• University of Surrey Featured Masters Courses
  • Ulster University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Northumbria University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Leeds Featured Masters Courses
Staffordshire University Featured Masters Courses
University of Leicester Featured Masters Courses
Cardiff University Featured Masters Courses
"tunnelling"×
0 miles

Masters Degrees (Tunnelling)

We have 16 Masters Degrees (Tunnelling)

  • "tunnelling" ×
  • clear all
Showing 1 to 15 of 16
Order by 
This programme will appeal if you’re looking to enter a career in the tunnelling and civil engineering industries. Our distinctive course format means that approximately 20% of teaching is delivered by guest lecturers from industry, ensuring that the content remains relevant. Read more
This programme will appeal if you’re looking to enter a career in the tunnelling and civil engineering industries.

Our distinctive course format means that approximately 20% of teaching is delivered by guest lecturers from industry, ensuring that the content remains relevant. Specialist subjects and case studies are also presented by experts with first-hand experience.

Modules include:
-Communication and Leadership
-Construction Management
-Finite Elements for Tunnelling
-Geological Investigation and Ground Characterisation
-Health, Safety and Environmental Considerations
-Rock Mechanics
-Tunnel Design
-Underground Construction Methods

You’ll learn from internationally recognised academics and industry experts on a course uniquely developed in partnership with the British Tunnelling Society. At what is fast becoming the UK’s centre of excellence for tunnelling, we’ll give you the state-of-the-art knowledge, understanding and skills to design and build the underground infrastructure of the future.

Read less
Mining is an fascinating, global industry that is essential to societal progression. It provides the materials for production and is a leading industry in terms of technological innovation. Read more

Mining is an fascinating, global industry that is essential to societal progression. It provides the materials for production and is a leading industry in terms of technological innovation. This MSc is ideal for engineering and geologists already in employment that are looking for skills and knowledge enhancement. In addition, it is also suitable for geology and engineering graduates that wish to specialise in the following areas: mine, general management and excavation (geotechnics and tunnelling).

Students will learn specialist analytical, design and management skills that are relevant to industry. In addition, this programme also has excellent links with both the local and international minerals industry, which is reflected in its mix of UK and international students, and project-work is often centered around a company or business.

This programme is taught by the internationally established and world-class Camborne School of Mines (CSM), a combined mining school and geoscience department. This degree is professionally accredited under licence from the Engineering Council, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. Visit the Accreditation tab for further information.

Programme Structure

You can either study the course full time over a year or part-time over 3 years.

Compulsory modules

The compulsory modules can include;

  • Project and Dissertation;
  • Excavation and Geomechanics;
  • Health and Safety in the Extractive Industry;
  • Economics, Processing & Environment
  • Project Management

Optional modules

Some examples of the optional modules are;

  • Surface Excavation Design;
  • Resource Estimation;
  • Tunnelling and Underground Excavation;
  • Production and Cost Estimation;
  • Mine Planning and Design;
  • Geomechanics Computer Modelling for Excavation Design
  • Soil and Water Contamination.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand. For up to date information please see the website.

Learning and teaching

The taught part of the programme is structured into two terms. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

For the award of the Masters (MSc), you must pass four modules and complete a project and dissertation. To obtain a Postgraduate Diploma (PgDip), you must pass two modules and a project with dissertation.

Students are encouraged to undertake projects directly linked with industry, which may result in industrial placements for their project period.



Read less
Tunnelling, and the use of underground spaces, is an important aspect of the modern urban environment with developments of major underground infrastructure underpinning the changing needs of today’s society through transportation, storage and utilities. Read more

Tunnelling, and the use of underground spaces, is an important aspect of the modern urban environment with developments of major underground infrastructure underpinning the changing needs of today’s society through transportation, storage and utilities. Safe and efficient design of these excavations is essential for optimisation and economic utilisation of underground space.

National and global construction industries and associated businesses are coming under considerable pressure to design, build and manage infrastructure in a resource efficient, sustainable and environment friendly manner. To deliver this, they require qualified engineers with a multi-disciplinary skillset and specialist expertise in tunnelling, underground excavation and underground space utilisation.

Camborne School of Mines is uniquely qualified in this area, being at once the UK’s most prestigious specialist mining school and part of a world ranking Russell Group University.

Reputational and networking benefits

A unique benefit studying at Camborne School of Mines is the community and relations you will gain both during, and after your studies. Camborne School of Mines has a world-class reputation and excellent alumni network, allowing our graduates to prosper in their respective fields in all corners of the globe:

I have worked in many places around the world and have yet to visit a country where I could not find at least one CSM graduate. In fact, there are normally several and they can often be found in influential positions.

Tim Henderson, CSM graduate and current Technical Director at Glencore

Graduate skills and destinations

In addition, a degree form Camborne School of Mines will teach the necessary technical skills and theoretical knowledge required, as well as additional complementary skills relating to communications, teamwork and problem solving. We have excellent rates of graduate employment, with many postgraduates working overseas.

Support and opportunities

The Career Zone (CAS) at our Cornwall Campus provides high-quality careers information and guidance to students of all disciplines. Our experienced careers team can give you individual support whilst you are at the University and after you have graduated.

