• Swansea University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Southampton Featured Masters Courses
Middlesex University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Reading Featured Masters Courses
Plymouth Marjon University (St Mark & St John) Featured Masters Courses
Aberdeen University Featured Masters Courses
"tunnel"×
0 miles

Masters Degrees (Tunnel)

We have 28 Masters Degrees (Tunnel)

  • "tunnel" ×
  • clear all
Showing 1 to 15 of 28
Order by 
Aeronautical engineering graduates are highly valued and in great demand. This Masters course is ideal for graduates seeking employment in the aeronautical sector and for practising aerospace engineers who want to extend and update their skills. Read more
Aeronautical engineering graduates are highly valued and in great demand. This Masters course is ideal for graduates seeking employment in the aeronautical sector and for practising aerospace engineers who want to extend and update their skills.

Progression to management is key to the careers of postgraduate engineers, so as part of the course you will develop relevant managerial skills, as well as an awareness of the wider issues that affect the aeronautical industry, such as safety and the environment. The course meets the academic requirements for Chartered Engineer (CEng) status with the Institution of Mechanical Engineering (IMechE) and the Royal Aeronautical Society (RAeS).

The University has recently built an Aerospace Centre on the Pontypridd Campus, which includes a BAE Jetstream aircraft, laboratory equipment, a gas turbine engine, wind tunnel and a flight simulator, as well as state-of-the-art engineering analysis software.

We have comprehensive links with industry through our Industrial Panel, which contains representatives from major companies, including BAMC, Storm, GE Aviation Systems, Nordam Europe, TES and BA Avionics.

See the website http://courses.southwales.ac.uk/courses/641-msc-aeronautical-engineering

What you will study

Modules include:
- Further Engineering Materials
- Aircraft Propulsion
- Finite Element Analysis
- Computational Fluid Dynamics
- Aircraft Structures
- Non-destructive Testing
- Safety, Health and Environment
- Integrated Project Planning and
- Management
- Dissertation

Learning and teaching methods

The course is delivered in two major blocks to offer an intensive but flexible learning pattern, with two start points each year – February and September. Modules involve lectures, tutorials and practical laboratory work, with continually assessed coursework or a mixture of coursework and exams.

Work Experience and Employment Prospects

Employment prospects are strong in this dynamic and diverse industry. Those with an MSc Aeronautical Engineering degree enhance their career opportunities in commercial and military aircraft engineering, the air transportation industry, teaching or research. The highly technical nature of this course also equips you for careers in many related, technology-intensive fields. Graduates are likely to progress to senior positions in the aeronautical engineering industry and related sectors.

Assessment methods

You will be continually assessed coursework or a mixture of coursework and exams. The dissertation allows you to research a specific aeronautical engineering topic, to illustrate your depth of knowledge, critical awareness and problem-solving skills. The dissertation has three elements of assessment: a thesis, a poster presentation, and a viva voce examination.

Facilities

The University has recently built an Aerospace Centre on the Pontypridd Campus, which includes a BAE Jetstream aircraft, laboratory equipment, a gas turbine engine, wind tunnel and a flight simulator, as well as state-of-the-art engineering analysis software.

Read less
The Aerospace Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of aeronautical engineering. Read more
The Aerospace Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of aeronautical engineering. Particular prominence is given to Sustainable Aviation, Advanced Materials and Processes, Experimental Methods and Techniques, Computational Fluid Dynamics, Structural Analysis and Simulation, Flight Dynamics and Simulation, and Advanced Aircraft Systems, in particular Unmanned Aerial Vehicles.

An emphasis on applied technical work will strengthen the engineering development skills of students from an academic background. The programme is delivered by a specialist team of academics. Access to state of the art laboratory and computing facilities within the new Engineering and Computing building. Personal tutor support throughout the postgraduate study. Excellent links with a number of industrial organisations enable access to the latest technology and real-world applications.

WHY CHOOSE THIS COURSE?

The work carried out on this course will provide the demonstrable expertise necessary to help secure professional level employment in related industries.

The Aerospace Engineering MSc curriculum consists of eight mandatory core topics and a substantial MSc project. Successful completion of all elements leads to the award of MSc in Aerospace Engineering. Completion of the taught modules without a project leads to the award of a Post Graduate Diploma.

WHAT WILL I LEARN?

The mandatory study topics are as follows:
-Mathematical modelling in Aerospace Engineering
-Unmanned Aerial Vehicle Systems (UAV)
-Experimental Methods and Techniques
-Computational Fluid Dynamics (CFD)
-Advanced Materials and Processes
-Design and analysis of Aerospace structures
-Flight Dynamics and Simulation
-Project Management
-Individual Project

The substantial individual project gives students the opportunity to work on a detailed area of related technology alongside an experienced academic supervisor. Some projects are offered in conjunction with the work of the Faculty’s research centres or industry. Typical project titles include:
-Integration of Advanced Materials into Aircraft Structures
-Sustainable Aircraft Development and Design
-Intelligent Power Generation
-UAV SWARM Systems

You will have access to:
-Unique Flight Simulator Suite (3 flight simulators, 2 UAV ground control systems plus the associated UAV,1 Air Traffic Control unit);
Harrier Jump Jet;
-New bespoke Mercedes-Petronas low speed wind tunnel and associated measurement;
-Faculty workshop (metal/woodwork), Composites Laboratory, Metrology Laboratory, Electrical Laboratory, Communications and Signal Processing Laboratory, Cogent Wireless Intelligent Sensing Laboratory
-Faculty Open Access Computer Facilities

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

The specialist topics studied on the programme will prepare you for work in specialist companies involved with aeronautical engineering. There are also many roles in related industries that rely on the technology. Possible destinations include:
-Design, Development, Operations and Management;
-Projects/Systems/Structural/Avionics Engineers.

