• Swansea University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses

Postgrad LIVE! Study Fair

Edinburgh

London Metropolitan University Featured Masters Courses
University of Cambridge Featured Masters Courses
Cardiff University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
University of Nottingham Featured Masters Courses
"vaccines"×
0 miles

Masters Degrees (Vaccines)

We have 28 Masters Degrees (Vaccines)

  • "vaccines" ×
  • clear all
Showing 1 to 15 of 28
Order by 
Radboud University’s Master’s specialisation in Microbiology deals with the interface between fundamental biological and medical sciences. Read more

Radboud University’s Master’s specialisation in Microbiology deals with the interface between fundamental biological and medical sciences. It focuses on molecular, medical and environmental microbiology to improve our health and environment and provides in-depth insight into present-day microbial research in general and clinical microbiology.

The major topics of the Microbiology specialisation are:

Environmental microbiology and Biotechnology

Microorganisms can be used to break down environmental pollutants and toxic chemicals. Therefore microbiology has the potential to replace common energy-intensive chemical processes with more sustainable solutions. Radboud University collaborates closely with environmental scientists and industrial partners to create energy-efficient and environmentally friendly solutions for societal waste problems.

Immunology

Unfortunately some microorganisms make us ill. A better understanding of battle between our immune system and these microorganisms will lead to the development of improved vaccines.

Molecular Microbiology

The genome of a microorganism is a key factor in research, because it determines how the organisms interact with the host cell and how they cause diseases. Molecular Microbiology acts on the interface between microbiology, molecular biology and genetics and is fundamental for the development of novel antibiotics and improvement of vaccines against microorganisms.

Top research

The department of Microbiology at Radboud University has been bestowed with the most prestigious science prizes, including two ERC Advanced Grants, a Spinoza Prize, and two Gravitation Grants. Additionally, many of out students have been awarded prizes for best thesis, poster and paper. The department works at the forefront of environmental microbiology and is specialised in the discovery of ‘impossible’, new anaerobic micro-organisms. The laboratory is equipped with state-of-the-art bioreactors, electron microscopy, GC-MS, metagenomics, and metaproteomics facilities to grow and study micro-organisms that contribute to a better environment by consuming greenhouse gasses and nitrogenous pollutants.

Our approach to this field

- Research themes

The Master's specialisation Microbiology is mainly focused on research. You can choose one of the following themes as the subject of your research internship:

- Environmental Microbiology & Biotechnology

For students who are intrigued by questions like: How does life without oxygen work? How do global biogeochemical (nutrient) cycles govern the functioning of the Earth? Can we use microorganisms to create a more sustainable wastewater industry? How do microorganisms break down environmental pollutants and toxic chemicals?

You will do research at the interface between Microbiology, environmental sciences and biochemistry. The research questions cover several levels, from gaining fundamental understanding of energy metabolism of bacteria to their applications in wastewater treatment.

Societal relevance: Microbiology has the potential to replace common energy-intensive chemical processes by more sustainable solutions. Radboud University collaborates closely with environmental scientists, animal ecologists and industrial partners to create energy-efficient and environmentally friendly solutions for societal waste problems.

- Immunology

For students who are intrigued by questions like: Why do some bacteria make us ill whereas others do not? How do bacteria outsmart our immune system? What are the mechanisms of human defence against microorganisms?

You will do research at the interface between Microbiology, Immunology and Cell Biology, and can, for example, work on how microorganisms are recognised by the host defence system

Societal relevance: A better understanding of host defence will lead to the development of improved vaccines against microorganisms.

- Molecular Microbiology

For students who are intrigued by questions like: How are microorganisms able to persist inside the human body and how do they cause diseases? What does gene regulation tell us about their pathogenic capabilities? Can microbial genomes help us determine how microorganisms interact with human host cells?

You will do research at the interface between Microbiology, molecular biology and genetics, and can, for example, work on functional gene analyses by mutagenesis studies and on the interaction between epithelial cells and pathogenic bacteria.

Societal relevance: Understanding host-pathogen interactions is fundamental for the development of novel antibiotics and improvement of vaccines. Radboudumc collaborates with public health institutes – such as the RIVM (National Institute of Public Health) – and with industrial partners.

- Personal tutor

Our top scientists are looking forward to guiding you during a challenging and inspiring scientific journey. This programme offers you many opportunities to follow your own interests under the excellent supervision of a personal tutor. This allows you to specialise in a field of personal interest.

- The Nijmegen approach

The first thing you will notice as you enter our Faculty of Science is the open atmosphere. This is reflected by the light and transparent building and the open minded spirit of the people working, exploring and studying there. It is no wonder students from all over the world have been attracted to Nijmegen. You study in small groups, with direct and open contact with members of the staff. In addition, Nijmegen has excellent student facilities, such as high-tech laboratories, libraries and study ‘landscapes'.

Studying by the ‘Nijmegen approach' is a way of living. We will equip you with tools which are valuable for the rest of your life. You will be challenged to become aware of your intrinsic motivation. In other words, what is your passion in life? With this question in mind we will guide you to translate your passion into a personalised Master's in Biology.

