• University of Glasgow Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Coventry University Featured Masters Courses
King’s College London Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Cass Business School Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Northumbria University Featured Masters Courses
"unmanned" AND "vehicles"…×
0 miles

Masters Degrees (Unmanned Vehicles)

  • "unmanned" AND "vehicles" ×
  • clear all
Showing 1 to 9 of 9
Order by 
From software agents used in networking systems to embedded systems in unmanned vehicles, intelligent systems are being adopted more and more often. Read more
From software agents used in networking systems to embedded systems in unmanned vehicles, intelligent systems are being adopted more and more often. This programme will equip you with specialist knowledge in this exciting field and allow you to explore a range of topics in computer science.

Core modules will give you a foundation in topics like systems programming and algorithms, as well as the basics of machine learning and knowledge representation. You’ll also choose from optional modules focusing on topics like bio-inspired computing or text analytics, or broaden your approach with topics like mobile app development.

You’ll gain a broad perspective on intelligent systems, covering evolutionary models, statistical and symbolic machine learning algorithms, qualitative reasoning, image processing, language understanding and bio-computation as well as essential principles and practices in the design, implementation and usability of intelligent systems.

Read less
Aerospace systems are the future of the aerospace industry and constitute the major component of all modern aircraft. They are the essential onboard systems that ensure the safe and accurate operation of all aerospace vehicles, from civil passenger planes to sophisticated unmanned aerial vehicles. Read more
Aerospace systems are the future of the aerospace industry and constitute the major component of all modern aircraft. They are the essential onboard systems that ensure the safe and accurate operation of all aerospace vehicles, from civil passenger planes to sophisticated unmanned aerial vehicles.

Why this programme

◾The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having internationally recognised expertise in all areas of Aeronautics and Aerospace Systems.
◾The University of Glasgow is one of the few institutions in the UK, and the only University in Scotland, to offer an Aerospace Systems MSc.
◾Aeronautical engineering at the University of Glasgow is consistently highly ranked recently achieving 10th in the UK and 1st in Scotland (Complete University Guide 2017).
◾If you are an aeronautical engineering or avionics graduate wanting to improve your skills and knowledge; a graduate of another engineering discipline, mathematics or physics and you want to change field; looking for a well-rounded postgraduate qualification in electronics & electrical engineering to enhance your career prospects; this programme is designed for you.
◾Students in this programme can benefit from access to our outstanding facilities: including several wind tunnels, a flight simulation lab, an autonomous unmanned vehicle (UAV) laboratory, helicopter test rig laboratories and computer labs for modelling and simulation.

Programme structure

Modes of delivery of the MSc in Aerospace Systems include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

The summer period is dedicated to project work, with either academic or industrial placements providing the context for your project.

Semester 1 core courses
◾Aircraft flight dynamics
◾Control M
◾Navigation systems
◾Simulation of aerospace systems
◾Space flight dynamics 1.

Semester 2 core courses
◾Autonomous vehicle guidance systems
◾Fault detection, isolation and reconfiguration
◾Radar and electro-optic systems
◾Robust control 5.
◾Aerospace systems team design project.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Aerospace Systems. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Accreditation

MSc Aerospace Systems is accredited by the Royal Aeronautical Society (RAeS)

Industry links and employability

◾You will be introduced to this exciting multi-disciplinary area of technology, gaining expertise in autonomous guidance and navigation, advanced aerospace control, simulation and simulators, fault detection and isolation, electro-optic and radar systems, and space systems.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, advising on projects, curriculum development, and panel discussion.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the aerospace industry.

Career prospects

Career opportunities include aerospace, defence, laser targeting systems, radar development, electro-optics, autonomous systems and systems modelling.

Graduates of this programme have gone on to positions such as:
Software Engineer at Hewlett-Packard
Avionic and Mission System Engineer at Qinetiq
Engineering Corporal & Driver at Hellenic Army.

Read less
The Aircraft Design option of the MSc in Aerospace Vehicle Design (AVD) aims to provide a comprehensive overview of aircraft performance, structures and systems. Read more

Course Description

The Aircraft Design option of the MSc in Aerospace Vehicle Design (AVD) aims to provide a comprehensive overview of aircraft performance, structures and systems. A holistic teaching approach is taken to explore how the individual elements of an aircraft can be designed and integrated using up-to-date methods and techniques. You will learn to understand how to select specific systems such as fuel systems, and their effect on the aircraft as a whole.
This course is suitable for students with a background in aeronautical or mechanical engineering or those with relevant industrial experience.

