern medicine. Students gain an understanding of bioengineering principles and practices that are used in hospitals, industries and research laboratories through lectures, problem-solving sessions, a research project and collaborative work.

Degree information

Students study in detail the engineering and physics principles that underpin modern medicine, and learn to apply their knowledge to established and emerging technologies in medical imaging and patient monitoring. The programme covers the engineering applications across the diagnosis and measurement of the human body and its physiology, as well as the electronic and computational skills needed to apply this theory in practice.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), two optional modules (30 credits), and a research project (60 credits). A Postgraduate Diploma (120 credits) is offered.

Core modules
-Imaging with Ionising Radiation
-Clinical Practice
-Magnetic Resonance Imaging and Optics
-Medical Electronics and Control
-Professional Skills module

Optional modules
-Aspects of Biomedical Engineering
-Biomedical Engineering
-Computing in Medicine

Dissertation/report
All MSc students undertake an independent research project within the broad area of physics and engineering in medicine which culminates in a written report of 10,000 words, a poster and an oral examination.

Teaching and learning
The programme is delivered through a combination of lectures, demonstrations, practicals, assignments and a research project. Lecturers are drawn from UCL and from London teaching hospitals including UCLH, St. Bartholomew's, and the Royal Free Hospital. Assessment is through supervised examination, coursework, the dissertation and an oral examination.

Careers

Graduates from the Biomedical Engineering and Medical Imaging stream of the MSc programme have obtained employment with a wide range of employers in healthcare, industry and academia sectors.

Employability
Postgraduate study within the department offers the chance to develop important skills and acquire new knowledge through involvement with a team of scientists or engineers working in a world-leading research group. Graduates complete their study having gained new scientific or engineering skills applied to solving problems at the forefront of human endeavour. Skills associated with project management, effective communication and teamwork are also refined in this high-quality working environment.

Why study this degree at UCL?

The spectrum of medical physics activities undertaken in UCL Medical Physics & Biomedical Engineering is probably the broadest of any in the United Kingdom. The department is widely acknowledged as an internationally leading centre of excellence and students receive comprehensive training in the latest methodologies and technologies from leaders in the field.

The department operates alongside the NHS department which provides the medical physics and clinical engineering services for the UCL Hospitals Trust, as well as undertaking industrial contract research and technology transfer.

Students have access to a wide range of workshop, laboratory, teaching and clinical facilities in the department and associated hospitals. A large range of scientific equipment is available for research involving nuclear magnetic resonance, optics, acoustics, X-rays, radiation dosimetry, and implant development, as well as new biomedical engineering facilities at the Royal Free Hospital and Royal National Orthopaedic Hospital in Stanmore.

Read less

Show 10 15 30 per page



Cookie Policy    X