See the website http://www.ru.nl/masters/microbiology

Radboud University Master's Open Day 10 March 2018



Read less
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Read more
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Whilst these treatment have served well and new drugs will continue to be designed, clinical trials over the last five years have shown that boosting the body’s immune system, whose main task is to deal with invading pathogens, can help our immune system to destroy tumour cells. Many of the new immunotherapies may be tested in combination with more conventional treatments or tested alone, but investigators and oncologists now believe immunotherapy, initially combined with pharmacological treatments, will soon provide curative therapies and certainly give many patients a new lease of life.

More about this course

Worldwide the incidence of cancer is increasing, and is expected to reach 22 million new cases per year by 2030. In addition to treatments such as radiotherapy and surgery, chemotherapy has a vital role to play in prolonging the lives of patients.

The aims of the Cancer Immunotherapy MSc are to:
-Provide an in-depth understanding of the molecular targets at which the different classes of anticancer drugs are aimed, and of how drug therapies are evolving
-Review the biology of cancer with respect to genetics, pathological considerations, and the molecular changes within cells which are associated with the progression of the disease
-Enhance intellectual and practical skills necessary for the collection, analysis, interpretation and understanding of scientific data
-Deliver a programme of advanced study to equip students for a future career in anti-cancer drug and immunotherapy development
-Cover new areas in immunotherapy (some of which may enhance existing pharmacological therapies including: History of immunotherapy and review of immune system; Monoclonal antibodies in cancer therapy and prevention; DNA vaccines against cancer; Adoptive T cell therapy; Dendritic cell vaccines; Antibodies that stimulate immunity; Adjuvant development for vaccines; Epigenetics and cancer: improving immunotherapy; Immuno-chemotherapy: integration of therapies; Exosomes and Microvesicles (EMVs) in cancer therapy and diagnosis; Dendritic cell vaccine development and Pox virus cancer vaccine vectors; Microbial causes of cancer and vaccination

Students will have access to highly qualified researchers and teachers in pharmacology and immunology, including those at the Cellular and Molecular Immunology Research Centre. Skills gained from research projects are therefore likely to be highly marketable in industry, academia and in the NHS. Students will be encouraged to join the British Society of Immunology and the International Society of Extracellular Vesicles.

Assessment is a combination of coursework, which includes tests and essays, the research project and its oral defence and examination.

Modular structure

The modules listed below are for the academic year 2016/17 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules include:
-Advanced Immunology (core, 20 credits)
-Cancer Immunotherapy (core, 20 credits)
-Cancer Pharmacology (core, 20 credits)
-Cancer: Diagnosis and Therapy (core, 20 credits)
-Molecular Oncology (core, 20 credits)
-Research Project (core, 60 credits)
-Scientific Frameworks for Research (core, 20 credits)

After the course

Students will have many opportunities to work in industry. There are established industries working hard to develop cancer immunotherapies including Bristol-Myers Squibbs, MERCK, AstraZeneca and Roche. There are also an innumerate number of start-up companies appearing including Omnis Pharma, UNUM Therapeutics and Alpine Immune Sciences.

Students will also have ample opportunity for future postgraduate study either within the School of Human Sciences and the Cellular and Molecular Immunology Centre at the MPhil/PhD level or beyond, even with some of our research partners within the UK, Europe and beyond.

Read less
Changing demographics and growing demand for food, fuel and agricultural and environmental sustainability are among the key challenges the world faces today. Read more

Changing demographics and growing demand for food, fuel and agricultural and environmental sustainability are among the key challenges the world faces today.

In this MSc you will learn research and development skills to enable the creation of new products and services. You will investigate the economic basis for current biotechnology structures and areas of future demand, including the global pharmaceutical industry and carbon sequestration.

You will learn how technology can be applied to solve pressing real-world biological problems and gain the skills and expertise needed for future developments in biotechnology.

Programme structure

This programme consists of two semesters of taught courses followed by a research project or industrial placement, leading to a dissertation.

Compulsory courses:

  • Economics and Innovation in the Biotechnology Industry
  • Intelligent Agriculture
  • Principles of Industrial Biotechnology
  • Research Project Proposal
  • MSc Dissertation (Biotechnology).

Option courses:

  • Biobusiness
  • Biochemistry A & B
  • Bioinformatics
  • Bioinformatics Programming & System Management
  • Drug Discovery
  • Commercial Aspects of Drug Discovery
  • Environmental Gene-Mining and Metagenomics
  • Enzymology and Biological Production
  • Gene Expression and Microbial Regulation
  • Industry & Entrepreneurship in Biotechnology
  • Molecular Modelling and Database Mining
  • Practical Skills in Biochemistry A & B
  • Programming for the Life Sciences
  • Social Dimensions of Systems and Synthetic Biology
  • Stem Cells and Regenerative Medicine
  • Vaccines and Molecular Therapies

Research and laboratory work

There will be a considerable practical element to the programme. You will work in a biotechnology laboratory and learn how experimental technology is designed and operated.

Industrial placement

Your dissertation can be based on a laboratory-based project or an industrial placement. You can work with employers in the thriving Scottish biotechnology sector in areas such as multiple sclerosis research (Aquila BioMedical), vaccines research (BigDNA) or biorecovery and bioregeneration (Recyclatec).

Career opportunities

The programme will open up a wide variety of career opportunities, ranging from sales and marketing, to research and development, to manufacturing and quality control and assurance.