Overview

Modern aircraft design focuses on the integration of new technologies and systems, with current and advanced configurations to lead us towards environmentally friendly and cost effective aviation in the civil arena and high performance and effective aviation in the military arena. This includes new structures, materials and manufacturing processes. New aircraft design is essential to address issues such as carbon footprint reduction, lower noise pollution and improved passenger comfort as well as contributing to national security.

Our work in this field covers all flying vehicles including civil and military aircraft, helicopters, Unmanned Aerial Vehicle Systems (UAVS), ultra-high capacity airlines and space vehicles. Current research being undertaken includes:

Advanced Configurations – such as blended wing and morphing wing aircraft design. This includes both fixed wing and rotorcraft vehicles.

Advanced Systems Integration – such as Distributed Propulsion using hydrogen or alternative fuels for power and high temperature superconducting materials technology.

Advanced Materials and Manufacturing Processes – exploring the benefits achieved through the application of advanced composite materials.

Advanced Design Methodologies – developing techniques to ensure that optimum designs are achieved.

Airworthiness Compliance – ensuring new designs demonstrate the same safety requirements as traditional aircraft.

Operational Aspects – cost, performance, reliability and maintainability are important features of aircraft design as well as advanced techniques such as Integrated Vehicle Health Management (IVHM). Vulnerability and susceptibility also have a major impact.

Biomimetics – taking lessons from nature for example insects and birds, and their application in aviation such as launch, recovery and flight.

English Language Requirements

If you are an international student you will need to provide evidence that you have achieved a satisfactory test result in an English qualification. The minimum standard expected from a number of accepted courses are as follows:

IELTS - 6.5
TOEFL - 92
Pearson PTE Academic - 65
Cambridge English Scale - 180
Cambridge English: Advanced - C
Cambridge English: Proficiency - C

In addition to these minimum scores you are also expected to achieve a balanced score across all elements of the test. We reserve the right to reject any test score if any one element of the test score is too low.

Structure

The Aircraft Design option consists of a taught component, a group design project and an individual research project.

Individual Project

The individual research project aims to provide the training necessary for you to apply knowledge from the taught element to research, and takes place from March to September. The project may be theoretical and/or experimental and drawn from a range of topics related to the course and suggested by teaching staff, your employer or focused on your own area of interest.

Group Project

The extensive group design project is a distinctive and unique feature of this course. This teamwork project takes place from October to March, and recreates a virtual industrial environment bringing together students with various experience levels and different nationalities into one integrated design team.

Each team member is given responsibility for the detailed design of a significant part of the aircraft, for example, forward fuselage, fuel system, or navigation system. The project will progress from the conceptual phase through to the preliminary and detail design phases. You will be required to run project meetings, produce engineering drawings and detailed analyses of your design. Problem solving and project coordination must be undertaken on a team and individual basis. At the end of the project, groups are required to report and present findings to a panel of 200 senior engineers from industry.

This element of the course is both realistic and engaging, and places the student group in a professional role as aerospace design engineers. Students testify that working as an integrated team on real problems is invaluable and prepares them well for careers in a highly competitive industry.

Assessment

The taught modules (10%) are assessed by an examination and/or assignment. The Group Project (50%) is assessed by a written technical report and oral presentations. The Individual Research Project (40%) forms the remainder of the course.

Career opportunities

The MSc in Aircraft Design is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

This course prepares graduates for careers as project design engineers, systems design, structural design or avionic engineers in aerospace or related industries, with the aim of progressing to technical management/chief engineer. Graduates from the MSc in Aircraft Design can therefore look forward to a varied choice of challenging career opportunities in the above disciplines.

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Typical student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce.