Services include talks, confidential careers interviews and an extensive careers library of reference books, magazines and journals. A new computer suite is also available for accessing online careers information, vacancy services and specialist software on, for example, sources of funding for courses and worldwide volunteering.

The CAS can help you to identify attractive jobs, careers paths and employers and assist with your CV, interview technique and identifying work experience placements.

Modules

Please note constituent modules and pathways may be updated, deleted or replaced in future years as a consequence of programme development. Details at any time may be obtained from the programme website.

  • Project and dissertation
  • Excavation and geomechanics
  • Health and safety in the extractive industry
  • Project management
  • Underground construction
  • Underground excavation design

Optional modules can include;

  • Production and cost estimation
  • Mine planning and design
  • Working environment and ventilation
  • Mine automation

Teaching and assessment

The programme is delivered through a mix of lectures, workshops, tutorials, practical activities, case studies, industry visits, computer simulations, project work and a dissertation. The taught part of the programme is structured into two semesters. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

A research- and practice-led culture

We believe every student benefits from being taught by experts active in research and practice. You will discuss the very latest ideas, research discoveries and new technologies in seminars and in the field and you will become actively involved in a research project yourself. All our academic staff are active in internationally-recognised scientific research across a wide range of topics.

Students are encouraged to undertake projects directly linked with industry, which may result in industrial placements for their project period.



Read less
Geotechnics provides insight into geological engineering design work and highlights complications that can arise from engineering production. Read more

Geotechnics provides insight into geological engineering design work and highlights complications that can arise from engineering production. For example, they can predict and measure damage caused by natural disasters, and innovate ways to reduce and prevent future issues through the construction of structure such as dams. Our developing world needs safe and stable space, as our infrastructures expand onto new land and those who work in the line of work will ensure that this can happen effectively.

Upon graduation, you will have the skills to undertake professional employment in the civil, environmental, engineering geology, geotechnical engineering and mining-related industries. It also provides specialist knowledge in tunnel, surface and underground excavation design, and applied hydrogeology and risk assessment.

This programme is taught by the internationally established and world-class Camborne School of Mines (CSM), a combined mining school and geoscience department. It is taught over two semesters and individual projects are undertaken throughout the summer, often as industrial placements. The programme is suitable for geology and engineering graduates wishing to specialise in applied geotechnics

This degree is professionally accredited under licence from the Engineering Council, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree.

Programme Structure

You can either study the course full time over a year or part-time over 3 years.

Compulsory modules

The compulsory modules can include;

  • Project and Dissertation;
  • Excavation and Geomechanics;
  • Health and Safety in the Extractive Industry
  • Project Management

Optional modules

Some examples of the optional modules are;

  • Resource Estimation;
  • Economics, Processing & Environment;
  • Hydrogeology;
  • Surface Excavation Design;
  • Tunnelling and Underground Excavation;
  • Production and Cost Estimation;
  • Mine Planning and Design;
  • Geomechanics Computer Modelling for Excavation Design
  • Soil and Water Contamination.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Learning and teaching

The taught part of the programme is structured into two terms. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

The project is undertaken from June to September, after the second semester examinations. You are encouraged to undertake projects directly linked with industry, which may result in industrial placements for the project period. The projects are normally design-based and allow further specialisation in a topic that is of particular interest to you. This could involve the use of state-of-the-art engineering design software, risk and hazard analysis and other analytical techniques.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Electronic and Electrical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Electronic and Electrical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

As a student on the Master's course in Electronic and Electrical Engineering, you will develop specialist skills aligned with the College of Engineering’s research interests and reflecting the needs of the electronics industry.

Key Features of MSc in Electronic and Electrical Engineering

The MSc Electronic and Electrical Engineering course covers the ability to apply the knowledge gained in the course creatively and effectively for the benefit of the profession, to plan and execute a programme of work efficiently, and to be able, on your own initiative, to enhance your skills and knowledge as required throughout your career in Electronic and Electrical Engineering.

Students on the Electronic and Electrical Engineering course benefit from the use of industry-standard equipment, such as a scanning tunnelling microscope for atomic scale probing or an hp4124 parameter analyzer for power devices, for simulation, implementation and communication.

During the Electronic and Electrical Engineering course there will be the opportunity to choose and apply suitable prototyping and production methods and components, gain knowledge in constructing and evaluating advanced models of various manufacturing techniques, and be able to differentiate, analyse and discuss various product lifetime management solutions and how they affect different sectors of Electronic and Electrical Engineering industry.

The MSc in Electronic and Electrical Engineering programme is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation in Electronic and Electrical Engineering. Students on the Electronic and Electrical Engineering course must successfully complete Part One before being allowed to progress to Part Two.