Read less
The main aim of the pathway is to introduce students to the challenges of research conducted during design and development of vaccines against human infectious diseases. Read more
The main aim of the pathway is to introduce students to the challenges of research conducted during design and development of vaccines against human infectious diseases.
This pathway takes advantage of the established core modules of the MRes programme, however, the opportunity for students to streamline their focus within the area of Human Vaccinology is provided through specialist teaching during the pathway module and in particular within the research element (project). The project will provide an opportunity to gain basic laboratory experience in research methods, or epidemiology / statistical techniques as applied to vaccines.

Read less
This study course is for students who wish to become specialised graduates with an advanced biomedical knowledge concerning the links between the structure and the purpose of biomolecules and bio-systems operating at cellular and tissue level of the human body, in both physiological and pathological conditions. Read more

This study course is for students who wish to become specialised graduates with an advanced biomedical knowledge concerning the links between the structure and the purpose of biomolecules and bio-systems operating at cellular and tissue level of the human body, in both physiological and pathological conditions. The wide knowledge of the techniques is based on a solid practical activity in laboratories during the internship.

Subject to the educational aims of Class LM-9, the acquired knowledge allows specialized graduates to assist physicians in the diagnostic and therapeutic tasks involving the manipulation of cells, genes, and other biosystems requiring applicants to learn special skills in experimental biotechnology (e.g. Diagnosis and gene therapy; therapy through the use of genetically engineered cells; rational design and development of new medicines based on models of molecular targets known or derived from pharmacogenomic knowledge; preparation of nano-biotechnological tools for advanced diagnostics imaging and drug delivery; modulation of the immune response; diagnostics based on innovative processes of science and medical laboratory techniques; immunotherapy to targeted cells); organize and coordinate laboratory activities for advanced research or for diagnostic examinations requiring the use of biotechnological methods and the manipulation of cells or biotechnological materials; organize and coordinate the experimental protocols of clinical research involving the use of materials or biotechnology techniques; design and perform with autonomy research in biotechnology applied to medicine; lead and coordinate, also in governance, development programs and surveillance of biotechnology applied to human beings, taking into account the ethical, technical, environmental and economic implications.

Course structure

First year: Advanced Biomedical Technologies Or Laboratory Activities 1: Cellular And Molecular Therapies Or Laboratory Activities 2: Molecular And Systems Biology, Laboratory Medicine Technologies And Molecular Diagnostics, Pharmaceutical Biotechnology: Design And Analysis Of Biopharmaceuticals, Seminar

Molecular Medicine Curriculum: 6 Months At Ulm University: Glp/Gsp Bioethics, Molecular Oncology, Trauma Research And Regenerative Medicine

Traditional Curriculum: Proteomics And Bioinformatics, Cell And Organ Physiology And Medical Pathophysiology, Genetics, Immunology And General Pathology, Nanobiotechnology

Second year: Experimental Models In Vivo And Vitro, Pharmacology And Molecular Therapies, Stem Cell Biology And Molecular Biology Of Development, Thesis Work

Molecular Medicine Curriculum + Proteomics And Bioinformatics

Career opportunities

Biotechnology physicians will be able to head research laboratories in a predominantly technological and pharmacological environment and coordinate, as well as in terms of management and administration, program development and the monitoring of biotechnology applied on human beings with emphasis on the development of pharmaceutical products and vaccines, taking into account the ethical, technical, and legal implications and environmental protection.

  • To work in industry (pharma, biotech companies) for new diagnostics, molecular therapeutics, regenerative medicine and vaccines
  • To work in academia as a researcher in one of the many fields of Molecular Medicine
  • To be an entrepreneur in Biotech start up companies as a result of scientific discoveries

Graduates will be able to assist doctors in the diagnostic and in the therapeutic phases when those imply the manipulation of cells, genes and other bio systems and when specific biotechnological experimental competences are required.

Scholarships and Fee Waivers

The University of Padova, the Veneto Region and other organisations offer various scholarship schemes to support students. Below is a list of the funding opportunities that are most often used by international students in Padova.

You can find more information below and on our website here: http://www.unipd.it/en/studying-padova/funding-and-fees/scholarships

You can find more information on fee waivers here: http://www.unipd.it/en/fee-waivers



Read less
This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. Read more
This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. The increasing incidence of microbial infections worldwide is being compounded by the rapid evolution of drug-resistant variants and opportunistic infections by other organisms. The course content reflects the increasing importance of genomics and molecular techniques in both diagnostics and the study of pathogenesis.

In response to a high level of student interest in viral infections, the School has decided to offer the opportunity for students who focus on viruses in their module and project choices to be awarded a Master's degree in Medical Microbiology (Virology). This choice will depend on the module selection of the individual student in Terms 2 and 3 and choice of project.

Graduates from this course move into global health careers related to medical microbiology in research or medical establishments and the pharmaceutical industry.

The Bo Drasar Prize is awarded annually for outstanding performance by a Medical Microbiology student. This prize is named after Professor Bohumil Drasar, the founder of the MSc Medical Microbiology course.

