• Jacobs University Bremen gGmbH Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
De Montfort University Featured Masters Courses
University College London Featured Masters Courses
Vlerick Business School Featured Masters Courses
Cass Business School Featured Masters Courses
emlyon business school Featured Masters Courses
"tunnel" AND "engineering…×
0 miles

Masters Degrees (Tunnel Engineering)

We have 30 Masters Degrees (Tunnel Engineering)

  • "tunnel" AND "engineering" ×
  • clear all
Showing 1 to 15 of 30
Order by 
Tunnelling, and the use of underground spaces, is an important aspect of the modern urban environment with developments of major underground infrastructure underpinning the changing needs of today’s society through transportation, storage and utilities. Read more

Tunnelling, and the use of underground spaces, is an important aspect of the modern urban environment with developments of major underground infrastructure underpinning the changing needs of today’s society through transportation, storage and utilities. Safe and efficient design of these excavations is essential for optimisation and economic utilisation of underground space.

National and global construction industries and associated businesses are coming under considerable pressure to design, build and manage infrastructure in a resource efficient, sustainable and environment friendly manner. To deliver this, they require qualified engineers with a multi-disciplinary skillset and specialist expertise in tunnelling, underground excavation and underground space utilisation.

Camborne School of Mines is uniquely qualified in this area, being at once the UK’s most prestigious specialist mining school and part of a world ranking Russell Group University.

Reputational and networking benefits

A unique benefit studying at Camborne School of Mines is the community and relations you will gain both during, and after your studies. Camborne School of Mines has a world-class reputation and excellent alumni network, allowing our graduates to prosper in their respective fields in all corners of the globe:

I have worked in many places around the world and have yet to visit a country where I could not find at least one CSM graduate. In fact, there are normally several and they can often be found in influential positions.

Tim Henderson, CSM graduate and current Technical Director at Glencore

Graduate skills and destinations

In addition, a degree form Camborne School of Mines will teach the necessary technical skills and theoretical knowledge required, as well as additional complementary skills relating to communications, teamwork and problem solving. We have excellent rates of graduate employment, with many postgraduates working overseas.

Support and opportunities

The Career Zone (CAS) at our Cornwall Campus provides high-quality careers information and guidance to students of all disciplines. Our experienced careers team can give you individual support whilst you are at the University and after you have graduated.

Services include talks, confidential careers interviews and an extensive careers library of reference books, magazines and journals. A new computer suite is also available for accessing online careers information, vacancy services and specialist software on, for example, sources of funding for courses and worldwide volunteering.

The CAS can help you to identify attractive jobs, careers paths and employers and assist with your CV, interview technique and identifying work experience placements.

Modules

Please note constituent modules and pathways may be updated, deleted or replaced in future years as a consequence of programme development. Details at any time may be obtained from the programme website.

  • Project and dissertation
  • Excavation and geomechanics
  • Health and safety in the extractive industry
  • Project management
  • Underground construction
  • Underground excavation design

Optional modules can include;

  • Production and cost estimation
  • Mine planning and design
  • Working environment and ventilation
  • Mine automation

Teaching and assessment

The programme is delivered through a mix of lectures, workshops, tutorials, practical activities, case studies, industry visits, computer simulations, project work and a dissertation. The taught part of the programme is structured into two semesters. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

A research- and practice-led culture

We believe every student benefits from being taught by experts active in research and practice. You will discuss the very latest ideas, research discoveries and new technologies in seminars and in the field and you will become actively involved in a research project yourself. All our academic staff are active in internationally-recognised scientific research across a wide range of topics.

Students are encouraged to undertake projects directly linked with industry, which may result in industrial placements for their project period.



Read less
The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. Read more

The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. This interdisciplinary Master's programme presents environmental issues and technologies within a systems engineering context. Graduates will understand interactions between the natural environment, people, processes and technologies to develop sustainable solutions.

About this degree

Students will develop an understanding of systems engineering and environmental engineering. Environmental engineering is a multidisciplinary branch of engineering concerned with devising, implementing and managing solutions to protect and restore the environment within an overall framework of sustainable development. Systems engineering is the branch of engineering concerned with the development and management of large complex systems.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), a collaborative environmental systems project (30 credits), two optional modules (30 credits) and an individual environmental systems dissertation (60 credits).

A Postgraduate Diploma (120 credits) is offered.

Core modules

  • Collaborative Environmental Systems Project
  • Environmental Systems
  • Systems Engineering and Management
  • Systems Society and Sustainability
  • Environmental Modelling

Optional modules

Options may include the following:

  • Engineering and International Development
  • Industrial Symbiosis
  • Politics of Climate Change
  • Project Management
  • Water and Wastewater Treatment
  • Urban Flooding and Drainage
  • Offshore and Coastal Engineering
  • Natural and Environmental Disasters
  • Energy Systems Modelling
  • Smart Energy Systems: Theory, Practice and Implementation
  • Indoor Air Quality in Buildings
  • Light, Lighting and Wellbeing in Buildings
  • Building Acoustics
  • Science, Technology and Engineering Advice in Practice
  • Energy Systems and Sustainability
  • Waste and Resource Efficiency

Dissertation/report

All MSc students undertake an independent research project addressing a problem of systems research, design or analysis, which culminates in a dissertation of 10,000 words.

Teaching and learning

The programme is delivered through lectures, seminars, tutorials, laboratory classes and projects. The individual and group projects in the synthesis element involve interaction with industrial partners, giving students real-life experience and contacts for the future. Assessment is through written examination, coursework, presentations, and group and individual projects.