Part-time Delivery mode of MSc in Electronic and Electrical Engineering

The part-time scheme of the MSc in Electronic and Electrical Engineering is a version of the full-time equivalent MSc in Electronic and Electrical Engineering scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option in Electronic and Electrical Engineering.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules on Electronic and Electrical Engineering

Modules on the MSc Electronic and Electrical Engineering course can vary each year but you could expect to study:

Communication Skills for Research Engineers

Energy and Power Electronics Laboratory

Power Semiconductor Devices

Advanced Power Electronics and Drives

Wide Band-Gap Electronics

Power Generation Systems

Modern Control Systems

Advanced Power Systems

Signals and Systems

Digital Communications

Optical Communications

Probing at the Nanoscale

RF and Microwaves

Wireless Communications

Facilities for Electronic and Electrical Engineering

The new home of the Electronic and Electrical Engineering programme is at the innovative Bay Campus which provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.

Find out more about the facilities used by Electronic and Electrical students at Swansea University, including the electronics lab on our website.

Links with Industry

At Swansea University, Electronic and Electrical Engineering has an active interface with industry and many of our activities are sponsored by companies such as Agilent, Auto Glass, BT and Siemens.

Electronic and Electrical Engineering has a good track record of working with industry both at research level and in linking industry-related work to our postgraduate courses. We also have an industrial advisory board that ensures our taught courses including the MSc in Electronic and Electrical Engineering maintain relevance.

Our research groups work with many major UK, Japanese, European and American multinational companies and numerous small and medium sized enterprises (SMEs) to pioneer research. This activity filters down and influences the project work that is undertaken by all our postgraduate students including those on the MSc in Electronic and Electrical Engineering.

Careers

Electronic and Electrical Engineering graduates find employment in industry, research centres, government or as entrepreneurs in a wide range of careers, from a design and development role for electronic and electrical equipment or as a technological specialist contributing to a multi-disciplinary team in a range of fields, including medicine, travel, business and education.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.



Read less
This course is suited to those with an eye for materials, material structure and material mechanics. Our course aims to extend your understanding of the core disciplines of civil engineering and widen your professional scope to include expertise in geotechnical engineering. Read more

Why take this course?

This course is suited to those with an eye for materials, material structure and material mechanics.

Our course aims to extend your understanding of the core disciplines of civil engineering and widen your professional scope to include expertise in geotechnical engineering. From ground investigations to soil structure testing, you will gain the analytical and technical skills required to make informed decisions when faced with the complex geotechnical problems of construction projects.

What will I experience?

On this course you can:

Attend lectures and seminars given by practitioners from client, contracting and consulting organisations
Gain experience of environmental assessment techniques plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Opt to study overseas at a variety of European universities through the ERASMUS exchange scheme

What opportunities might it lead to?

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Here are some routes our graduates have pursued:

Civil engineering
Mining companies
Petroleum companies
The military
Consultancy

Module Details

The course is divided into three stages, the first two stages are generally taught through formal tuition, with stage three covering independent research in an academic or industrial setting.

You will build upon established fundamental civil/construction engineering and project management principles in order to confidently apply them to a range of complex construction project problems with due regard to related geotechnical factors.

Here are the units you will study:

Environmental Management for Civil Engineering: This unit introduces you to the main environmental issues associated with civil engineering projects and how they are considered and mitigated in the Environmental Assessment process.

Civil Engineering Science: In this unit you will study integrated topics of analytical structural analysis, numerical analysis and solving engineering problems. Whilst being an introduction to the finite element method (FEM) and application of FEM software packages, this unit aims to give you the ability to solve engineering problems in the design of real structures.

Geotechnical Engineering Design Project: This unit gives you an opportunity to simulate the design activities of a civil engineering consultancy. Project briefs are typically drawn from the work of professional contacts in the civil engineering industry. You will be required to make professional contacts, obtain advice and guidance, carry out research and conduct site visits outside the University.

Strategic and General Management: You will cover management in the construction industry, and the development of organisational and project strategic direction, taking into account internal and external environments.

Independent Research Project: This covers the generic research framework within which new knowledge is discovered, and involves the practical application of research skills and techniques to a chosen system within the construction industry.

Programme Assessment

Teaching on this course will focus on small lectures, seminars and discussion groups. It will also centre on supporting your independent learning strategies, which tutorials will help to develop.

Assessment can take many forms and is geared towards the subject matter in a way that encourages a deeper understanding and allows you to develop your skills. It includes:

Examinations
Coursework
Projects
A dissertation

Student Destinations

This course is designed to equip you with knowledge, skills and competencies that employers in the construction industry expect. Alongside the technical topics, you will develop commercial and interpersonal skills required of construction industry professionals.

There is currently a huge demand for geotechnical engineering specialists within the civil engineering sector. This fact, combined with the vocational nature of this course and the extensive training you will receive, means that you are likely to quickly find employment in the industry. Potential roles will include geotechnical engineers, mining engineers and tunnelling engineers for major mining companies, as well as environmental and geotechnical consultancies.

Overall, the delivery of this course and its opportunities for you to interact with the industry throughout your studies means the employment rate of our civil engineering graduates is excellent.

Read less
We offer postgraduate research degrees in Physics at the MPhil and PhD level in all of our major research areas such as Emerging Technology and Materials, Applied Mathematics, and Photoelectron Spectroscopy. Read more
We offer postgraduate research degrees in Physics at the MPhil and PhD level in all of our major research areas such as Emerging Technology and Materials, Applied Mathematics, and Photoelectron Spectroscopy.