The Tsiquaye Prize is awarded annually for the best virology-based project report.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/mm_progspec.pdf)
- Intercalating this course (http://www.lshtm.ac.uk/study/intercalate)

Visit the website http://www.lshtm.ac.uk/study/masters/msmm.html

Objectives

By the end of the course students should be able to:

- demonstrate advanced knowledge and understanding of the nature of viruses, bacteria, parasites and fungi and basic criteria used in the classification/taxonomy of these micro-organisms

- explain the modes of transmission and the growth cycles of pathogenic micro-organisms

- demonstrate knowledge and understanding of the mechanisms of microbial pathogenesis and the outcomes of infections

- distinguish between and critically assess the classical and modern approaches to the development of therapeutic agents and vaccines for the prevention of human microbial diseases

- demonstrate knowledge of the laboratory diagnosis of microbial diseases and practical skills

- carry out a range of advanced skills and laboratory techniques, including the purification of isolated microbial pathogens, study of microbial growth cycles and analyses of their proteins and nucleic acids for downstream applications

- demonstrate research skills

Structure

Term 1:
There is a one-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and course-specific sessions, followed by two compulsory modules:

- Bacteriology & Virology
- Analysis & Design of Research Studies

Recommended module: Molecular Biology

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:
Students take a total of five modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules that can be taken only after consultation with the Course Director.

- Slot 1:
Clinical Virology
Molecular Biology & Recombinant DNA Techniques

- Slot 2:
Clinical Bacteriology 1
Molecular Virology

- Slot 3:
Advanced Training in Molecular Biology
Basic Parasitology

- Slot 4:
Clincal Bacteriology 2
Molecular Biology Research Progress & Applications

- Slot 5:
Antimicrobial Chemotherapy
Molecular Cell Biology & Infection
Mycology
Pathogen Genomics

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tmmi.html

Project Report

During the summer months (July - August), students complete a laboratory-based original research project on an aspect of a relevant organism, for submission by early September. Projects may take place within the School or with collaborating scientists in other colleges or institutes in the UK or overseas.

The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose

Course Accreditation

The Royal College of Pathologists accepts the course as part of the professional experience of both medical and non-medical candidates applying for membership. The course places particular emphasis on practical aspects of the subjects most relevant to current clinical laboratory practice and research.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msmm.html#sixth

Read less
This course offers advanced training for biological, chemical and physical scientists (pure and applied) for careers in the pharmaceutical, food/nutrition, health-care, biomedical, oil and other important industries or as a basis for entry to MRes or PhD. Read more
This course offers advanced training for biological, chemical and physical scientists (pure and applied) for careers in the pharmaceutical, food/nutrition, health-care, biomedical, oil and other important industries or as a basis for entry to MRes or PhD.

Biomolecular Technology underpins the production of drug delivery systems, the making of healthier food products, the design of health-care products, the making of antisera and vaccines - and even the efficient extraction of oil from the harsh environment of a deep well: these are among the biotechnology processes which depend in fundamental terms on our ability to handle giant molecular complexes of living origin. Furthermore, molecular biologists and chemists are now increasingly able to ‘engineer’ new types of proteins and complexes over and beyond those which 3 billion years of evolution have provided.

Industry needs skilled personnel capable of understanding how these molecules may be used in an industrial context and the processes of gene cloning and protein engineering.

It is taught by the School of Biosciences in conjunction with the University's Schools of Pharmacy, Biomedical Sciences and Clinical Sciences and The School of Biosciences at the University of Leicester. Experts from local and national industry also contribute, ensuring access to the latest developments in the field.

A 3 month industrial placement module offers an exciting opportunity to discover first hand the needs of modern industry and provides advanced training for employment and further academic studies.
By suitable arrangement non-UK students can do this in their normal country of residence.

Applicants should hold first degrees at honours level in any Biological, Chemical or Physical Science subject (e.g. Biochemistry, Chemistry, Pharmacy, Genetics, Food Sciences, Plant Sciences, Physics). Suitably motivated candidates with Engineering or Mathematics degrees will also be considered.

A number of scholarships and European bursaries may be available.

Read less
Engineering organisms and processes to generate the products of the future. Many everyday products are generated using biological processes. Read more

Engineering organisms and processes to generate the products of the future

Many everyday products are generated using biological processes. Foods such as bread, yoghurt and beer rely upon microscopic organisms to generate their structure and flavour. Many drugs are made using cells, such as insulin used to treat diabetes and many anticancer chemotherapy drugs. In the future, more products will be made using biological processes as they are typically ‘greener’ than traditional chemical processes – they are less energy intensive and generate fewer harmful chemical by-products. Biological processes are also responsible for many environmentally-friendly biofuels, which aim to reduce fossil fuel use.

Biological processes are key to many UK companies, from small contract manufacturers of protein and DNA drugs to large companies making fuels, commodity chemicals, foods and plastics. Biochemical engineering is an area that is essential to UK, European and Worldwide industrial development.

This is a highly multidisciplinary subject, requiring the integration of engineering and bioscience knowledge. If you are interested in pursuing a career in industrial biotechnology, biochemical engineering, biotechnology or bioprocessing, then this programme will provide you with the basic knowledge and skills required. Optional modules expand your horizons to include specific product areas (such as pharmaceuticals) and other skills required for a career in the area (such as business skills).

Birmingham is a friendly School which has one of the largest concentrations of chemical engineering expertise in the UK. The School is consistently in the top five chemical engineering schools for research in the country.

It has a first-class reputation in learning, teaching and research, and is highly placed in both The Guardian and The Times league tables. 