For further information

on this course, please visit our course webpage http://www.cranfield.ac.uk/Courses/Masters/AVD-Option-Aircraft-Design

Read less
This course provides education and training in selected weapons systems. The course is intended for officers of the armed forces and for scientists and technical officers in government defence establishments and the defence industry. Read more

Course Description

This course provides education and training in selected weapons systems. The course is intended for officers of the armed forces and for scientists and technical officers in government defence establishments and the defence industry. It is particularly suitable for those who, in their subsequent careers, will be involved with the specification, analysis, development, technical management or operation of weapons systems.

The course is accredited by the Institution of Mechanical Engineers and will contribute towards an application for chartered status.

Overview

The Gun System Design MSc is part of the Vehicle and Weapons Engineering Programme. The course is designed to provide an understanding of the technologies used in the design, development, test and evaluation of gun systems.

This course offers the underpinning knowledge and education to enhance the student’s suitability for senior positions within their organisation.

Each individual module is designed and offered as a standalone course which allows an individual to understand the fundamental technology required to efficiently perform the relevant, specific job responsibilities. The course provides students with the depth of knowledge to undertake engineering analysis or the evaluation of relevant sub systems.

Duration: Full-time MSc - one year, Part-time MSc - up to three years, Full-time PgCert - one year, Part-time PgCert - two years, Full-time PgDip - one year, Part-time PgDip - two years

English Language Requirements

If you are an international student you will need to provide evidence that you have achieved a satisfactory test result in an English qualification. The minimum standard expected from a number of accepted courses are as follows:

IELTS - 6.5
TOEFL - 92
Pearson PTE Academic - 65
Cambridge English Scale - 180
Cambridge English: Advanced - C
Cambridge English: Proficiency - C

In addition to these minimum scores you are also expected to achieve a balanced score across all elements of the test. We reserve the right to reject any test score if any one element of the test score is too low.

We can only accept tests taken within two years of your registration date (with the exception of Cambridge English tests which have no expiry date).

Course overview

This MSc course is made up of two essential components, the equivalent of 12 taught modules (including some double modules, typically of a two-week duration), and an individual project.

Modules

MSc and PGDip students take 11 compulsory modules and 1 optional module.
PGCert students take 4 compulsory modules and 2 optional modules.

Core:
- Element Design
- Fundamentals of Ballistics
- Finite Element Methods in Engineering
- Gun System Design
- Light Weapon Design
- Military Vehicle Propulsion and Dynamics
- Modelling, Simulation and Control
- Solid Modelling CAD
- Survivability
- Vehicle Systems Integration

Optional:
- Guided Weapons
- Military Vehicle Dynamics
- Reliability and System Effectiveness
- Uninhabited Military Vehicle Systems

Individual Project

In addition to the taught part of the course, students can opt either to undertake an individual project or participate in a group design project. The aim of the project phase is to enable students to develop expertise in engineering research, design or development. The project phase requires a thesis to be submitted and is worth 80 credit points.

Examples of recent titles are given below.
- Use of Vibration Absorber to help in Vibration
- Validated Model of Unmanned Ground Vehicle Power Usage
- Effect of Ceramic Tile Spacing in Lightweight Armour systems
- Investigation of Suspension System for Main Battle Tank
- An Experimental and Theoretical Investigation into a Pivot Adjustable Suspension System as a Low Cost Method of Adjusting for Payload
- Analysis of Amphibious Operation and Waterjet Propulsions for Infantry Combat Vehicle.
- Design of the Light Weapon System
- Analysis of the Off-road Performance of a Wheeled or Tracked Vehicle

Group Project

- Armoured Fighting Vehicle and Weapon Systems Study
To develop the technical requirements and characteristics of armoured fighting vehicles and weapon systems, and to examine the interactions between the various sub-systems and consequential compromises and trade-offs.

Syllabus/curriculum:
- Application of systems engineering practice to an armoured fighting vehicle and weapon system.
- Practical aspects of system integration.
- Ammunition stowage, handling, replenishment and their effects on crew performance and safety.
- Applications of power, data and video bus technology to next generation armoured fighting vehicles.
- Effects of nuclear, biological and chemical attack on personnel and vehicles, and their survivability.

- Intended learning outcomes
On successful completion of the group project the students should be able to –
- Demonstrate an understanding of the engineering principles involved in matching elements of the vehicle and weapon system together.
- Propose concepts for vehicle and weapon systems, taking into account incomplete and possibly conflicting user requirements.
- Effectively apply Solid Modelling in outlining proposed solutions.
- Interpret relevant legislation and standards and understand their relevance to vehicle and weapon systems.
- Work effectively in a team, communicate and make decisions.
- Report the outcome of a design study orally to a critical audience.