Further information on modules and degree structure is available on the department website: Environmental Systems Engineering MSc

Careers

Career paths for environmental systems engineers are diverse, expanding and challenging, with the pressures of increasing population, desire for improved standards of living and the need to protect the environmental systems. There are local UK and international opportunities in all areas of industry: in government planning and regulation, with regional and municipal authorities, consultants and contracting engineers, research and development organisations, and in education and technology transfer. Example of recent career destinations include Ford, KPMG, EDF Energy, Brookfield Multiplex, and the Thames Tideway Tunnel Project.

Recent career destinations for this degree

  • Air Quality Engineer, National Environment Agency
  • Environmental Engineering Consultant, DOGO
  • Nuclear Analyst, EDF Energy
  • Graduate Flood Risk Engineer, Pell Frischmann
  • Project Manager, Veolia Environmental Services

Employability

The discipline of environmental systems engineering is growing rapidly with international demand for multi-skilled, solutions-focussed professionals who can take an integrated approach to complex problems.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The discipline of environmental systems engineering is growing rapidly with an international demand for multi-skilled professionals who can take an integrated approach to solving complex environmental problems (e.g. urban water systems, technologies to minimise industrial pollution). Environmental engineers work closely with a range of other environmental professionals, and the community.

Skills may be used to:

  • design, construct and operate urban water systems
  • develop and implement cleaner production technologies to minimise industrial pollution
  • recycle waste materials into new products and generate energy
  • evaluate and minimise the environmental impact of engineering projects
  • develop and implement sound environmental management strategies and procedures.

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting environment in which to explore environmental systems engineering. Students have the advantages of studying in a multi-faculty institution with a long tradition of excellence in teaching and research, situated at the heart of one of the world's greatest cities.

Accreditation

The progamme is accredited by the Joint Boad of Moderators, which is made up of the Institution of Civil Engineers, The Institution of Structural Engineers, the Chartered Institutions of Highways and Transportation, and the Institute of Highway Engineers.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Mechanical engineering applies human and material resources to the design, construction, operation and maintenance of machines to move people, goods and materials, generate energy, produce goods and services, control pollution and dispose of wastes. Read more

Mechanical engineering applies human and material resources to the design, construction, operation and maintenance of machines to move people, goods and materials, generate energy, produce goods and services, control pollution and dispose of wastes.

Mechanical engineers turn energy into power and motion, focusing on the generation, conversion and use of energy, as well as the design, construction and operation of devices and systems.

You will learn from world leaders in fluid mechanics, turbulence and biomechanics. Opportunities to consolidate theory with practice will come from group activities, site visits and industry projects. You will have access to well-equipped laboratories for materials testing, engine/turbine testing, wind tunnel investigations, simulation and metal forming processes. A heavy engineering workshop is available for the manufacture of testing facilities and research apparatus, as well as extensive computer facilities.

The Master of Engineering (Mechanical with Business) leads to a formal qualification in mechanical engineering at the Masters level.

MASTER OF ENGINEERING (WITH BUSINESS)

The Master of Engineering (with Business) is designed to provide students with a formal qualification in engineering at the masters level, with a business specialisation that recognises the need for engineers to understand the management and workings of modern professional organisations.

Students who undertake the Master of Engineering (with Business) replace five advanced technical electives with five business subjects that have been tailored specifically for engineering students and co-developed with Melbourne Business School.

Graduates will have a grounding in financial, marketing and economic principles enabling them to work efficiently in any organisation, as well as the ability to apply the technical knowledge, creativity and team work skills learnt in their engineering training. This combination of knowledge and skills will be a powerful asset in the workplace.

Key features

  • Combine a technical specialisation with exposure to the business and management skills that can help fast-track your career.
  • Benefit from subjects co-developed by Melbourne Business School and tailored specifically for engineering students.
  • Tight integration of subjects ensures that you understand the business side of engineering applications.
  • Be empowered with strong technical skills, as well as the business skills to understand how organisations work.

CAREER OUTCOMES

Mechanical Engineering Career Pathways [PDF]

Mechanical engineering not only interacts with all other disciplines of engineering, but increasingly with other disciplines such as medicine and biology, supported by sophisticated computer technology. You will develop a breadth of skills and depth of fundamental knowledge, which will open up a wide variety of possible career directions.

Career opportunities exist in a diverse range of industries from aeronautics, automotive, biomedical, manufacturing, construction and building to robotics and the environment. Emerging technologies in bioengineering, materials science, and nanotechnology will create further opportunities.

Our graduates are employed by companies such as AECOM, Alcoa, BP Australia, ExxonMobil, Orica Limited, Origin Energy, Bosch, Shell, Jacobs and OZ Minerals.

PROFESSIONAL ACCREDITATION

This Master of Engineering (with Business) degree is professionally recognised under two major accreditation frameworks — EUR-ACE® and the Washington Accord (through Engineers Australia). Graduates can work as chartered professional engineers throughout Europe, and as professional engineers in the 17 countries of the Washington Accord.



Read less
World leading aircraft manufacturers predict the number of in-service commercial aircraft doubling to over 43,500 in the next 20 years. Read more
World leading aircraft manufacturers predict the number of in-service commercial aircraft doubling to over 43,500 in the next 20 years. Our MSc Aviation Engineering and Management course will provide you with the skills, knowledge and expertise to succeed in the aviation industry.
You’ll develop key problem-solving skills within the field of aviation including airlines, corporate aviation, general aviation, component manufacturing organisations, and related industries, and civil aviation governmental agencies.

