• Northumbria University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
University of Manchester Featured Masters Courses
University College London Featured Masters Courses
University of Bath Featured Masters Courses
"underwriting"×
0 miles

Masters Degrees (Underwriting)

We have 6 Masters Degrees (Underwriting)

  • "underwriting" ×
  • clear all
Showing 1 to 6 of 6
Order by 
Who is it for?. If you have strong technical ability and an interest in solving business problems, becoming an actuary is one of the most rewarding career choices you can make. Read more

Who is it for?

If you have strong technical ability and an interest in solving business problems, becoming an actuary is one of the most rewarding career choices you can make. The MSc in Actuarial Science will propel you into the profession. It offers you a firm grounding in the fundamentals of actuarial science in insurance, finance and investment. You’ll undertake a detailed study of the mathematical and statistical techniques for measuring the probability and risk of future events and their financial impact on a business and/or their clients.

Objectives

On this course, you will study statistics, probability, stochastic processes, survival models, economics, finance and investment, insurance, pensions and financial contracts valuation. This broad and varied syllabus is equivalent to the Institute and Faculty of Actuaries’ Core Technical professional examinations (Subjects CT1-CT8), and enables you to gain exemptions from them.

The course is delivered via face-to-face lectures from qualified actuaries, academics and other subject-specialists, complemented by dedicated online support, easy access to faculty members, and advice on study and exam techniques. Lecturers use their commercial experience and research expertise to deliver a challenging, relevant and intellectually stimulating course.

What will you learn

  • Demonstrate mastery of mathematical problem-solving skills and fundamental concepts in statistics, probability modelling, economics, finance and investment.
  • Develop your mastery of actuarial theory used in insurance and investment.
  • Evaluate research papers from journals and professional texts to produce an independent synthesis of knowledge and ideas.
  • Demonstrate proficiency in the use of actuarial and statistical methods to solve problems in insurance and investment.
  • Evaluate and apply alternative approaches in the analysis of financial reports.
  • Develop and communicate effectively reasoned arguments on current issues relating to actuarial theory and practice.
  • Use appropriate software tools for data analysis and modelling.

Assessment

Assessment of modules on the MSc in Actuarial Science, in most cases, is by means of coursework and unseen examination. Coursework may consist of standard essays, individual and group presentations, group reports, classwork, unseen tests and problem sets. Please note that any group work may include an element of peer assessment.

Course content

We review all our courses regularly to keep them up-to-date on issues of both theory and practice.

To satisfy the requirements of the degree students must complete:

  • at least five out of eight core courses (including at least two from Term 2) and the Research Methods module (Term 1)

and either

  • five electives in Term 3
  • one elective and a Business Research Project in Term 3
  • three electives and an Applied Research Project in Term 3

Induction

During the induction period, which is compulsory, a variety of activities are offered to students, to support them in their learning and professional development. Cass Careers offers workshops with a focus on the key skills that employers are looking for, as well as preparing students for the application process. The annual MSc Careers Fair at this time provides the opportunity to meet more than 60 companies who are recruiting across many sectors including insurance, pensions, finance, energy, and other fields. Furthermore, innovative workshops are run on advanced study skills and obtaining practical insight to actuarial work.

Career pathways

Actuaries are experts in risk management. They mainly work for insurance companies, consultancy firms, banks and investment managers. They work in the areas of:

  • General Insurance
  • Health and Care
  • Investment
  • Life Insurance
  • Pensions
  • Financial Risk Management.

An actuarial career is a global professional passport. Our graduates from the MSc in Actuarial Science are well prepared to tackle actuarial and risk analyst, consultancy and underwriting roles in leading firms such as EY, PwC, KPMG, Willis Towers Watson, Munich Re, to name a few, that are as challenging as they are rewarding with starting salaries that far outstrip their peers in other industries.