Assessment

Continuous assessment, examinations and thesis (MSc only). Approximately 30% of the assessment is by examination.

Career opportunities

Many previous students have returned to their sponsor organisations to take up senior programme appointments and equivalent research and development roles in this technical area.

For further information

On this course, please visit our course webpage - https://www.cranfield.ac.uk/Courses/Masters/Gun-Systems-Design

Read less
The Aerospace Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of aeronautical engineering. Read more
The Aerospace Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of aeronautical engineering. Particular prominence is given to Sustainable Aviation, Advanced Materials and Processes, Experimental Methods and Techniques, Computational Fluid Dynamics, Structural Analysis and Simulation, Flight Dynamics and Simulation, and Advanced Aircraft Systems, in particular Unmanned Aerial Vehicles.

An emphasis on applied technical work will strengthen the engineering development skills of students from an academic background. The programme is delivered by a specialist team of academics. Access to state of the art laboratory and computing facilities within the new Engineering and Computing building. Personal tutor support throughout the postgraduate study. Excellent links with a number of industrial organisations enable access to the latest technology and real-world applications.

WHY CHOOSE THIS COURSE?

The work carried out on this course will provide the demonstrable expertise necessary to help secure professional level employment in related industries.

The Aerospace Engineering MSc curriculum consists of eight mandatory core topics and a substantial MSc project. Successful completion of all elements leads to the award of MSc in Aerospace Engineering. Completion of the taught modules without a project leads to the award of a Post Graduate Diploma.

WHAT WILL I LEARN?

The mandatory study topics are as follows:
-Mathematical modelling in Aerospace Engineering
-Unmanned Aerial Vehicle Systems (UAV)
-Experimental Methods and Techniques
-Computational Fluid Dynamics (CFD)
-Advanced Materials and Processes
-Design and analysis of Aerospace structures
-Flight Dynamics and Simulation
-Project Management
-Individual Project

The substantial individual project gives students the opportunity to work on a detailed area of related technology alongside an experienced academic supervisor. Some projects are offered in conjunction with the work of the Faculty’s research centres or industry. Typical project titles include:
-Integration of Advanced Materials into Aircraft Structures
-Sustainable Aircraft Development and Design
-Intelligent Power Generation
-UAV SWARM Systems

You will have access to:
-Unique Flight Simulator Suite (3 flight simulators, 2 UAV ground control systems plus the associated UAV,1 Air Traffic Control unit);
Harrier Jump Jet;
-New bespoke Mercedes-Petronas low speed wind tunnel and associated measurement;
-Faculty workshop (metal/woodwork), Composites Laboratory, Metrology Laboratory, Electrical Laboratory, Communications and Signal Processing Laboratory, Cogent Wireless Intelligent Sensing Laboratory
-Faculty Open Access Computer Facilities

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

The specialist topics studied on the programme will prepare you for work in specialist companies involved with aeronautical engineering. There are also many roles in related industries that rely on the technology. Possible destinations include:
-Design, Development, Operations and Management;
-Projects/Systems/Structural/Avionics Engineers.

Typical student destinations include:
-BAE Systems
-Rolls-Royce
-Airbus
-Dassult

Opportunities also exist to complete a PhD research degree upon completion of the master’s course:
-Research at Coventry University
-Cogent Computing
-Control Theory and Applications Centre
-Distributed Systems and Modelling

Aerospace Engineering MSc has been developed to improve upon the fundamental undergraduate knowledge of aerospace/aeronautical students and help mechanical students learn more about the application of their subject to aircraft. The whole aerospace/aviation industry is committed to a more sustainable and a more efficient future. The techniques, methods and subjects covered in this degree explore the ever changing industrial environment in more detail.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
Completing this Masters degree at Liverpool John Moores University will give you the knowledge and practical skills to become a specialist in Unmanned Aerial Vehicles or UAVs. Read more
Completing this Masters degree at Liverpool John Moores University will give you the knowledge and practical skills to become a specialist in Unmanned Aerial Vehicles or UAVs.