You’ll gain an understanding of the various complexities facing aviation businesses through a breadth of industry related modules. Your studies will also cover a wide variety of tools, techniques, and research methods, and how they may be applied to research and solve real-life problems within the aviation industry.

See the website http://courses.southwales.ac.uk/courses/1878-msc-aviation-engineering-and-management

What you will study

The course consists of nine modules with a key theme throughout your studies including the ethical dimensions of decision-making and interpersonal relations. This means you can be confident that you will develop personally and professionally as part of the course, ultimately making yourself more employable. You’ll study the following modules:

- Aircraft Systems Design and Optimization (10 Credits)
This module will give you a comprehensive knowledge of the systems of the aircraft, including preliminary designing of systems primary and secondary systems, operation and maintenance concepts. You will be introduced to novel engineering design methods such as Multi Objective Design (MOD) and multi-disciplinary design optimisation. Part of the module will be delivered with the support of industrial partners and experts, which will bring real scale industrial experience and interaction with the industry.

- Aviation Sustainable Engineering
This module will explore the historical and contemporary perspectives in international aviation framework while looking at the socio-economic benefits of aviation since the Chicago Convention of 1944. You will analyse current and future design and manufacturing trends in the aerospace industry.

- Condition Monitoring and Non-Destructive Testing
This module analyses condition monitoring and non-destructive testing, giving you an appreciation for the key concepts and tools in this subject. You will evaluate the use of these tools in different situations within industry and make recommendations on necessary adjustments.

- Advanced Materials and Manufacture
You will look at a range of modern engineering materials and develop an awareness of the selection criteria for aeronautical and mechanical engineering applications. You will also look at a range of “standard” and modern manufacturing processes, methods and techniques.

- Lean Maintenance Operations & Certification
This module will help you develop and understand concepts in Six Sigma, lean maintenance, operational research, reliability centred maintenance and maintenance planning. You will evaluate and critically analyse processes within highly regulated industries.

- Safety, Health and Environmental Engineering Management
Covering the principles and implementation of the safety, health and environmental management within the workplace, you will look at key concepts in human cognition and other human factors in risk management and accident/incident investigation. You will also gain an understanding of the role of stakeholder involvement in sustainable development.

- Strategic Leadership and Management for Engineers
This module will explore a range of purposes and issues surrounding successful strategic management and leadership as well as appraising a range of leadership behaviours and processes that may inspire innovation, change and continuous transformation within different organisational areas including logistics and supply chain management.

- Research Methods for Engineers
The aim of this module is to provide you with the ability to determine the most appropriate methods to collect, analyse and interpret information relevant to an area of engineering research. To provide you with the ability to critically reflect on your own and others work.

- Individual Project
You will undertake a substantial piece of investigative research work on an appropriate engineering topic and further develop your skills in research, critical analysis and development of solutions using appropriate techniques.

Learning and teaching methods

You will be taught through a variety of lectures, tutorials and practical laboratory work.

You will have 10 contact hours per week, you will also need to devote around 30 hours per week to self-study, such as conducting research and preparing for your assessments and lectures.

Work Experience and Employment Prospects

Aerospace engineering is an area where demand exceeds supply. As a highly skilled professional in aircraft maintenance engineering, you will be well placed to gain employment in this challenging industry. The aircraft industry is truly international, so there is demand not only in the UK, but throughout the world.

Careers available after graduation include aircraft maintenance planning, engineering, materials, quality assurance or compliance, technical services, logistics, NDT, method and process technical engineering, aircraft or engine leasing, aviation sales, aviation safety, reliability and maintainability, operations and planning, airworthiness, technical support, aircraft surveying, lean maintenance, certification, production planning and control.

Assessment methods

You will be continually assessed coursework or a mixture of coursework and exams. The dissertation allows you to research a specific aviation engineering topic, to illustrate your depth of knowledge, critical awareness and problem-solving skills. The dissertation has three elements of assessment: a thesis, a poster presentation, and a viva voce examination.

Facilities

The aerospace industry has become increasingly competitive and in recognising this, the University has recently invested £1.8m into its aerospace facilities.

Facilities available to our students have been fully approved by the Civil Aviation Authority (CAA). With access to an EASA-approved suite of practical training facilities, our students can use a range of industry-standard facilities.

Our Aerospace Centre is home to a Jetstream 31 Twin Turboprop aircraft, assembled with Honeywell TPE331 Engines and Rockwell-Collins Proline II Avionics. It has a 19-passenger configuration.

The EASA-approved suite contains training and practical workshops and laboratories. Each area contains the tools and equipment required to facilitate the instruction of either mechanical or avionic practical tasks as required by the CAA.

Students use the TQ two-shaft gas turbine rig to investigate the inner workings of a gas turbine engine by collecting real data and subsequently analysing them for engine performance.

Our sub-sonic wind tunnel is used for basic aerodynamic instruction, testing and demonstrations on various aerofoil shapes and configurations.

The single-seater, full motion, three axes Merlin MP521 flight simulator can be programmed for several aircraft types that include the Airbus A320 and the Cessna 150.

Read less
This MSc will suit engineering, mathematics and physical sciences graduates who wish to specialise in the maritime engineering science sector. Read more

This MSc will suit engineering, mathematics and physical sciences graduates who wish to specialise in the maritime engineering science sector. The core modules are particularly relevant to the Advanced Materials theme of this course.

Introducing your degree

Maritime Engineering Science is an MSc course designed for graduates, or similarly qualified, with an engineering, scientific or mathematical background, who desire to pursue a career in maritime sector. An introductory module is provided at the start to give students the fundamental knowledge necessary for them to succeed in the course. The masters course in Maritime Engineering Science / Advanced Materials enables the students to specialise in the in-depth study of engineering materials in addition to core naval architecture subject areas.