A career as an actuary has been consistenly ranked within the top 10 best jobs for five years running (CareerCast)

The MSc in Actuarial Management serves as a continuation of the MSc in Actuarial Science allowing successful candidates to focus on the application of concepts learned, study the key areas of actuarial practice and choose from the various actuarial specialist subjects and attain further technical knowledge. Students taking that MSc get an opportunity to obtain further exemptions from the later Core Applications and Specialist Technical subjects of the Institute and Faculty of Actuaries.



Read less
This MSc provides a broad introduction to geohazards, together with advanced courses in seismology, volcanology, hydrogeological hazards and meteorology. Read more

This MSc provides a broad introduction to geohazards, together with advanced courses in seismology, volcanology, hydrogeological hazards and meteorology. A key goal is to provide an essential grounding in quantitative modelling that can be widely applied to several fields, from pure research to the commercial sector.

About this degree

The programme provides an introduction to the spectrum and impact of geophysical hazards, and a focus on quantitative models for hazard forecasting and assessment. Selected case studies illustrate how these models are essential for improving decision-making during emergencies, for raising the awareness of vulnerable populations, and for evaluating and implementing mitigation strategies.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (120 credits) and a research dissertation (60 credits).

Core modules

  • Geological and Geotechnical Hazards
  • Meteorological Hazards
  • Research Methods
  • Earthquake Seismology and Earthquake Hazard
  • Physical Volcanology and Volcanic Hazard
  • Meteorological, Climate and Hydrogeological Hazard

Optional modules

There are no optional modules for this programme.

Dissertation/report

All students undertake an independent research project in geophysical hazards, which culminates in a dissertation of 15,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, directed reading and practical exercises. There are excellent opportunities for field investigations in the UK and abroad. Assessment is through unseen written examinations, practical problem-solving exercises and essays. The independent research report is assessed through the dissertation and an oral presentation.

Fieldwork

Field sites for field trips are normally in Italy. The department pays for accommodation and transport in the field. Students pay to get to the field and subsistence.

Further information on modules and degree structure is available on the department website: Geophysical Hazards MSc

Careers

On graduation from this programme about one-third of students have followed careers in global insurance and re-insurance and another third have pursued research with a PhD in hazard-related studies. The remaining third have developed careers in a wide range of sectors, from non-governmental organisations, through teaching, to the fields of emergency planning and environmental management.

Recent career destinations for this degree

  • Aggregate and Catastrophe Modeller, Advent
  • Catastrophe Analyst, Talbot Underwriting
  • Graduate Trainee Reinsurance Broker, Aon
  • Catastrophe Model Analyst, Aon Benfield
  • Policy Adviser, Department for the Environment, Food and Rural Affairs

Employability

The MSc in Geophysical Hazards will provide essential training for careers in hazard assessment and risk evaluation, including: industry, from engineering to insurance; academic research; civil protection agencies and government organisations; and NGOs related to aid and development. 

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Earth Sciences is engaged in world-class research into the processes at work on and within the Earth and planets.

Graduate students benefit from our lively and welcoming environment and world-class facilities. The department hosts UCL Hazard Centre, Europe's leading multidisciplinary hazard research centre, and engages in extensive collaborative work with the Royal Institution and the Natural History Museum.

This MSc aims to include a short field trip to locations that illustrate the impact of natural hazards. Previous trips have included the Neapolitan volcanic district, the Italian Alps and the Po Delta, and the Cádiz region in south-western Spain.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Earth Sciences

92% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Climate change, increasing urbanization and mounting exposure to natural hazards are imposing growing pressure on insurers and reinsurers to seek ways of limiting exposure. Read more

Climate change, increasing urbanization and mounting exposure to natural hazards are imposing growing pressure on insurers and reinsurers to seek ways of limiting exposure. This programme offers students a better understanding of natural hazards and the means by which their impacts on the market can be mitigated or avoided.