•Complete this masters degree in one year full time, two years part time
•Highly practical Masters degree
•Secure understanding of legal and regulatory frameworks
•Gain the expertise to exploit this exciting new technology in a wide range of industries in the UK, Europe and around the world
•Curriculum informed by ongoing research and consultancy in drone technology
•Build and test fly your own multi-rotor drone

This taught masters degree will give you the practical, theoretical and regulatory knowledge to lead and undertake all aspects of the implementation and operation of UAV systems within a commercial enterprise in a safe, efficient and legal manner.

You will also secure essential practical skills in constructing, flying and operating drone systems. You will build your own, professional standard, multi-rotor drone system; test fly this system and then use it for practical assignments during the programme, including undertaking a research dissertation project. At the end of the course you can take your drone system with you and use as part of your career.

In today’s world, to be commercially successful in drone applications, you must be safe and operating totally with the aviation law. That’s why the programme includes a specialist module on UAV Operations and the Law. Not only will you know the legal and regulatory framework, more importantly you will learn how to interpret it so that you can design complex and challenging UAV operations within the current legal and regulatory framework.

Please see guidance below on core and option modules for further information on what you will study.
Level 7
UAV Technology and Operations: This will teach you the basics of the technology at systems level. As part of this module you will learn to fly UAVs under experienced qualified instructors, first on simulators and then out in the field.
Drone Construction: You build your own multi-rotor drone, complete with flight controller, GPS systems and radio control system. Under the guidance of the teaching team, you will test and then fly your drone in a series of increasingly demanding exercises.
Research Methods: In order to obtain your Masters degree you will have to undertake an individual research project and write it up as a dissertation. In this module you will learn the research, presentation and critical appraisal skills you will need to successfully complete your project.
Advanced UAV Technology and Operations: Practical flying and operating experience, now in more advanced scenarios, is an important element of this module with further simulator exercises and another 5 full-day flying sessions.
UAV Operations and the Law: Its important to know the legal and regulatory framework within which UAVs operate, to become qualified for commercial UAV use its essential. Here you will learn about the law, the guidelines and get to practice your understanding with 'moot' exercises – debating complex operational scenarios.
Optical Measurement and Sensing: Of all the data gathering devices carried by UAV’s the overwhelming majority are optical and to get the best results you will need to understand this technology. Its not just video cameras; you need to fully understand technologies including stereo photogrammetry, LIDAR, structured light and shape from motion systems if you are to be effective in data gathering from drones.
Dissertation Project: On successful completion of the taught part of the programme you will complete an individual research or advanced practice project. Project topics can be self-generated, or drawn from a range of real-world applications originating from outside of the university among the research team’s industrial contacts.

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Academic Framework reviews are conducted by LJMU from time to time to ensure that academic standards continue to be maintained. A review is currently in progress and will be operational for the academic year 2016/2017. Final details of this programme’s designated core and option modules will be made available on LJMU’s website as soon as possible and prior to formal enrolment for the academic year 2016/2017.

Please email if you require further guidance or clarification.

Read less
The recent growth in the desire to ‘build’ smart cities requires employees who understand the latest an emerging smart networking technologies including… Read more
The recent growth in the desire to ‘build’ smart cities requires employees who understand the latest an emerging smart networking technologies including Cloud Computing, Virtual Networking, Data Centre Management, Internet of things (IoT), 4G/5G Mobile Networks, Mobile App Development, Unmanned Aerial Vehicles (UAVs), and Data and Network Security, which are creating new opportunities for business education, research and many other aspects of our daily lives.

The course aims to produce graduates with the vision, knowledge and skills to apply these latest smart networking technologies to optimise the ICT networking infrastructure for businesses to design innovative networking solutions, and to develop smart networking-enabled applications and services.

It aims to provide you with the necessary current knowledge and skills to allow you to make an immediate contribution to relevant industries and research environments. The blend of theory and practical applications in smart networking will enhance your employability.

There are six entry points through the year. This allows you to start when it is most suitable. The entry points are:

• September
• November
• January
• March
• June
• July

Visit the website: https://www.beds.ac.uk/howtoapply/courses/postgraduate/next-year/sensors-and-smart-cities#about

Course detail

The expertise that the University of Bedfordshire has in the related areas of smart cities, and the work it has undertaken as part of a world-leading smart city project called MK:Smart means that you will be at the forefront of developments in this exciting area.