Overview

This course will enable you to develop a fundamental understanding of maritime engineering. Core modules are particularly relevant to the advanced materials theme where you will explore composites, titanium and aluminium and understand their selection and engineering for maritime applications.

The year is divided into two semesters. Each semester, in addition to a set of specialist modules, you will also have opportunity to select from a range of option modules including marine structures, finite element analysis and composite engineering design. You will also learn the broader principles of marine safety, environmental engineering and management.

The last four months will put your newly developed knowledge into practice. You will complete a major research project and take advantage of our many facilities, including a state-of-the-art Transportation Systems Research Laboratory and wind tunnel complex to support your experimental work.

View the specification document for this course

Career Opportunities

The maritime sector provides many and varied career opportunities in engineering and project management related roles. Maritime Engineering Science graduates are in strong demand with good starting salaries and excellent career progression opportunities.

Our graduates work across many different organisations. The Solent region around Southampton is the main UK hub for the maritime sector with organisations such as Lloyd’s Register, Carnival, BMT Nigel Gee, Maritime and Coastguard agency and many others based nearby. Organisations such BAE Systems, QinetiQ and Babcock support primarily the defence sector and employ a good number of our graduates. The offshore and marine renewable developments are offering excellent prospects both to work in the UK (locally, London or Aberdeen) or worldwide in places such as Singapore, Houston or Perth, etc.



Read less
Aeronautical engineering graduates are highly valued and in great demand. This Masters course is ideal for graduates seeking employment in the aeronautical sector and for practising aerospace engineers who want to extend and update their skills. Read more
Aeronautical engineering graduates are highly valued and in great demand. This Masters course is ideal for graduates seeking employment in the aeronautical sector and for practising aerospace engineers who want to extend and update their skills.

Progression to management is key to the careers of postgraduate engineers, so as part of the course you will develop relevant managerial skills, as well as an awareness of the wider issues that affect the aeronautical industry, such as safety and the environment. The course meets the academic requirements for Chartered Engineer (CEng) status with the Institution of Mechanical Engineering (IMechE) and the Royal Aeronautical Society (RAeS).

The University has recently built an Aerospace Centre on the Pontypridd Campus, which includes a BAE Jetstream aircraft, laboratory equipment, a gas turbine engine, wind tunnel and a flight simulator, as well as state-of-the-art engineering analysis software.

We have comprehensive links with industry through our Industrial Panel, which contains representatives from major companies, including BAMC, Storm, GE Aviation Systems, Nordam Europe, TES and BA Avionics.

See the website http://courses.southwales.ac.uk/courses/641-msc-aeronautical-engineering

What you will study

Modules include:
- Further Engineering Materials
- Aircraft Propulsion
- Finite Element Analysis
- Computational Fluid Dynamics
- Aircraft Structures
- Non-destructive Testing
- Safety, Health and Environment
- Integrated Project Planning and
- Management
- Dissertation

Learning and teaching methods

The course is delivered in two major blocks to offer an intensive but flexible learning pattern, with two start points each year – February and September. Modules involve lectures, tutorials and practical laboratory work, with continually assessed coursework or a mixture of coursework and exams.

Work Experience and Employment Prospects

Employment prospects are strong in this dynamic and diverse industry. Those with an MSc Aeronautical Engineering degree enhance their career opportunities in commercial and military aircraft engineering, the air transportation industry, teaching or research. The highly technical nature of this course also equips you for careers in many related, technology-intensive fields. Graduates are likely to progress to senior positions in the aeronautical engineering industry and related sectors.

Assessment methods

You will be continually assessed coursework or a mixture of coursework and exams. The dissertation allows you to research a specific aeronautical engineering topic, to illustrate your depth of knowledge, critical awareness and problem-solving skills. The dissertation has three elements of assessment: a thesis, a poster presentation, and a viva voce examination.

Facilities

The University has recently built an Aerospace Centre on the Pontypridd Campus, which includes a BAE Jetstream aircraft, laboratory equipment, a gas turbine engine, wind tunnel and a flight simulator, as well as state-of-the-art engineering analysis software.

Read less
Our September 2018 course is full. We are currently accepting applications for September 2019. Motorsport is an exacting world that requires total commitment from its engineers. Read more

Our September 2018 course is full. We are currently accepting applications for September 2019.

Motorsport is an exacting world that requires total commitment from its engineers. Without their skills and expertise, teams don’t even get to race. This MSc will hone your skills and expertise in relation to motorsport and high performance engineering through a rigorous combination of teaching and motorsport related project work.

Who is it for?

Developed in collaboration with leading motorsport companies, this postgraduate programme prepares graduates for a career in motorsport or high performance engineering.

Why this course?

This course aims to provide you with a sound understanding of the fundamental scientific, engineering and managerial principles involved in motorsport, and their implementation within a high performance technology context.

You will cover design, construction and operation of competition vehicles, and related aspects of materials science, aerodynamics, structural analysis, vehicle systems, and management techniques related to motorsport.

You will be taught the skills required for the planning, execution and reporting of motorsport projects and to prepare them for a variety of roles in motorsport.

Cranfield University has undertaken research, consultancy and testing for the motorsport sector since the 1970s. The University is home to the FIA approved Cranfield Impact Centre and Cranfield Motorsport Simulation which work with F1 and leading motorsport companies. We have an international reputation for our expertise in aerodynamics, CFD, materials technology, including composites, safety of motorsport vehicle structures, power-train development, vehicle dynamics, simulation, data acquisition and electronics, tyre characterisation and modelling. This track record ensures the course is highly respected by the motorsport industry.