About this degree

Strong emphasis is placed on developing an improved understanding of natural hazards – the nature of available data, the conclusions we can draw from them, limitations and relevant cutting-edge research. Content focuses on hazards of most interest to the market, most notably windstorm, flood and earthquake, but also addresses geotechnical issues such as dam and reservoir safety, radioactive waste and energy resource issues.

Students undertake modules to the value of 60 credits.

The programme consists of two taught core modules (40 credits) and an independent research project (20 credits).

Core modules

  • Geological and Geotechnical Hazards
  • Meteorological Hazards

Optional modules

There are no optional modules for this programme.

Research project/report

All students undertake an independent project, which culminates in an 8,000-word dissertation and an oral presentation.

Teaching and learning

The programme is delivered through lectures, seminars, discussions, directed reading, and problem-solving exercises. Student performance is assessed through a combination of examination and coursework in the form of essays, reports and exercises. The independent project is assessed through an 8,000-word report and an oral presentation.

Further information on modules and degree structure is available on the department website: Natural Hazards for Insurers PG Cert

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

This programme is accredited by the Chartered Insurance Institute (CII), the premier professional organisation for those working in the insurance and financial services industry.

Recent career destinations for this degree

  • Assistant Underwriter, Atrium Underwriters
  • Catastrophe Risk Specialist, Canopius
  • Pipeline Engineer, Petromap Ltd
  • Property Underwriter, Ascot Underwriting
  • Senior Castastrophe Risk Analyst, Canopius

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

Top hazard scientists at UCL and other leading academic institutions have worked with the under 35s reinsurance group and market professionals, to develop this flexible programme.

Students benefit from our welcoming environment and world-class facilities, which include the UCL Hazard Centre, Europe's leading multidisciplinary hazard research centre.

The programme is staffed by academics from UCL and partner universities,

the British Geological Survey and industry and market practitioners.



Read less
Actuaries evaluate and manage financial risk. They make financial sense of the future for their clients by applying advanced mathematical and statistical techniques to solve complex financial problems. Read more
Actuaries evaluate and manage financial risk. They make financial sense of the future for their clients by applying advanced mathematical and statistical techniques to solve complex financial problems.

Qualifying as an actuary is a passport to a wide variety of careers in insurance companies, investments, pensions, health care and banking – not just in the UK, but throughout the world. Kent is one of a very few universities in the UK to teach the subject.

Our Postgraduate Diploma (PDip) in Actuarial Science, MSc in Applied Actuarial Science and International Master’s are all fully accredited by the Institute and Faculty of Actuaries; they also provide a fast-track route to qualifying as an actuary, because students who achieve a high enough overall mark in these programmes can obtain exemptions from the professional examinations included within their studies.

This PDip in Actuarial Science programme gives you the opportunity to gain exemptions from eight of the Core Technical subjects (CT1 to CT8) of the professional examinations and provides you with a firm foundation for the later subjects. If you perform well enough on this course to obtain the full set of exemptions available, you could reduce your time to qualify as an actuary by three years or more.

Visit the website https://www.kent.ac.uk/courses/postgraduate/1/actuarial-science

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

MA319 - Probability and Statistics for Actuarial Science (15 credits)
MA501 - Statistics for Insurance (15 credits)
MA529 - Probability and Statistics for Actuarial Science 2 (15 credits)
MA639 - Time Series Modelling and Simulation (15 credits)
MA816 - Contingencies 1 (15 credits)
MA817 - Contingencies 2 (15 credits)
MA819 - Business Economics (15 credits)
MA820 - Financial Mathematics (15 credits)
MA825 - Survival Models (15 credits)
MA826 - Finance & Financial Reporting (15 credits)
MA835 - Portfolio Theory and Asset Pricing Models (15 credits)
MA836 - Stochastic Processes (15 credits)
MA837 - Mathematics of Financial Derivatives (15 credits)
MA840 - Financial Modelling (15 credits)

Assessment

Assessment is usually by a mixture of coursework and examination; exact weightings vary from module to module.