We supervise MPhil students whose interests match the expertise we have in our four main research themes.

Condensed matter and nanoscale physics

We research electronic, optical, structural and magnetic properties of novel solid-state materials, particularly novel semi-conductor structures and nanostructured materials such as nanocrystals and nanowires. Theoretical studies use quantum mechanical approaches and involve massively parallel supercomputing.

Our development of new approaches to quantum modelling is changing the size and complexity of systems that can be modelled. Experimental work takes place at synchrotron facilities in Europe and America and related work takes place with colleagues in the Emerging Technology and Materials (ETM) Group in the School of Electrical, Electronic and Computer Engineering.

Biophysics

Our research in biophysics explores the structure and function of cells with the aim of creating artificial life and building machines based on biological parts. Projects include protocell development and the construction of a cyborg robot. An understanding of biological physics is needed that uses techniques including single molecule manipulation, atomic force microscopy and scanning tunnelling microscopy.

Astrophysics

Galaxies and the interstellar medium, the source of the galactic magnetic field and its influence on the structure of the galaxy form the focus of our research in astrophysics. There is also interest in cosmology, particularly the early universe and its origin in the big bang.

Ultrafast optics

Our research focuses on coherent optical control of atomic collisions in ultracold gases by femtosecond laser light for studies of problems in fundamental physics, such as the measurement of time dependence of the fundamental constants of nature. We also research metrological protocols for characterisation of broadband light, specifically those relating to foundational aspects of quantum mechanics and its application.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study High Performance and Scientific Computing at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study High Performance and Scientific Computing at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc in High Performance and Scientific Computing is for you if you are a graduate in a scientific or engineering discipline and want to specialise in applications of High Performance computing in your chosen scientific area. During your studies in High Performance and Scientific Computing you will develop your computational and scientific knowledge and skills in tandem helping emphasise their inter-dependence.

On the course in High Performance and Scientific Computing you will develop a solid knowledge base of high performance computing tools and concepts with a flexibility in terms of techniques and applications. As s student of the MSc High Performance and Scientific Computing you will take core computational modules in addition to specialising in high performance computing applications in a scientific discipline that defines the route you have chosen (Biosciences, Computer Science, Geography or Physics). You will also be encouraged to take at least one module in a related discipline.

Modules of High Performance and Scientific Computing MSc

The modules you study on the High Performance and Scientific Computing MSc depend on the route you choose and routes are as follows:

Biosciences route (High Performance and Scientific Computing MSc):

Graphics Processor Programming

High Performance Computing in C/C++

Operating Systems and Architectures

Software Testing

Programming in C/C++

Conservation of Aquatic Resources or Environmental Impact Assessment

Ecosystems

Research Project in Environmental Biology

+ 10 credits from optional modules

Computer Science route (High Performance and Scientific Computing MSc):

Graphics Processor Programming

High Performance Computing in C/C++

Operating Systems and Architectures

Software Testing

Programming in C/C++

Partial Differential Equations

Numerics of ODEs and PDEs

Software Engineering

Data Visualization

MSc Project

+ 30 credits from optional modules

Geography route (High Performance and Scientific Computing MSc):

Graphics Processor Programming

High Performance Computing in C/C++

Operating Systems and Architectures

Software Testing

Programming in C/C++

Partial Differential Equations

Numerics of ODEs and PDEs

Modelling Earth Systems or Satellite Remote Sensing or Climate Change – Past, Present and Future or Geographical Information Systems

Research Project

+ 10 credits from optional modules

Physics route (High Performance and Scientific Computing MSc):

Graphics Processor Programming

High Performance Computing in C/C++

Operating Systems and Architectures

Software Testing

Programming in C/C++

Partial Differential Equations

Numerics of ODEs and PDEs

Monte Carlo Methods

Quantum Information Processing

Phase Transitions and Critical Phenomena

Physics Project

+ 20 credits from optional modules

Optional Modules (High Performance and Scientific Computing MSc):

Software Engineering

Data Visualization

Monte Carlo Methods

Quantum Information Processing

Phase Transitions and Critical Phenomena

Modelling Earth Systems

Satellite Remote Sensing

Climate Change – Past, Present and Future

Geographical Information Systems

Conservation of Aquatic Resources

Environmental Impact Assessment

Ecosystems

Facilities

Students of the High Performance and Scientific Computing programme will benefit from the Department that is well-resourced to support research. Swansea physics graduates are more fortunate than most, gaining unique insights into exciting cutting-edge areas of physics due to the specialized research interests of all the teaching staff. This combined with a great staff-student ratio enables individual supervision in advanced final year research projects. Projects range from superconductivity and nano-technology to superstring theory and anti-matter. The success of this programme is apparent in the large proportion of our M.Phys. students who seek to continue with postgraduate programmes in research.