  • Practical sessions using Cranfield's facilities and equipment
  • Engagement with motorsport practitioners
  • Motorsport related project work.

Informed by Industry

The Industrial Advisory Board or Steering Committee is a very important factor in the success of the Cranfield Motorsport MSc programme. It includes representation from key individuals and leading organisations in global motorsport.

The board supports the development and delivery of the MSc Advanced Motorsport Engineering, ensuring its relevance to motorsport. It also assists students where careers are concerned, supports teaching and group design and individual thesis projects.

Accreditation

 MSc in Advanced Motorsport Engineering is accredited by the Institution of Mechanical Engineers (IMechE) and the Institution of Engineering and Technology (IET). Re-accreditation for the MSc in Advanced Motorsport Engineering is currently being sought from the Royal Aeronautical Society (RAeS) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements. 

Course details

The MSc course consists of nine one-week assessed modules, of which eight are assessed, which take place during October to February, a group design project and an individual thesis project.

Students who excel on the Masters' course have their performance recognised through prizes from our partners and associates presented either on the day of the Motorsport Group Design Presentations or at the Motorsport MSc 'Parc Ferme' Graduation event in the June of the following year.

Group project

Group design projects are usually sponsored by industry partners and provide students with experience of working on real challenges in the work place along with skills in team working, managing resources and developing reporting and presentation skills. Experience gained is highly valued by both students and prospective employers. Projects run from February to May.

The group design project forms an important element of the education and assessment process for our Masters' students. The group design project is an applied, multidisciplinary team-based activity, providing students with the opportunity to apply principles taught during their MSc course. The Presentation Day provides the students with an opportunity to present their work to an audience of industry representatives, academics and their peers.

Our group design projects have proven very successful in developing new conceptual designs which are now implemented in competition vehicles and have even influenced sporting regulations. The nature of the work is very much applied with the students accessing facilities and equipment here at Cranfield together with support from the academic team and motorsport practitioners.

2015-2016

  • Land Speed Record (LSR) motorcycle concept designs

Four student teams developed their concepts for the 500cc streamliner class. Within each team students specialised in disciplines such as CFD, aerodynamics, vehicle dynamics, powertrain, materials and structures. They created a wind tunnel model that was tested in the Cranfield facility. In addition to the technical aspects, students engaged in individual competency evaluation, peer review and personal reflection.

View our previous Group projects

Individual project

Each year we have a number of thesis projects with motorsport companies that are subject to Non-Disclosure Agreements. This reflects the competitive and confidential nature of motorsport. However, a number of thesis projects are in the public domain and reflect the opportunity students have to deepen their technical understanding.

The individual thesis project runs until early September. Thesis projects allow the students to deepen their understanding through research work related to motorsport.

Assessment

Taught modules 40%, Group project 20%, Individual project 40%

Your career

Motorsport is a highly competitive sector. Studying at Cranfield will immerse you in a highly focused motorsport engineering learning experience, providing you with access to motorsport companies and practitioners. Securing employment is ultimately down to the student who completes the job applications and attends the interviews. Successful students go on to be part of a network of engineers. You will find Cranfield alumni working across motorsport and the high performance engineering sector. 



Read less
This new and unique course covers a wide range of applications focused on aerospace computational aspects. As mirrored by developments in the motorsport industry, within the next five years there will be a demand for engineers and leaders who will be using 100% digital techniques for aeronautical design and testing. Read more

This new and unique course covers a wide range of applications focused on aerospace computational aspects. As mirrored by developments in the motorsport industry, within the next five years there will be a demand for engineers and leaders who will be using 100% digital techniques for aeronautical design and testing.

Who is it for?

With its blend of skills-based and subject-specific material this course aims to provide students with generic practical skills and cutting-edge knowledge adaptable to the wide variety of applications in the field of aerospace computational engineering.

The part-time option is suitable for qualified engineers to extend their knowledge and incorporate CFD into their skill set.

Why this course?

This course aims to enhance your skills through a detailed introduction to the state-of-the-art computational methods and their applications for digital age aerospace engineering applications. It provides a unique opportunity for cross-disciplinary education and knowledge transfer in the computational engineering of fluid and solid mechanics for aerospace industrial applications. Focusing on fully integrated digital design for aerospace applications you will be able to understand and implement numerical methods on various computing platforms for aerospace applications. You will be able to meet the demand of an evolving workplace that requires highly qualified engineers possessing core software engineering skills together with competency in mathematical analysis techniques.

Sharing modules with the MSc in Computational Fluid Dynamics and the MSc in Computational and Software Techniques in Engineering this course gives you the opportunity to interact with students from other disciplines.

Informed by Industry

Our strategic links with industry ensures that all of the materials taught on the course are relevant, timely and meet the needs of organisations competing within the computational analysis sector. This industry led education makes Cranfield graduates some of the most desirable for companies to recruit. Our industrial partners support this course by providing internship, act as visiting lectures and deliver industrial seminars.

Accreditation

Following the first graduation, this course will seek to obtain accreditation from:

Course details

The taught modules are delivered from October to April via a combination of structured lectures, and computer based labs. Many of the lectures are given in conjunction with some form of programming, you will be given time and practical assistance to develop your software skills.

Students on the part-time programme complete all of the compulsory modules based on a flexible schedule that will be agreed with the course director.

Group project

The Group project is related to digital wind tunnel development.