Course details

Biochemical Engineering concerns the use of biological organisms or processes by manufacturing industries. It is a multidisciplinary subject, requiring the integration of engineering and bioscience knowledge to design and implement processes used to manufacture a wide range of products; from novel therapeutics such as monoclonal antibodies for treating cancer, vaccines and hormones, to new environmentally-friendly biofuels. It is also essential in many other fields, such as the safe manufacture of food and drink and the removal of toxic compounds from the environment..

This course will provide you with the skills you need to start an exciting career in the bioprocess industries, or continue research in the area of bioprocessing or industrial biotechnology.

Industry involvement

Academics working at Birmingham have strong links with industry, through collaborative projects, so allow students to make contact with companies. Graduates from the MSc programme have gone on to careers in biochemical engineering world-wide, in large and small companies working in diverse areas.

There are also guest lectures from academics working at other institutions.

Practical experience

You will gain practical experience of working with industrially applicable systems, from fermentation at laboratory scale to 100 litre pilot scale, in the Biochemical Engineering laboratories. Theory learned in lectures will be applied in practical terms. In addition, theoretical aspects will be applied in design case studies in a number of modules.

All MSc students complete a summer research project, working on a piece of individual, novel research within one of the research groups in the school. These projects provide an ideal experience of life as a researcher, from design of experimental work, practical generation of data, analysis and communication of findings. Many students find this experience very useful in choosing the next steps in their career.

Special Features

The lecture courses are supplemented with tutorials, seminars and experimental work. Industrial visits and talks by speakers from industrial and service organisations are also included in the course programme.

Pilot Plant

The Biochemical Engineering building houses a pilot plant with large-scale fermentation and downstream processing equipment. The refurbished facility includes state-of-the-art computer-controlled bioreactors, downstream processing equipment and analytical instruments

Course structure

The MSc is a 12-month full-time advanced course, comprising lectures, laboratory work, short experimental projects and a research project. You will take an introductory module, four core modules, and then choose 50 credits of optional themed modules. The course can also be taken on a part-time basis. The Postgraduate Diploma (PGDip) lasts for 8 months from the end of September until June. 

For the first eight months you have lectures, tutorials and laboratory work. Core module topics include:

  • Fermentation and cell culture
  • Bioseparations
  • Process monitoring and control
  • Systems and synthetic biology approaches

There are numerous optional modules available across three themes: 

  • Biopharmaceutical development and manufacture
  • Food processing
  • Business skills for the process industries

From June to September you gain research training on your own project attached to one of the teams working in the bioprocessing research section.

Related links

Learning and teaching

The MSc is a 12-month full-time advanced course, comprising lectures, laboratory work, short experimental projects and a research project. You will take an introductory module, four core modules, and then choose 50 credits of optional themed modules. The course can also be taken on a part-time basis. The Postgraduate Diploma (PGDip) lasts for 8 months from the end of September until June.  

For the first eight months you have lectures, tutorials and laboratory work. Topics include:

  • Fermentation and cell culture
  • Bioseparations
  • Process monitoring and control
  • Systems and synthetic biology approaches
  • Biopharmaceutical development and manufacture

You also have practical experience of working in the newly-refurbished pilot plant of the Biochemical Engineering building

From June to September you gain research training on your own project attached to one of the teams working in the bioprocessing research section.



Read less
DRUG INNOVATION. A UNIQUE PROGRAMME. The Dutch Master's Selection Guide (Keuzegids Masters 2017) ranked this programme as the best in the field of Chemistry in the Netherlands. . Read more

DRUG INNOVATION: A UNIQUE PROGRAMME

The Dutch Master's Selection Guide (Keuzegids Masters 2017) ranked this programme as the best in the field of Chemistry in the Netherlands. 

Drug Innovation is about:

  • developing new drugs to combat drug-resistant microorganisms
  • using gene or protein technologies to create therapies targeted at individual patients
  • finding a way to imprint the immune system to increase tolerance
  • exploring the relationship between gut microbes and brain disease
  • learning how to use proteomics to study stem cell development
  • reducing the side effects of treatment by finding new ways to deliver drugs directly onto the tumor
  • updating and speeding up the drug regulatory process

The Master’s in Drug Innovation programme focuses on diagnostics and the improvement and management of small molecule and biomolecular drugs. Drug innovation covers many topics such as the development of new vaccines and the study of antibodies, gene therapeutics, and medical nutrition. Once developed, a new drug then needs to go through approval, which raises a whole new set of challenges, for example the establishment of new methods and criteria for evaluating the quality, efficacy, safety, and performance of the drug.

INTERDISCIPLINARY PROGRAMME

This broad, interdisciplinary programme is open to graduates from a wide range of disciplines such as chemistry, biology, pharmaceutical sciences, biomedical sciences, or medicine.

MANY ELECTIVE COURSES

Our programme offers a diverse suite of elective courses. This means you can concentrate on the topics of most interest to you. You will also take an internship with one of the research teams working on drug innovation at Utrecht University. This work may lead to publication in scientific journals within the field or new drug patents or protocols.

Graduates of this programme may go on to undertake research in drug innovation at universities, in the pharmaceutical or and biotechnology industry or to work in science or healthcare.

PROGRAMME OBJECTIVE 

Drug Innovation is an interdisciplinary field, which pulls together expertise from chemical, biological and medical sciences. This interdisciplinarity is central to the search for new solutions to currently incurable diseases. You will contribute to this field by undertaking two internships over a total of 15 months and submitting a writing assignment.