Specialist equipment includes:

a low-energy positron beam with a highfield superconducting magnet for the study of positronium

a number of CW and pulsed laser systems

scanning tunnelling electron and nearfield optical microscopes

a Raman microscope

a 72 CPU parallel cluster

access to the IBM-built ‘Blue C’ Supercomputer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

The Physics laboratories and teaching rooms were refurbished during 2012 and were officially opened by Professor Lyn Evans, Project Leader of the Large Hadron Collider at CERN. This major refurbishment was made possible through the University’s capital programme, the College of Science, and a generous bequest made to the Physics Department by Dr Gething Morgan Lewis FRSE, an eminent physicist who grew up in Ystalyfera in the Swansea Valley and was educated at Brecon College.



Read less
The Advanced Geotechnical Engineering MSc will nurture and develop your understanding of the principles and theories behind ground engineering. Read more

The Advanced Geotechnical Engineering MSc will nurture and develop your understanding of the principles and theories behind ground engineering.

Topics include deep foundations in urban areas, tunnelling, foundations for energy infrastructure, deep water energy resources exploration and field monitoring.

During your studies you will have the opportunity to apply the knowledge and practical understanding of scientific methodology you have acquired on a research project under the guidance and advice of an experienced supervisor.

This will help you develop the skills to acquire, analyse, and critically evaluate data, and then draw valid, defendable conclusions that can withstand professional scrutiny.

Graduates are highly employable, and may progress to relevant specialist PhD or EngD research programmes in the field.

Programme structure

This programme is studied over one academic year (full-time) and between two and five academic years (part-time or distance learning). It consists of eight taught modules and a dissertation.

On successful completion of this MSc programme students will be deemed to have completed the further learning necessary to combine with a suitable BEng (Hons) degree fulfilling the academic base for the professional qualification of Chartered Engineer.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Geotechnical Engineering Group Modules

Selected Structural Engineering Group Modules

Selected Construction Management Group Modules

Selected Infrastructure Engineering Group Modules

Selected Water and Environmental Engineering Group Modules

Students must choose eight modules from those listed above. For the main and subsidiary awards there are restrictions on the choice of modules within each module group. These are outlined in the table above.

Educational aims of the programme

The programme aims to provide graduates with:

  • A comprehensive understanding of some of the challenges faced during the analysis, design and construction of foundation and geotechnical structures
  • The ability to select and apply most appropriate analysis methodology for problems in ground engineering including advanced and new methods
  • The ability to design foundations in a variety of ground conditions 
  • A working knowledge of the key UK, European and some International standards and codes of practice associated with the analysis and design of foundations and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Learn more about opportunities that might be available for this particular programme by using our student exchanges search tool.

Academic support, facilities and equipment

Modules are taught by academic members in the geotechnical area, and some lectures for the Advanced Geotechnical Engineering MSc will be delivered by visiting academics and practicing engineers from industry.

You will also be allocated a personal tutor to guide you during your time with us at the University. You can expect a varied, stimulating and rewarding time here and will receive all the support you need to progress your learning. 

In addition to the University Library and Learning Centre’s extensive resources, our excellent testing facilities can support experimentally based MSc dissertation projects. 

Prizes

VJ Tech Prize for Best MSc Student in Advanced Geotechnical Engineering

A prize of £1,000, sponsored by VJ Tech, one of the world’s top geotechnical engineering manufacturers specialising in advanced soil testing equipment for labs.

The prize will be awarded to the best performing student(s) on the MSc Advanced Geotechnical Engineering based on module results and overall performance during the programme.

The £1,000 may be awarded to an individual student or split between two students displaying the best performance in their MSc programme.

Keller Prize for Best MSc Project in Advanced Geotechnical Engineering

A prize of £500 sponsored by Keller Group plc, the world’s largest independent ground engineering contractor.

The prize will be awarded to the student(s) with the best MSc Dissertation completed as part of the MSc Advanced Geotechnical Engineering, as defined by the course leader according to the module results and potential impact of the output of the individual project.

The £500 may be awarded to an individual student or split between a number of students displaying the best performance in their MSc Dissertations.



Read less
The Department of Earth, Ocean and Atmospheric Sciences at UBC, one of the largest geoscience groups in Canada is composed of over 40 full-time faculty, a staff complement of 30, a total of 40 research associates and postdoctoral fellows. Read more

The Department of Earth, Ocean and Atmospheric Sciences at UBC, one of the largest geoscience groups in Canada is composed of over 40 full-time faculty, a staff complement of 30, a total of 40 research associates and postdoctoral fellows. There are 160 graduate students in our department, who are represented by our EOAS Graduate Student Council.

Our Department's research extends from pure science studies of the earth's deep interior, through near-surface geological studies and environmental earth science, to the oceans and atmosphere. UBC earth scientists draw on a broad base of knowledge from the basic sciences of chemistry, physics, biology and mathematics.