Individual project

The taught element of the course finishes in May. From May to September you will work full-time on your individual research project. The research project gives you the opportunity to produce a detailed piece of work either in close collaboration with industry, or on a particular topic which you are passionate about.

Assessment

Taught modules: 80%, Group project: 40%, Individual Research Project: 80%

Your career

The MSc in Aerospace Computational Engineering is designed to equip you with the skills required to pursue a successful career working in the UK and overseas in computational aeronautic design and engineering. 

Our courses attract enquiries from companies in the rapidly expanding engineering IT industry sector across the world who wish to recruit high quality graduates who have strong technical programming skills in industry standard languages and tools. They are in demand by CAD vendors, commercial engineering software developers, aerospace, automotive and other industries and research organisations, and have been particularly successful in finding employment.

Some of our graduates go onto PhD degrees. Project topics are most often supplied by individual companies on in-company problems with a view to employment after graduation – an approach that is being actively encouraged by a growing number of industries.



Read less
The Aerospace Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of aeronautical engineering. Read more
The Aerospace Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of aeronautical engineering. Particular prominence is given to Sustainable Aviation, Advanced Materials and Processes, Experimental Methods and Techniques, Computational Fluid Dynamics, Structural Analysis and Simulation, Flight Dynamics and Simulation, and Advanced Aircraft Systems, in particular Unmanned Aerial Vehicles.

An emphasis on applied technical work will strengthen the engineering development skills of students from an academic background. The programme is delivered by a specialist team of academics. Access to state of the art laboratory and computing facilities within the new Engineering and Computing building. Personal tutor support throughout the postgraduate study. Excellent links with a number of industrial organisations enable access to the latest technology and real-world applications.

WHY CHOOSE THIS COURSE?

The work carried out on this course will provide the demonstrable expertise necessary to help secure professional level employment in related industries.

The Aerospace Engineering MSc curriculum consists of eight mandatory core topics and a substantial MSc project. Successful completion of all elements leads to the award of MSc in Aerospace Engineering. Completion of the taught modules without a project leads to the award of a Post Graduate Diploma.

WHAT WILL I LEARN?

The mandatory study topics are as follows:
-Mathematical modelling in Aerospace Engineering
-Unmanned Aerial Vehicle Systems (UAV)
-Experimental Methods and Techniques
-Computational Fluid Dynamics (CFD)
-Advanced Materials and Processes
-Design and analysis of Aerospace structures
-Flight Dynamics and Simulation
-Project Management
-Individual Project

The substantial individual project gives students the opportunity to work on a detailed area of related technology alongside an experienced academic supervisor. Some projects are offered in conjunction with the work of the Faculty’s research centres or industry. Typical project titles include:
-Integration of Advanced Materials into Aircraft Structures
-Sustainable Aircraft Development and Design
-Intelligent Power Generation
-UAV SWARM Systems

You will have access to:
-Unique Flight Simulator Suite (3 flight simulators, 2 UAV ground control systems plus the associated UAV,1 Air Traffic Control unit);
Harrier Jump Jet;
-New bespoke Mercedes-Petronas low speed wind tunnel and associated measurement;
-Faculty workshop (metal/woodwork), Composites Laboratory, Metrology Laboratory, Electrical Laboratory, Communications and Signal Processing Laboratory, Cogent Wireless Intelligent Sensing Laboratory
-Faculty Open Access Computer Facilities

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

The specialist topics studied on the programme will prepare you for work in specialist companies involved with aeronautical engineering. There are also many roles in related industries that rely on the technology. Possible destinations include:
-Design, Development, Operations and Management;
-Projects/Systems/Structural/Avionics Engineers.

Typical student destinations include:
-BAE Systems
-Rolls-Royce
-Airbus
-Dassult

Opportunities also exist to complete a PhD research degree upon completion of the master’s course:
-Research at Coventry University
-Cogent Computing
-Control Theory and Applications Centre
-Distributed Systems and Modelling

Aerospace Engineering MSc has been developed to improve upon the fundamental undergraduate knowledge of aerospace/aeronautical students and help mechanical students learn more about the application of their subject to aircraft. The whole aerospace/aviation industry is committed to a more sustainable and a more efficient future. The techniques, methods and subjects covered in this degree explore the ever changing industrial environment in more detail.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
Subsea engineering plays a vital role in the exploitation of oil and gas resources. The subsea engineering industry help to specify the curriculum so we meet their requirements. Read more

Subsea engineering plays a vital role in the exploitation of oil and gas resources. The subsea engineering industry help to specify the curriculum so we meet their requirements. The course is designed for you as an experienced or recently graduated engineer who wants to develop your subsea knowledge.

Your teaching modules operate in short 'intensive schools' with time after the module to complete the assignments, where applicable. They include:

-Input from industry experts

-Site visits

-Industry-based projects

-Teaching from other disciplines

Teaching consists of lectures, practical sessions, seminars and personal supervision covering a variety of topics in subsea engineering. The degree is taught using a mix of the academic staff from the School of Marine Science and Technology as well as visiting lecturers and experts from industry.

You will undertake a research project leading to a dissertation. This may be a critical review and/or computational or experimental project using the University's world leading testing facilities. The research project is supported by an academic supervisor and may be conducted with an industrial partner which, where appropriate, may be your employer.

Delivery

Ten taught modules worth 120 credits are delivered in blocks through semester one and/or two. A dissertation or research project, worth 60 credits, is undertaken across the three semesters.

Accreditation

Our course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the Engineering Council. This means that you are automatically recognised as satisfying the educational requirements leading to Chartered Engineer (CEng) status.