AFTER GRADUATION

After graduation, you will have the skills needed to translate a drug-related problem into a relevant research question and will also be able to design and perform the research needed to solve this question. Finally, you will also be able to critically reflect on your own research and report on it, both verbally and in writing. These skills are highly transferable and will enable you to work independently within a competitive labour market.



Read less
SOLVE PUBLIC HEALTH PROBLEMS OF THE FUTURE. We need well-trained and creative minds to help us solve public health problems of the future. Read more

SOLVE PUBLIC HEALTH PROBLEMS OF THE FUTURE

We need well-trained and creative minds to help us solve public health problems of the future. Do you see yourself tackling the increasing incidences of allergies and autoimmune disease, working on emerging infections such as Ebola and MRSA? 

This Master’s programme gives you the knowledge and research expertise needed to solve the public health problems of the future. Emerging infectious are a threat to human and animal well-being and an increasing number of allergies and chronic inflammatory diseases have a major impact on individuals and society as a whole. Knowledge of the immune system provides us with potential health care solutions for cancer, transplantation and downregulation of a hyperactive immune system as for example in rheumatoid arthritis. By training students in the field of Infection and Immunity, this programme contributes to accumulation of knowledge that is directly or indirectly leading to faster diagnosis of diseases and better treatment options.

This Master’s programme will give you a firm foundation in the field of infection and immunity and covers a variety of topics such as fundamental and clinical immunology, vaccines, immunotherapy, mechanisms of infectious diseases, molecular epidemiology of infections, virulence factors of microorganisms, and resistance to treatment.

WHY STUDY INFECTION AND IMMUNITY AT UTRECHT UNIVERSITY?

Infection, immunity, and the role of microflora in human and animal welfare is one of Utrecht University’s core research areas and the Graduate School of Life Sciences is home to a large number of world-leading research groups working in this field. Utrecht’s life science campus comprises over 50 Infection and Immunity groups in the field of human and animal health covering the whole range from molecular biology to population level. This two-year research Master's offers an unique combination of studying Immunology and infectious diseases in one comprehensive Master’s programme including extensive training in laboratory research skills. As a student you will have the opportunity to carry out two hands-on research projects at renowned research groups.

Infection and Immunity has intensive collaboration with international research institutes, allowing students to do their minor internship abroad at prestigious partner universities all around the world.

COURSE CONTENT

As a Master’s student of Infection and Immunity, you will take theory courses and seminars, as well as master classes led by specialists in the field. You will study molecular, cellular, and clinical aspects of pathogens and immune responses. During your six to nine month internships you work in a lively research environment during which you will gain hands-on experience of biomedical research in Infection and Immunity. We believe that understanding both pathogens and host reactions provides deeper insight into the mechanisms of illness, so you will complete internships in both infection and immunity.

The annual scientific symposium is a particular highlight. This symposium is organised by Master’s students and features talks by international experts and poster presentations by second year Master’s Infection and Immunity students on their own areas of research.

CAREER IN INFECTION AND IMMUNITY

As a graduate of this programme, you will have the multidisciplinary skills and knowledge needed to undertake research that will help prevent, diagnose, and treat infectious diseases and immune disorders. The majority of our alumni continues their career as a PhD-student in the field.



Read less
The objectives of this course are to equip those intending to pursue a career in academic or industrial research with the required knowledge and skills, and to provide a solid foundation for those who aim to go on to study at PhD level. Read more

Overview

The objectives of this course are to equip those intending to pursue a career in academic or industrial research with the required knowledge and skills, and to provide a solid foundation for those who aim to go on to study at PhD level.

During the course you will develop an in-depth understanding of the structure and function of viruses and the processes of viral infection and viral diseases at the molecular level.

The course also provides training in laboratory and research skills in a supportive learning environment.

Two parts of the course:

The course is comprised of two parts, a taught component, which is given over the first two terms (approximately 5 months) and a full-time laboratory based research project (7 months) which is carried out over the remainder of the session. The taught component is comprised of lectures, laboratory practical’s, tutorials and student presentations and covers the most important aspects of viruses and viral diseases under the 6 topic headings.

Testing of the knowledge acquired is through a combination of written examinations, assessed coursework in the form of laboratory write-ups and essays (Element 2), and the individual research project dissertation and viva (Element 2).

Course content

Introductory Core Lecture Programme

Virus Architecture and Virus Interactions with Cells

Virus Genomes, Gene Expression and Replication

Host Responses to Virus Infection

Diagnosis, Vaccines and Therapies

Epidemiology, Transmission and Evolution of Viruses

You can apply online

http://www.imperial.ac.uk/study/pg/apply/how-to-apply/

Read less
Antimicrobial resistance is an urgent threat to healthcare globally and St George’s is one of the first universities to offer a unique specialist pathway to support important research in this area. Read more
Antimicrobial resistance is an urgent threat to healthcare globally and St George’s is one of the first universities to offer a unique specialist pathway to support important research in this area.

Highlights

-Shared campus with one of the largest teaching hospitals in the UK.
-Expertise in clinical, epidemiological and laboratory research within the University and St George’s Hospital

Antimicrobial Resistance Module

The 30 credit specialist module will give you the opportunity to study antimicrobial resistance (AMR), with a particular focus on healthcare impact, genetic technologies and interventions to reduce AMR. You will explore the major AMR problems, and the strategies needed to reduce the current and future AMR burden.