Faculty members in the Geological Engineering program have research interests in the following general areas:

  • landslides, debris flows, runout analysis, hazard assessment
  • groundwater hydrology, groundwater contamination & remediation, reactive transport modeling, environmental geochemistry
  • rock mechanics & rock engineering, open pit & underground mine design, tunnelling


Read less
If you're already a successful networking professional who wants to advance your career to the next level, this unique one-year master's programme is designed for you. Read more

If you're already a successful networking professional who wants to advance your career to the next level, this unique one-year master's programme is designed for you. The only programme of its kind in the world, GCU's MSc Advanced Internetwork Engineering will prepare you for the Cisco Certified Internetwork Expert (CCIE) exam.

The programme offers a structured, supported path so you can develop expert-level network engineering skills and achieve CCIE certification. With this elite credential, you'll be a competitive candidate for senior-level and leadership roles in network engineering.

We partnered with Internetwork Expert Inc. (INE), the leaders in CCIE preparation, to develop this programme. Students learn with INE's CCIE Routing and Switching Workbook and remote rack management systems, the global gold-standard in CCIE prep materials.

Lectures and labs bring together theory and practice, integrating hands-on demonstrations and experiential learning using live equipment. With GCU's career-focused atmosphere and supportive environment, you'll have an ideal opportunity to build valuable skills.

  • Develop your ability to complete increasingly complex networking challenges
  • Master the workings of networking technologies at an expert level
  • Practise taking on the large-scale, full-day scenarios you'll encounter in the CCIE lab exam

With its focus on real-world relevance and skills you can use in your career today, this programme supports GCU's broader mission of producing graduates who are both successful and socially driven. We encourage graduates to harness their abilities to make real change and support the common good. We hope you'll find new ways to excel in your field - and new ways to make a positive impact in your workplace and your community.

What you will study

Learn the workings and behaviour of technologies at an expert level. Discover the methods of verifying their correct operation and begin troubleshooting with confidence. With the help of this unique syllabus, you can begin to predict the behaviour of technologies and develop an expert knowledge of the interactions between them.

Layer 2 Technologies

The theoretical knowledge and practical skills needed to determine appropriate design choices for layer 2 network solutions, implement them and verify their operation. This module covers both campus (LAN) and wide area network technologies.

Layer 3 Technologies 1

Thetheoretical knowledge and practical skills needed to determine appropriate design choices for layer 3 network solutions, implement them and verify their operation. This module covers IPv4 addressing issues, interior routing protocols e.g. static, RIP, EIGRP, OSPF, ODR; Layer 3 design issues e.g. address summarization and filtering.

Layer 3 Technologies 2

The theoretical knowledge and practical skills needed to determine appropriate design choices for layer 3 network solutions, implement them and verify their operation. This module focuses on exterior routing (BGP); IPv6 routing and large scale Layer 3 design issues e.g. address aggregation, filtering and traffic engineering through the implementation of routing policies in a multi Autonomous System environment.

Multicast and WAN Technologies

IP multicast technologies including multicast addressing, IP multicast routing using PIM (sparse mode, dense mode, static and dynamic RP assignments etc),the relationship between unicast and multicast routing, the importance of RPF checks, Any cast RP, Source Specific Multicast. The provision of multicast services to end hosts (IGMP v1/2/3). WAN technologies are covered with a focus on PPP.

VPN and Security Technologies

The knowledge/skills needed to design and implement virtual private network solutions, either for the purpose of solving routing issues, security issues or both. This module covers tunnelling technologies designed to enhance connectivity e.g. MPLS, GRE, 6 to 4 and security (IPSec). Methods of securing infrastructure devices and data networks are also examined.

Infrastructure Services

A wide range of system management techniques (e.g. SNMP, remote management, logging, event monitoring), network services, and performance optimization (quality of service) technologies which depend upon a solid core network for their operation.

Integrating Network Technologies

Draws scenarios from the other technology modules, accordingly you will develop the ability to integrate and troubleshoot progressively more complex internetworks as the year progresses. Students undertake activities which help them develop the kind of customer facing skills and commercial awareness needed for a high level career in the networking industry.

Research and Project Methods

Background knowledge and skills that, in combination with the technical skills acquired in other taught modules will enable you to carry out a successful MSc Dissertation. By the end of the module you will have produced a viable proposal for a dissertation project.

MSc Project

A vehicle for extending the knowledge and understanding of the student and the technical community in a chosen specialist area. It serves, through its length, complexity and rigour, as a suitable vehicle for extending a range of personal, interpersonal and communication skills.

Assessment methods

Taught modules are assessed on a mix of coursework and practical class tests. Practical networking skills form a significant part of the assessment. Modules also include formal examinations where appropriate.

Graduate prospects

Graduates of GCU's MSc Advanced Internetwork Engineering programme develop the technical, commercial and presentation skills needed for a successful senior-level career in the networking industry. You'll find opportunities in network engineering, network consultancy design and network operations centres.

http://www.gcu.ac.uk/aie



Read less
Three cross-cutting research themes - Energy, Biomedical Engineering and Sustainable Cities - facilitate multidisciplinary research across research groups. Read more

Overarching research themes

Three cross-cutting research themes - Energy, Biomedical Engineering and Sustainable Cities - facilitate multidisciplinary research across research groups.