The Royal Institution of Naval Architects is an internationally renowned professional institution whose members are involved at all levels in the design, construction, maintenance and operation of marine vessels and structures. Members of RINA are widely represented in industry, universities and colleges, and maritime organisations in over 90 countries.

IMarEST is the first Institute to bring together marine engineers, scientists and technologists into one international multi-disciplinary professional body.

Our accreditations give you an additional benchmark of quality to your degree, making you more attractive to graduate employers. It can also open the door to higher-level jobs, most of which require Chartered Engineer status.

Facilities

You have access to dedicated facilities including:

  • a student common room
  • a computer laboratory
  • the Henri Kummerman Marine Resource Centre

You also have access to a set of excellent testing facilities:



Read less
Society today places a huge range of demands on the engineering community. These range from the desire for ever more sophisticated consumer goods to the challenges imposed by the need for clean forms of power and transport. Read more

Society today places a huge range of demands on the engineering community. These range from the desire for ever more sophisticated consumer goods to the challenges imposed by the need for clean forms of power and transport. Faced with these demands, engineering industries in the UK are continually seeking professional engineers with high levels of expertise and skills.

If you are graduate from an engineering or closely related science discipline and you would like to extend your knowledge, skills and ability to the level required for senior positions in industry and for Chartered Engineer status, this course can help you achieve these goals.

By providing you with a greater depth of knowledge and skills in engineering science and expanding your technical skills into previously unfamiliar areas of mechanical engineering and related subjects this course can help you to broaden your skills and knowledge and develop the management know how for you to succeed as a manager within an engineering organisation.

You will also have the opportunity to undertake a substantial project that will allow you to develop your own particular interests within the broad area of mechanical engineering.

There may be opportunities to work in an advanced precision engineering laboratory with a range of ultra-precision surface measurement, coordinate measurement and machining equipment. A range of mechanical test analysis equipment is also provided. Within our automotive lab a range of engine test beds, a wind tunnel and a four-post ride simulator are also available for students that undertake their project in this area.

Postgraduate Study Fair

Come along to our Postgraduate Study Fair, Thursday 21st June, 10am – 2pm and discover all your postgraduate study and research options.

Our award-winning academic staff will be on hand to chat about all our postgraduate study and research options, flexible teaching and how postgraduate study can help you to advance your career or prepare for a career change. 

To find out more and to book visit https://www.hud.ac.uk/open-days/postgraduate/

.



Read less
Mechanical engineering applies human and material resources to the design, construction, operation and maintenance of machines to move people, goods and materials, generate energy, produce goods and services, control pollution and dispose of wastes. Read more

Mechanical engineering applies human and material resources to the design, construction, operation and maintenance of machines to move people, goods and materials, generate energy, produce goods and services, control pollution and dispose of wastes.

Mechanical engineers turn energy into power and motion, focusing on the generation, conversion and use of energy, as well as the design, construction and operation of devices and systems.

You will learn from world leaders in fluid mechanics, turbulence and biomechanics. Opportunities to consolidate theory with practice will come from group activities, site visits and industry projects. You will have access to well-equipped laboratories for materials testing, engine/turbine testing, wind tunnel investigations, simulation and metal forming processes. A heavy engineering workshop is available for the manufacture of testing facilities and research apparatus, as well as extensive computer facilities.

The Master of Engineering (Mechanical with Business) leads to a formal qualification in mechanical engineering at the Masters level.

CAREER OUTCOMES

Mechanical Engineering Career Pathways [PDF]

Mechanical engineering not only interacts with all other disciplines of engineering, but increasingly with other disciplines such as medicine and biology, supported by sophisticated computer technology. You will develop a breadth of skills and depth of fundamental knowledge, which will open up a wide variety of possible career directions.

Career opportunities exist in a diverse range of industries from aeronautics, automotive, biomedical, manufacturing, construction and building to robotics and the environment. Emerging technologies in bioengineering, materials science, and nanotechnology will create further opportunities.

Our graduates are employed by companies such as AECOM, Alcoa, BP Australia, ExxonMobil, Orica Limited, Origin Energy, Bosch, Shell, Jacobs and OZ Minerals.

PROFESSIONAL ACCREDITATION

The Master of Engineering is professionally recognised under two major accreditation frameworks — EUR-ACE® and the Washington Accord (through Engineers Australia). Graduates can work as chartered professional engineers throughout Europe, and as professional engineers in the 17 countries of the Washington Accord.



Read less
Mechatronics Engineering is a fast-changing discipline that blends mechanical, electrical and software engineering to develop automation and advanced manufacturing technologies. Read more

Mechatronics Engineering is a fast-changing discipline that blends mechanical, electrical and software engineering to develop automation and advanced manufacturing technologies.

You will develop in-depth technical knowledge across the interdisciplinary domain of automation, which encompasses key components of mechanical and electrical engineering supported by a strong background in computing and software engineering. You will design and create automated solutions with computer control. The course features exposure to industry through site visits, guest lectures and industry based projects. You will have access to world-class facilities, such as a state-of-the-art wind tunnel, alternative fuel engines, rehabilitation and teleoperated robots, motion tracking fluoroscopy, intelligent automotive platforms, service robotics, UAV platforms and intelligent large-scale irrigation and water management systems.

The Master of Engineering (Mechatronics) leads to a formal qualification in mechatronics at the Masters level.