Modules

• Wireless Embedded Systems
• Information Governance and Compliance
• Smart Infrastructure and Data Architecture
• Research Methodologies and Project Management
• MSc Project – Sensors and Smart Cities

Assessment

Most units are assessed with examinations and coursework. Details can be found in the individual module specifications. Assessment is carried out according to context and purpose and recognises that you may exhibit different aptitudes in different forms of assessment:

• Most of the units require collaborative assessments that ask students to form teams and work on a selected project or research topics. However, students will be assessed individually based on their contributions to the overall work.
• Oral presentations are also important assessment method in many units that require student to present the projects developed or researched outlined by the assignment specifications.
• There are formal unseen written examinations for two 30 credit units.
• Individual project that can formed as different ways with conjunctions with their supervisors but has to be suitable to the course scope.

Careers

Employability is understood widely as encompassing knowledge, skills and a professional attitude which your tutors expect you to display in all your units. All University of Bedfordshire courses aim to help you to be prepared for the world of work. The Careers Service is there to support you throughout the three years of your study. On the one hand, our curriculum gives you skills that are valuable for a career within Finance in particular but is also relevant for a much wider range of applications such as information analysis or decision support systems. On the other hand, the department will fully use our industry collaboration connections and resources to serve the course delivery. The collaboration industry partners include car manufactory, MK:SmartCity project and airport data security project and so on. These industry collaborations will well help students developing their real world problem solving skills and extended their employability.

The final year unit `Professional Project Management in particular requires you to work in a team so as to apply a current project management methodology that embraces all of these knowledge areas in an integrated way while going through the stages of planning, execution and project control; you will work as part of a team, take responsibility and make autonomous decisions that impact on the project team performance.

Funding

For information on available funding, please follow the link: https://www.beds.ac.uk/howtoapply/money/scholarships/pg

How to apply

For information on how to apply, please follow the link: https://www.beds.ac.uk/howtoapply/course/applicationform

Read less
With the MSc Air Transport Management you can align, develop or transform your career. Study across several locations on this industry-accredited global programme. Read more
With the MSc Air Transport Management you can align, develop or transform your career. Study across several locations on this industry-accredited global programme.

Who is it for?

This programme is for those who have been working within the aviation industry (for at least two years). Current students include pilots, air traffic controllers, maintenance staff, engineers and the majority have a license/professional education. We also welcome students with a military background. This Air Transport Management MSc programme is tailored towards those working who cannot attend regular university schedules.

This course is compatible with The MoD's Enhanced Learning Credits Administration Service (ELCAS) - an initiative to promote lifelong learning amongst members of the UK Armed Forces. If you are/have been a member of the UK Armed Forces, you could be entitled to financial support to take this course.

Objectives

Airlines, airports and other aviation companies are mostly led by license holders, pilots, aircraft engineers, air traffic controllers, dispatchers and many more. This means the demand for management knowledge is growing. Our programme gives students the opportunity to freshen their knowledge, learn the latest management techniques and build a lifelong network of peers.

With unexpected events affecting the aviation industry as well as increased competition and technological and regulatory changes, every organisation needs a core of up-to-date managers ready to succeed into leadership positions. The programme is designed to deliver individual success. First initiated by the Honourable Company of Airline Pilots (HCAP) to increase the career opportunities of aircrew, today the programme is recognised as a key resource within the aviation industry and as a benchmark for innovation.

Academic facilities

As a student you will benefit from learning within modern lecture theatres (equipped with the latest interactive AV systems) and modern IT laboratories.

A dynamic virtual learning environment (Moodle) gives you access to online assessment and communication tools as you study and you can work with specialist School facilities including:
-A flight deck and flight test course
-A320 procedure training
-Wind tunnels and micro turbines
-Optical compressors and fuel injection systems.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will be taught by industry professionals and leaders in their field of expertise including the former British Airways human resources director in one module, and the industry’s crisis management expert in safety or the chief executive officer of a major maintenance facility in another.

Teaching takes place across global locations including London, Dubai and Frankfurt. Each module, including the Induction Workshop, is taught over a three day period.