Research Groups (specialisms)

Communications, Energy Conversion, Electrical Power, Fluid Dynamics, Geotechnics and Tunnelling, Thermofluids, Precision Mechanics, Process and Chemical Engineering, Sensors and Devices, Structures and Materials, Civil Engineering and Systems Modelling.

Read less
The MSc by Research in Applied Physics and Materials enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. Read more

The MSc by Research in Applied Physics and Materials enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

As a research student in Applied Physics and Materials, you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work. 

Key Features of Applied Physics and Materials

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a Postgraduate Physics Student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

The three main research groups within the Department of Physics currently focus on the following areas of research:

Applied Physics and Materials Group

  • Next Generation Solar Cells
  • Materials and Devices for Photodetection
  • Physics of Next Generation Semiconductors
  • Bioelectronics
  • Material Physics
  • Biophysics
  • Novel sensors for medicine 

Atomic, Molecular and Quantum Physics Group

  • Antihydrogen, positronium and positrons
  • Quantum control
  • Cold atoms and quantum optics
  • Nano-scale physics and the life sciences
  • Analytical laser spectroscopy unit
  • Ultrafast Dynamics, Imaging and Microscopy
  • Quantum Computation and Simulation
  • Quantum Control and Optomechanics 

Particle Physics And Cosmology Theory Group

  • Integrability and AdS/CFT
  • Higher spin holography
  • Dense quark matter at strong coupling and gauge/string duality
  • Quantum fields in curved spacetime
  • Theoretical cosmology
  • Amplitudes in gauge and supergravity theories
  • Non-abelian T-duality and supergravity solutions
  • Holography and physics beyond the Standard Model
  • Large-N gauge theories, supersymmetry and duality
  • Lattice studies of strongly interacting systems
  • Lattice QCD at nonzero temperature
  • Dense quark matter and the sign problem
  • High-performance computing

Applied Physics and Materials Structure

The Physics Department is always keen to attract high-quality postgraduate students to join our research groups.

All Physics Research Degrees take 12 months of study, including the dissertation. For MSc by Research programmes you will be guided by internationally leading researchers through an extended one-year individual research project. There is no taught element.

The MSc by Research in Applied Physics and Materials degree enables you to pursue a one year individual programme of research and would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

The Applied Physics and Materials programme has a recommended initial research training module (Science Skills & Research Methods), but otherwise has no taught element and is most suitable for you if you have an existing background in geography or cognate discipline and are looking to pursue a wholly research-based programme of study.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach. 

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a postgraduate student in the Department of Physics you will have access to the following Specialist Facilities:

  • Low-energy positron beam with a high field superconducting magnet for the study of
  • positronium
  • CW and pulsed laser systems
  • Scanning tunnelling electron and nearfield optical microscopes
  • Raman microscope
  • CPU parallel cluster
  • Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The results of the Research Excellence Framework (REF) 2014 show that over 80\% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

Atomic, Molecular and Quantum Physics Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

Particle Physics And Cosmology Theory Group

The Particle Physics and Cosmology Theory Group has fifteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.

Applied Physics and Materials Group

The Applied Physics and Materials (APM) Group has been very recently established at our department and is supported by grants from the European Union, Welsh Government, National Science Foundation, Australian Research Council, Welsh European Funding Office, and EPSRC. Its main areas of research range from Biophotonics, covering nano- and micro-structured materials, biomimetics, analyte sensing and light-tissue interaction, over Nanomedicine to Sustainable Advanced Materials, such as Next generation semiconductors, bioelectronic materials and devices, optoelectronics including photodetection, solar energy conversion, advanced electro-optics and transport physics of disordered solids.



Read less
The MSc by Research Experimental Physics enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. Read more

The MSc by Research Experimental Physics enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

As a research student in Experimental Physics, you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work. 

Key Features of Experimental Physics

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a Postgraduate Physics Student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

The three main research groups within the Department of Physics currently focus on the following areas of research:

Applied Physics and Materials Group

  • Next Generation Solar Cells
  • Materials and Devices for Photodetection
  • Physics of Next Generation Semiconductors
  • Bioelectronics
  • Material Physics
  • Biophysics
  • Novel sensors for medicine 

Atomic, Molecular and Quantum Physics Group

  • Antihydrogen, positronium and positrons
  • Quantum control
  • Cold atoms and quantum optics
  • Nano-scale physics and the life sciences
  • Analytical laser spectroscopy unit
  • Ultrafast Dynamics, Imaging and Microscopy
  • Quantum Computation and Simulation
  • Quantum Control and Optomechanics 

Particle Physics And Cosmology Theory Group

  • Integrability and AdS/CFT
  • Higher spin holography
  • Dense quark matter at strong coupling and gauge/string duality
  • Quantum fields in curved spacetime
  • Theoretical cosmology
  • Amplitudes in gauge and supergravity theories
  • Non-abelian T-duality and supergravity solutions
  • Holography and physics beyond the Standard Model
  • Large-N gauge theories, supersymmetry and duality
  • Lattice studies of strongly interacting systems
  • Lattice QCD at nonzero temperature
  • Dense quark matter and the sign problem
  • High-performance computing

Experimental Physics Structure

The Physics Department is always keen to attract high-quality postgraduate students to join our research groups.