You will gain insight into how different interventions may be more effective in reducing different AMR pathogens and will take advantage of active research taking place at St George’s to work on specific topics including AMR in tuberculosis, MRSA, sexually transmitted infections and HIV.

There will be an opportunity to learn bioinformatics techniques, new sequencing technologies and ‘omics’ methodologies and the enormous impact that genetics is having on understanding the epidemiology, selection and evolution of AMR pathogens. There will be a series of sessions focusing on strategies to reduce AMR such as rapid diagnostics, antibiotic stewardship, dosing, new drugs, vaccines and phage applications.

Careers

The course is highly effective for accelerating your development within your general healthcare career. As a direct result of the depth and quality of the academic research that you’ll undertake on your nin8e month project, you will also be in primary position when it comes to successfully applying for PhDs.

Application

Apply at https://sgul.ac.uk/study/postgraduate/taught-degrees-postgraduate/biomedical-science-mres-antimicrobial-resistance/apply

Read less
Are you a recent graduate, scientist, engineer or manager looking to develop your professional skills in multidisciplinary biotechnology and eager for a future in related sectors? The MSc in Biotechnology,. Read more
Are you a recent graduate, scientist, engineer or manager looking to develop your professional skills in multidisciplinary biotechnology and eager for a future in related sectors? The MSc in Biotechnology,
Bioprocessing and Business Management opens the door to these opportunities.

The course is delivered in partnership with our industry partners and Warwick Business School. During your studies you’ll develop a new sense of business acumen and gain in-depth knowledge of the underlying science and processing technologies. You’ll have access to specialised language classes, as well as a personal mentor who will help to improve your academic writing.

When you graduate, you’ll be ready to enter managerial and academic roles in several sectors, including the pharmaceutical industry, whether in large multinational companies or small to medium-sized enterprises.

Course structure

The course is a full time, twelve month taught programme with modular content, based around three strands:-
-Business Management
-Biotechnology & Molecular Biology
-Bioprocessing

The course programme focuses on:
-Manufacture of biochemicals, pharmaceuticals, devices and materials
-Genetic engineering and the fundamentals of biotechnology
-Business management, economics and finance
-Marketing management
-Commercialisation of products, IP
-Food, biotechnology and microbiological processing
-Fuels and energy
-Industries based on renewable and sustainable resources
-Production technologies
-Plant design and economic analysis

Students will be required to complete nine core modules. They must also select a further three elective modules. Teaching will be by interactive lectures, short question & answer sessions and small group interactive workshops/tutorials. Individual and team learning will be used for case study analysis.

All students will be required to undertake a project dissertation. Students will be encouraged to propose their own project title (selection subject to availability of an appropriate supervisor) although a range of potential titles will be offered. Projects will be non-laboratory based and generally undertaken at the University of Warwick under the supervision of an approved tutor.

Core Modules

-The fundamentals of biotechnology
-Molecular biology and genetic engineering
-Biochemical engineering
-Bioproduct plant design and economic analysis
-Business strategy
-Accounting and financial management
-Marketing management
-Entrepreneurship & commercialisation
-Biopharmaceutical product & clinical development
-Project

Elective Modules

(Availability dependent on demand)
-Microbiomics & metagenomics
-Environmental protection, risk assessment and safety
-Impact of biotechnology on the use of natural resources
-Fundamental principles of drug discovery
-E-business: Technology and management
-Chemotherapy of infectious disease
-Vaccines and gene therapy
-Laboratory Skills

Assessment

One third of the final mark will be derived from the project dissertation.

Two thirds of the final mark will be derived from assessments of the 9 core and 3 elective modules. Modules will be assessed by means of a combination of written course work, individual/group seminar presentations and a multi-choice or short answer examination. These assessments will take place during or shortly after completion of each module.

Read less
Whether you are a new graduate or already employed and seeking to further your career prospects, this course offers a solid career development path. Read more

Whether you are a new graduate or already employed and seeking to further your career prospects, this course offers a solid career development path. You can also choose this course if you wish to pursue research in biotechnology at PhD level.

Biotechnology is the application of biological processes and is underpinned by • cell biology • molecular biology • bioinformatics • structural biology. It encompasses a wide range of technologies for modifying living organisms or their products according to human needs.

Applications of biotechnology span medicine, technology and engineering.

Important biotechnological advances including

  • the production of therapeutic proteins using cloned DNA, for example insulin and clotting factors
  • the application of stem cells to treat human disease
  • the enhancement of crop yields and plants with increased nutritional value
  • herbicide and insect resistant plants
  • production of recombinant antibodies for the treatment of disease
  • edible vaccines, in the form of modified plants
  • development of biosensors for the detection of biological and inorganic analytes

You gain

  • up-to-date knowledge of the cellular and molecular basis of biological processes
  • an advanced understanding of DNA technology and molecular biotechnology
  • knowledge of developing and applying biotechnology to diagnosis and treatment of human diseases
  • practical skills applicable in a range of bioscience laboratories
  • the transferable and research skills to enable you to continue developing your knowledge and improving your employment potential

The course is led by academics who are actively involved in biotechnology research and its application to the manipulation of proteins, DNA, mammalian cells and plants. Staff also have expertise in the use of nanoparticles in drug delivery and the manipulation of microbes in industrial and environmental biotechnology.