CAREER OUTCOMES

Mechatronic Engineering Career Pathways [PDF]

Mechatronics can lead to a wide variety of interesting careers, such as developing ‘smart’ products and systems in various industries. Job opportunities exist with companies that use advanced automation equipment and computer integrated manufacturing systems, in fields such as aerospace, advanced manufacturing, product development, computing and electronics, software systems, mining, renewable energy and biomedical engineering for companies like Bosch, Honeywell, CNC Design, Ford, ResMed, Siemens, BAE Systems and Invetech Australia.

PROFESSIONAL ACCREDITATION

The Master of Engineering is professionally recognised under two major accreditation frameworks — EUR-ACE® and the Washington Accord (through Engineers Australia). Graduates can work as chartered professional engineers throughout Europe, and as professional engineers in the 17 countries of the Washington Accord.



Read less
Civil engineering problems require the application of analytical, decision making and critical thinking skills - this course will provide students with the technical knowledge and skills needed to develop these skills. Read more
Civil engineering problems require the application of analytical, decision making and critical thinking skills - this course will provide students with the technical knowledge and skills needed to develop these skills. It will also equip students with a range of transferable skills; an ideal combination for a leading career in Civil Engineering.

The MSc in Civil Engineering provides a comprehensive programme of study across a range of subject areas. You may prefer to opt for a more specialised approach by adopting a subject theme and choosing specific modules in the first two semesters with a research project related to the theme.

You may choose from the following subject themes:
Geotechnical Engineering
Management
Pavement Engineering
Structural Engineering
Transportation
Environmental Fluid Mechanics

Students will develop:
the ability to communicate ideas effectively in written reports, verbally and by means of presentations to groups
the ability to exercise original thought
the ability to plan and undertake an individual project
interpersonal, communication and professional skills

Previous research projects have included:
Weather impact on construction schedules
Predicted future climate change trends
The use and abuse of GPS in current UK survey practices
The utilization of laser scanning system for examination and monitoring of tunnel deformation and structural integrity
Life cycle assessment of the M25 highway widening scheme

This degree is accredited by the as meeting the requirements for Further Learning as a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) Undergraduate first degree.

This course is also taught at The University of Nottingham's Malaysia Campus

Read less
Aircraft aerodynamics and flying and handling performances are always the most important and challenging aspects for aircraft designs, particularly with the consideration of advanced materials and advanced aircraft technologies. Read more

Aircraft aerodynamics and flying and handling performances are always the most important and challenging aspects for aircraft designs, particularly with the consideration of advanced materials and advanced aircraft technologies.

At Glyndŵr University, the MSc Engineering (Aeronautical) will enable candidates to develop a deep understanding and solid skills in aerodynamics and aerodynamic design of aircraft, grasp detailed knowledge and application principles of composite materials and alloys, critically review and assess the application and practice of advanced materials in modern aircraft, model and critically analyse aircraft flight dynamic behaviour and apply modern control approaches for control-configured aircraft.

Candidates will have access to state-of-art Merlin flight simulator for design and testing their own aircraft, will learn and use cutting-edge design, analysis and simulation software: MATLAB/Simulink, CATIA v5, ANSYS, and ABAQUS, and will have access to subsonic and supersonic wind tunnel facilities and rapid prototyping facilities. Glyndŵr University is located nearby to one of the largest aircraft company in the world, Airbus and also has close link with aviation industries, such as Rolls-Royce, Raytheon, Magellan, and Airbus.

Key course features

  • The courses will give you the chance to advance your career to management levels.
  • You might also consider consultancy, research and development, testing and design positions within the aeronautical industry. Airbus is a classic example of an employer excelling in this field in the north Wales region.

What you will study

FULL-TIME STUDY (SEPTEMBER INTAKE)

The taught element, Part One, of the programmes will be delivered in two 12 week trimesters and each trimester has a loading of 60 credits.

You will cover six taught modules which include lectures, tutorials and practical work on a weekly basis. The expected timetable per module will be a total of 200 hours, which includes 40 hours of scheduled learning and teaching hours and 160 independent study hours.

Part Two will then take a further 15 weeks having a notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

FULL-TIME MODE (JANUARY INTAKE)

For the January intake, students will study the three specialist modules first during the second trimester from January to May. The three core modules will be studied in the first trimester of the next academic year from September to January.

On successful completion of the taught element of the programme the students will progress to Part Two, MSc dissertation to be submitted in April/May.

PART-TIME MODE

The taught element, part one, of the programmes will be delivered over two academic teaching years. 80 credits or equivalent worth of modules will be delivered in the first year and 40 credits or equivalent in the second year. The part time students would join the full time delivery with lectures and tutorials/practical work during one day on a weekly basis.

The dissertation element will start in trimester 2 taking a further 30 weeks having a total notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

AREAS OF STUDY INCLUDE:

  • Engineering Research Methods & Postgraduate Studies
  • Engineering Design & Innovation
  • Engineering Systems Modelling & Simulation
  • Advanced & Composite Materials
  • Structural Integrity & Optimisation
  • Applied Aerodynamics & Flight Mechanics
  • Dissertation

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

You will be assessed throughout your course through a variety of methods including portfolios, presentations and, for certain subjects, examinations.

 

TEACHING AND LEARNING

 Teaching methods include lectures, laboratory sessions, student-led seminars and guided research.

 Independent learning is an important aspect of all modules, as it enables students to develop both their subject specific and key skills.

 Independent learning is promoted through guided study or feedbacks given to students.

Career prospects

The course equips you with a thorough knowledge and skills in engineering at the forefront of new and emerging technologies. Graduates will be well placed to become subject specialists within industry or to pursue research careers within academia.



Read less

Show 10 15 30 per page



Cookie Policy    X