All Physics Research Degrees take 12 months of study, including the dissertation. For MSc by Research programmes you will be guided by internationally leading researchers through an extended one-year individual research project. There is no taught element.

The MSc by Research in Experimental Physics degree enables you to pursue a one year individual programme of research and would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

The Experimental Physics programme has a recommended initial research training module (Science Skills & Research Methods), but otherwise has no taught element and is most suitable for you if you have an existing background in geography or cognate discipline and are looking to pursue a wholly research-based programme of study.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach. 

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a postgraduate student in the Department of Physics you will have access to the following Specialist Facilities:

  • Low-energy positron beam with a high field superconducting magnet for the study of
  • positronium
  • CW and pulsed laser systems
  • Scanning tunnelling electron and nearfield optical microscopes
  • Raman microscope
  • CPU parallel cluster
  • Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The results of the Research Excellence Framework (REF) 2014 show that over 80\% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

Atomic, Molecular and Quantum Physics Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

Particle Physics And Cosmology Theory Group

The Particle Physics and Cosmology Theory Group has fifteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.

Applied Physics and Materials Group

The Applied Physics and Materials (APM) Group has been very recently established at our department and is supported by grants from the European Union, Welsh Government, National Science Foundation, Australian Research Council, Welsh European Funding Office, and EPSRC. Its main areas of research range from Biophotonics, covering nano- and micro-structured materials, biomimetics, analyte sensing and light-tissue interaction, over Nanomedicine to Sustainable Advanced Materials, such as Next generation semiconductors, bioelectronic materials and devices, optoelectronics including photodetection, solar energy conversion, advanced electro-optics and transport physics of disordered solids.



Read less
The MSc by Research Theoretical Physics enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. Read more

The MSc by Research Theoretical Physics enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

As a research student in Theoretical Physics, you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work. 

Key Features of Experimental Physics

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a Postgraduate Physics Student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

The three main research groups within the Department of Physics currently focus on the following areas of research:

Applied Physics and Materials Group

  • Next Generation Solar Cells
  • Materials and Devices for Photodetection
  • Physics of Next Generation Semiconductors
  • Bioelectronics
  • Material Physics
  • Biophysics
  • Novel sensors for medicine 

Atomic, Molecular and Quantum Physics Group

  • Antihydrogen, positronium and positrons
  • Quantum control
  • Cold atoms and quantum optics
  • Nano-scale physics and the life sciences
  • Analytical laser spectroscopy unit
  • Ultrafast Dynamics, Imaging and Microscopy
  • Quantum Computation and Simulation
  • Quantum Control and Optomechanics 

Particle Physics And Cosmology Theory Group

  • Integrability and AdS/CFT
  • Higher spin holography
  • Dense quark matter at strong coupling and gauge/string duality
  • Quantum fields in curved spacetime
  • Theoretical cosmology
  • Amplitudes in gauge and supergravity theories
  • Non-abelian T-duality and supergravity solutions
  • Holography and physics beyond the Standard Model
  • Large-N gauge theories, supersymmetry and duality
  • Lattice studies of strongly interacting systems
  • Lattice QCD at nonzero temperature
  • Dense quark matter and the sign problem
  • High-performance computing

Theoretical Physics Structure

The Physics Department is always keen to attract high-quality postgraduate students to join our research groups.

All Physics Research Degrees take 12 months of study, including the dissertation. For MSc by Research programmes you will be guided by internationally leading researchers through an extended one-year individual research project. There is no taught element.

The MSc by Research in Theoretical Physics degree enables you to pursue a one year individual programme of research and would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

The Theoretical Physics programme has a recommended initial research training module (Science Skills & Research Methods), but otherwise has no taught element and is most suitable for you if you have an existing background in geography or cognate discipline and are looking to pursue a wholly research-based programme of study.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach. 

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a postgraduate student in the Department of Physics you will have access to the following Specialist Facilities:

  • Low-energy positron beam with a high field superconducting magnet for the study of
  • positronium
  • CW and pulsed laser systems
  • Scanning tunnelling electron and nearfield optical microscopes
  • Raman microscope
  • CPU parallel cluster
  • Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The results of the Research Excellence Framework (REF) 2014 show that over 80\% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

Atomic, Molecular and Quantum Physics Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

Particle Physics And Cosmology Theory Group

The Particle Physics and Cosmology Theory Group has fifteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.

Applied Physics and Materials Group

The Applied Physics and Materials (APM) Group has been very recently established at our department and is supported by grants from the European Union, Welsh Government, National Science Foundation, Australian Research Council, Welsh European Funding Office, and EPSRC. Its main areas of research range from Biophotonics, covering nano- and micro-structured materials, biomimetics, analyte sensing and light-tissue interaction, over Nanomedicine to Sustainable Advanced Materials, such as Next generation semiconductors, bioelectronic materials and devices, optoelectronics including photodetection, solar energy conversion, advanced electro-optics and transport physics of disordered solids.



Read less

Show 10 15 30 per page



Cookie Policy    X