- Accreditation
Students who are considered to have performed sufficiently well in the programme (both in examinations and coursework), as determined by an examiner appointed by the UK Actuarial Profession, will be exempt from all the CT subjects studied within the programme. If a student fails to achieve a suitable overall standard, they might still be awarded individual module exemptions as recommended by the Profession’s examiner. Please note that individual exemptions are granted based on the final written examinations only.

Programme aims

This programme aims to:

- give you the depth of technical appreciation and skills appropriate to a Master’s level programme in actuarial science

- provide successful students with eligibility for subject exemptions from the Core Technical series of examinations of the actuarial profession. This means obtaining a thorough knowledge and understanding of various core actuarial techniques and gaining current knowledge and understanding of the practice of some of the major areas in which actuaries are involved

- ensure you are competent in the use of information technology, and are familiar with computers, together with the relevant software

- introduce you to an appreciation of recent actuarial developments, and of the links between subject theories and their practical application in industry

- prepare you for employment within the actuarial profession and other financial fields

- provide suitable preparation for students who wish to proceed to the MSc in Applied Actuarial Science.

Research areas

- Genetics and insurance risks

Advances in human genetics, and medical sciences in general, have led to many gene discoveries; a number of single-gene disorders have been successfully identified and studied in detail. Researchers are now increasingly focusing on common multifactorial genetic disorders such as cancer, heart attack and stroke, caused by interaction of genes and environmental factors. It is important for the insurance industry to understand the full implications of these latest developments. First, can an insurer justify charging different premium rates to different risk groups? Second, if insurers are not allowed to discriminate between individuals based on their genes, by regulation or by law, is there a risk of adverse selection?

- Economic capital and financial risk management

Financial services firms are in the business of accepting risks on behalf of their customers. Customers do not always have the time or expertise to handle financial risks on their own, so they pass these on to financial services firms. However, even the most reputable firms can sometimes get it wrong, so it is fundamentally important for all stakeholders that financial services firms hold an appropriate amount of capital calculated on a robust scientific basis, to back the risks they are running. Economic capital can provide answers by specifying a unifying approach to calculating risk-based capital for any firm in the financial services sector.

From a public policy perspective, regulators and governments face the dilemma of whether to regulate against genetic underwriting or to allow market economies to take their own course. On one hand, there is a moral obligation not to discriminate against individuals for their genetic make-up. On the other hand, risk of adverse selection against insurance firms cannot be ruled out altogether. Maintaining an appropriate balance between the two is key.

Careers

- The UK Actuarial Profession

The UK Actuarial Profession is small, but influential and well rewarded. There are more than 6,500 actuaries currently employed in the UK, the majority of whom work in insurance companies and consultancy practices.

Survey results published by the Institute and Faculty of Actuaries suggest that the average basic salary for a student actuary is £36,842 with pay and bonuses increasingly sharply as you become more experienced. The average basic salary of a Chief Actuary is £209,292.

As an actuary, your work is extremely varied and can include: advising companies on the amount of funds to set aside for employee pension payments; designing new insurance policies and setting premium rates; pricing financial derivatives and working in fund management and quantitative investment research; advising life insurance companies on he distribution of surplus funds; and estimating the effects of possible major disasters, such as earthquakes or hurricanes, and setting premium rates for insurance against such disasters. For more information about the actuarial profession, see http://www.actuaries.org.uk

- Employability support

Helping our students to develop strong employability skills is a key objective within the School and the University. We provide a wide range of services and support to equip you with transferable vocational skills that enable you to secure appropriate professional positions within industry. Within the School we run specialist seminars and provide advice on creating a strong CV, making job applications and successfully attending interviews and assessment centres.

Our graduates have gone on to successful careers in the actuarial, finance, insurance and risk sectors.

Professional recognition

Offers exemptions from subjects CT1 to CT8 of the Institute and Faculty of Actuaries professional examinations, with the option to take further subjects for exemption purposes.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X