This programme gives you a recognised industry qualification, control of your own career and the ability to contribute to air transport management. The programme is very flexible and you can study while you work.

At the end of the programme you will have improved your:
-Presentation/speaking skills - through regular opportunities within each module and the project.
-Report writing and analytical skills - through coursework and the project.
-Personal management skills - through the careful use of resources to complete assignments on time.

The successful MSc graduate will have:
-A good understanding of business analysis, finance, human motivation, and management of the air transport industry.
-A sound understanding for the national and international regulatory and commercial business environment and the ability to prepare a sound business case.
-Knowledge of aspects of fleet planning, route management, engineering and air traffic management issues.
-A proven ability to research and write a substantial analytical report.

These include:
-Being able to assimilate core themes from the talks given by a number of industry speakers, some of whom may have different positions.
-Being able to write succinct and clear English.
-Preparing a valid business case for a company and, at least as important, to know when a potential case is not viable.
-Having a wider knowledge of the interfaces of any single organisation with others in the industry.
-Being able to make a short verbal presentation and to defend a project under examination.

Assessment

Each elective is assessed by two pieces of coursework, the core modules are assessed by one piece of coursework and an examination. Each module comprises:
-Part I: Prior reading before the module where appropriate.
-Part II: Attendance at City (or other locations) for the module over three days.
-Part III: Examinations are held on the third day of the core modules.
-Part IV: Coursework is due within six weeks from the last day of the module.

Modules

We explore air transport management from a broad perspective so you will be exposed to areas as diverse as human resources, regulation, and crisis management. The academic framework has been created by the industry for the industry. There is a high degree of flexibility in terms of sequence and time frame to suit students working in airlines, air traffic control, air forces and other organisations.

Students also take on a project/dissertation in an air transport related subject, which is usually completed within six to twelve months. From developing new safety measures to social media marketing in the aviation world, students choose their own research focus and often use the project as a way into a new career. Students who choose note to do the project, or are unable to complete the programme with the five years can receive a Postgraduate Certificate pending Programme Director approval.

We cover the full spectrum of a Master of Science education, adding Management modules for the future career in aviation. The dissertation at the end of the MSc programme gives each student the opportunity to demonstrate the new research and project management qualifications achieved through the programme.

The programme is based on the successful completion of the Induction Workshop which acts as an entry pathway to the MSc. The MSc consists of three core modules and 5 electives plus the project/dissertation. Each module is taught over a three day period across global locations including London, Dubai and Frankfurt.

The dissertation at the end of the MSc programme gives each student the opportunity to demonstrate the new research and project management qualifications achieved through the programme.

Students who choose not to do the project, or are unable to complete the programme within the five years, receive a Postgraduate Certificate on successful completion of four modules, including two core modules, or a Postgraduate Diploma on successful completion of eight modules. Core modules for the Air Transport MSc are airline business, airline operations and air transport economics.

Core modules
-Airline Operations (EPM825)
-Air Transport Economics (EPM823)
-Airline Business (EPM831)

To begin your MSc, you will be required to attend the Induction Workshop (IW), which gives you a thorough introduction into Higher Education and introduces all the tools and facilities available for your MSc. You will have to write a short essay after the IW, which will be your final assessment to be accepted into City, University of London.

Elective modules - you will choose five elective modules. Each elective module is worth 15 credits.
-Active Safety Management (EPM836)
-Crisis Management (EPM828)
-Safety Risk Management (EPM973)
-Human Resource Management (EPM822)
-Psychology in Aviation Management (EPM966)
-Marketing (EPM821)
-Airline Operational Regulatory Compliance (EPM825)
-Airline Fleet Planning (EPM829)
-Developing a Business Plan (EPM969)
-Financial Accounting (EPM824)
-Sustainable Aviation (EPM975)
-Airports and Ground Handling (EPM968)
-Airworthiness (EPM897)
-Airline Maintenance (EPM906)
-Airline Revenue Management and Finance (EPM972)
-Safety Management - Tools and Methods (EPM833)
-Air Accident Investigation (EPM970)
-Leadership in Organisations (EPM971)
-Aviation Law (EPM978)
-Future Aviation Challenges - from Unmanned to Spaceflight Vehicles (EPM980)
-Reviews of Quality, Safety and Aviation Business Functions (EPM976)

Dissertation - A dissertation related to experience in the industry is required. There is a high degree of flexibility in terms of sequence and time frame to suit students working in airlines, air traffic control, air forces and other organisations.