You are supported throughout your studies by an academic advisor who will help you develop your study and personal skills.

What is biotechnology

Biotechnology is the basis for the production of current leading biopharmaceuticals and has already provided us with the 'clot-busting' drug, tissue plasminogen activator for the treatment of thrombosis and myocardial infarction. It also holds the promise of new treatments for neurodegeneration and cancer through recombinant antibodies.

Genetically modified plants have improved crop yields and are able to grow in a changing environment. Manipulation of cellular organisms through gene editing methods have also yielded a greater understanding of many disease states and have allowed us to understand how life itself functions.

Course structure

You begin your studies focusing on the fundamentals of advanced cell biology and molecular biology before specialising in both molecular and plant biotechnology. Practical skills are developed throughout the course and you gain experience in molecular biology techniques such as PCR and sub cloning alongside tissue culture.

Core to the program is the practical module where you gain experience in a range of techniques used in the determination of transcription and translational levels, for example.

All practicals are supported by experienced academic staff, skilled in the latest biotechnological techniques.

Research and statistical skills are developed throughout the program. Towards the end of the program you apply your skills on a two month research project into a current biotechnological application. Employability skills are developed throughout the course in two modules.

The masters (MSc) award is achieved by successfully completing 180 credits.

The postgraduate certificate (PgCert) is achieved by successfully completing 60 credits.

The postgraduate diploma (PgDip) is achieved by successfully completing 120 credits. 

Core modules:

  • Cell biology (15 credits)
  • Biotechnology (15 credits)
  • Plant biotechnology (15 credits)
  • Molecular biology (15 credits)
  • Applied biomedical techniques (15 credits)
  • Professional development (15 credits)
  • Research methods and statistics (15 credits)
  • Research project (60 credits)

Optional modules :

  • Human genomics and proteomics (15 credits)
  • Cellular and molecular basis of disease (15 credits)
  • Cellular and molecular basis of cancer (15 credits)

Assessment

As students progress through the course they are exposed to a wide range of teaching and learning activities. The assessment strategy of the postgraduate course considers diverse assessment methods. Some modules offer dedicated formative feedback to aid skills development with assessments going through several rounds of formative tutor and peer feedback. Summative assessment methods are diverse, with examinations present in theory-based modules to test independent knowledge and data analysis. Several modules are entirely coursework-based, with a portfolio of skills such laboratory practical's and research proposals generated throughout the course forming the summative tasks. In all cases, the assessment criteria for all assessed assignments are made available to student prior to submission. 

Employability

The course is suitable for people wishing to develop their knowledge of molecular and cell biotechnology and its application to solving health and industrial problems.

You can find career opportunities in areas such as

  • biotechnology research
  • medical research in universities and hospitals
  • government research agencies
  • biotechnology industry
  • pharmaceutical industry.

Students on this course have gone on to roles including experimental officers in contract research, research and development in scientists, diagnostics specialists and applications specialists. Many of our graduates also go on to study for PhDs and continue as academic lecturers.



Read less
Despite incredible advances in medicine, there is still plenty of work to be done in the 21st century to create healthier communities across the globe – and microbiologists are leading the way. Read more

Despite incredible advances in medicine, there is still plenty of work to be done in the 21st century to create healthier communities across the globe – and microbiologists are leading the way.

Tuberculosis and cholera still devastate populations around the world. New and deadly strains of influenza are appearing. Zika virus is spreading rapidly with warmer global temperatures – as are other parasitic diseases.

For almost a century, we’ve relied on vaccines and antibiotics to prevent and treat infectious disease. But as new pathogens emerge, and antimicrobial drug resistance spreads, innovative approaches are needed. The stakes for microbiologists are higher than ever.

GCU’s MSc Clinical Microbiology will give you the expertise you need to help conquer these challenges – building knowledge, advancing cures and contributing to the common good.

The curriculum takes a scientific approach to the field of clinical microbiology, keeping it career-focused with an emphasis on research and development.

  • Explore principles and practice of bacteriology, virology, parasitology and mycology
  • Examine the disease process: transmission of pathogens, diagnosis and treatment
  • Study the prevention of infectious disease

The programme brings together lectures, seminars and practical laboratory classes, ensuring you’ll acquire both cutting-edge theoretical knowledge and hands-on practical skills. You’ll keep pace with the latest advances in microbiology – including the big breakthroughs happening now in the top microbiology labs across the world.

Finally, you’ll undertake a laboratory-based research project with real-world impact, practising the skills required of a successful independent researcher in clinical microbiology.

What you will study

(Re)Emerging Infectious Disease; Microbial Pathogenicity; Medical Microbiology; Skills for Professional Practice for Biosciences; Applied Molecular Microbiology; Microbial Genetics; Case Studies in Infectious Diseases; and Research Project.

Graduate prospects

Through GCU’s MSc Clinical Microbiology, you will acquire the skills necessary for success in this highly competitive and important field. 

With an understanding of this fast-changing sector and in-demand lab experience, our graduates make competitive candidates for jobs in health, medicine and life sciences, and in university and industry research departments. You’ll also be well prepared to pursue further study at the PhD level.



Read less

Show 10 15 30 per page



Cookie Policy    X