Career prospects

This is a professional programme recognised by the aviation industry and accredited by the Royal Aeronautical Society. Airlines are increasingly expecting their managers to study the MSc from City, University of London, and our alumni network includes high-ranking individuals including the chief operating officer of Oman Air, the chief executive officer of Jet Time, the Safety Manager of Lufthansa, the Air Safety Director of ICAO and the vice president of Emirates Airbus Fleet.

Graduates may change or transform their careers as a result of the MSc. An RAF air traffic controller immediately moved into a senior training position at Eurocontrol in Brussels after completing the programme.

Read less
The recent growth in the desire to ‘build’ smart cities requires employees who understand the latest an emerging smart networking technologies including… Read more
The recent growth in the desire to ‘build’ smart cities requires employees who understand the latest an emerging smart networking technologies including Cloud Computing, Virtual Networking, Data Centre Management, Internet of things (IoT), 4G/5G Mobile Networks, Mobile App Development, Unmanned Aerial Vehicles (UAVs), and Data and Network Security, which are creating new opportunities for business education, research and many other aspects of our daily lives.

The course aims to produce graduates with the vision, knowledge and skills to apply these latest smart networking technologies to optimise the ICT networking infrastructure for businesses to design innovative networking solutions, and to develop smart networking-enabled applications and services.

It aims to provide you with the necessary current knowledge and skills to allow you to make an immediate contribution to relevant industries and research environments. The blend of theory and practical applications in smart networking will enhance your employability.

This course is offered via block delivery. There are two entry points (October and November). This allows you to start when it is most suitable

Visit the website: https://www.beds.ac.uk/howtoapply/courses/postgraduate/next-year/sensors-and-smart-cities-15-months#about

Course detail

The expertise that the University of Bedfordshire has in the related areas of smart cities, and the work it has undertaken as part of a world-leading smart city project called MK:Smart means that you will be at the forefront of developments in this exciting area.

Modules

• Wireless Embedded Systems
• Information Governance and Compliance
• Smart Infrastructure and Data Architecture
• Research Methodologies and Project Management
• MSc Project – Sensors and Smart Cities

Assessment

Most units are assessed with examinations and coursework. Details can be found in the individual module specifications. Assessment is carried out according to context and purpose and recognises that you may exhibit different aptitudes in different forms of assessment:

• Most of the units require collaborative assessments that ask students to form teams and work on a selected project or research topics. However, students will be assessed individually based on their contributions to the overall work.
• Oral presentations are also important assessment method in many units that require student to present the projects developed or researched outlined by the assignment specifications.
• There are formal unseen written examinations for two 30 credit units.
• Individual project that can formed as different ways with conjunctions with their supervisors but has to be suitable to the course scope.

Careers

Employability is understood widely as encompassing knowledge, skills and a professional attitude which your tutors expect you to display in all your units. All University of Bedfordshire courses aim to help you to be prepared for the world of work. The Careers Service is there to support you throughout the three years of your study. On the one hand, our curriculum gives you skills that are valuable for a career within Finance in particular but is also relevant for a much wider range of applications such as information analysis or decision support systems. On the other hand, the department will fully use our industry collaboration connections and resources to serve the course delivery. The collaboration industry partners include car manufactory, MK:SmartCity project and airport data security project and so on. These industry collaborations will well help students developing their real world problem solving skills and extended their employability.

The final year unit `Professional Project Management in particular requires you to work in a team so as to apply a current project management methodology that embraces all of these knowledge areas in an integrated way while going through the stages of planning, execution and project control; you will work as part of a team, take responsibility and make autonomous decisions that impact on the project team performance.

Funding

For information on available funding, please follow the link: https://www.beds.ac.uk/howtoapply/money/scholarships/pg

How to apply

For information on how to apply, please follow the link: https://www.beds.ac.uk/howtoapply/course/applicationform

Visit the MSc Sensors and Smart Cities (12 months) page on the University of Bedfordshire website for more details!

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X