Typical student destinations include:
-BAE Systems
-Rolls-Royce
-Airbus
-Dassult

Opportunities also exist to complete a PhD research degree upon completion of the master’s course:
-Research at Coventry University
-Cogent Computing
-Control Theory and Applications Centre
-Distributed Systems and Modelling

Aerospace Engineering MSc has been developed to improve upon the fundamental undergraduate knowledge of aerospace/aeronautical students and help mechanical students learn more about the application of their subject to aircraft. The whole aerospace/aviation industry is committed to a more sustainable and a more efficient future. The techniques, methods and subjects covered in this degree explore the ever changing industrial environment in more detail.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
This programme will appeal if you’re looking to enter a career in the tunnelling and civil engineering industries. Our distinctive course format means that approximately 20% of teaching is delivered by guest lecturers from industry, ensuring that the content remains relevant. Read more
This programme will appeal if you’re looking to enter a career in the tunnelling and civil engineering industries.

Our distinctive course format means that approximately 20% of teaching is delivered by guest lecturers from industry, ensuring that the content remains relevant. Specialist subjects and case studies are also presented by experts with first-hand experience.

Modules include:
-Communication and Leadership
-Construction Management
-Finite Elements for Tunnelling
-Geological Investigation and Ground Characterisation
-Health, Safety and Environmental Considerations
-Rock Mechanics
-Tunnel Design
-Underground Construction Methods

You’ll learn from internationally recognised academics and industry experts on a course uniquely developed in partnership with the British Tunnelling Society. At what is fast becoming the UK’s centre of excellence for tunnelling, we’ll give you the state-of-the-art knowledge, understanding and skills to design and build the underground infrastructure of the future.

Read less
Our Heritage Studies courses will give you the opportunity to develop your knowledge and skill in heritage management, heritage education and interpretation. Read more
Our Heritage Studies courses will give you the opportunity to develop your knowledge and skill in heritage management, heritage education and interpretation. Coupled with a work placement within a relevant heritage organisation, this course will prepare you for, or progress, a successful career in the heritage sector.

The course covers key aspects of heritage tourism and visitor engagement, drawing on experiences from expert staff and visiting speakers and visits to local heritage sites. It encourages a hands-on approach and involves major input by heritage professionals from the region and beyond. Alongside freelance heritage consultants, these professionals work in organisations including:
-Historic England
-The National Trust
-The National Park Authority

When you graduate from this course you will be equipped to pursue a career in the heritage sector, conduct further research or choose to continue your studies with the work-based Heritage Practice MPrac.

Delivery

The course covers all aspects of heritage work and we use a variety of teaching and learning strategies to help you achieve your learning objectives. This includes a large proportion of guided independent study. Scheduled contact time is at our Newcastle city centre campus and includes:
-Lectures
-Seminars and practical sessions
-Workshops

The academic year usually starts in late September with Welcome Week. We provide a unique blend of theoretical knowledge, understanding and practical experience. This means you will have a mixture of taught modules and work-based placements.

You will take five compulsory modules, with a further choice of two possible pathways.

Part time study consists of the same modules and options as the full time course, but spread over a longer period.

Placements

Work placements or work related-projects are usually off campus. You will have the opportunity to complete a placement in a suitable gallery, museum, or heritage site. This could be either 12 days long or 6 weeks long, depending on which pathway you chose in Semester 2.

Facilities

You will have access to our top quality facilities within Media, Culture, Heritage and across the University:
-Our libraries and eResources
-The Great North Museum: Hancock, located on campus, houses the collections that previously made up the Hancock Museum, the Shefton Museum of Greek Art and Archaeology (an internationally-renowned collection of over 1,000 Greek and Etruscan artefacts), and the Museum of Antiquities
-The Hatton Gallery, located on campus, has been at the heart of cultural life in the North East since the early 20th century
-The Language Resource Centre is a specialist language facility providing free access to self-study materials in 50 languages
computing facilities with access to relevant databases and over 1,400 fully networked PCs
-The Gertrude Bell Archive
-Non-campus facilities that are often used for student projects include Tyne and Wear Archives and Museums and the Victoria Tunnel

In addition to our expertise in heritage studies, the city of Newcastle and the wider region offers a wonderful resource with two World Heritage Sites, many heritage sites and over 80 regional museums and galleries. Much of the region's countryside is designated as National Park or Area of Outstanding Natural Beauty.

Read less
Our flexible research programme focuses on our key research themes. These are. cultural politics and policy; identity, community and place; and representation and media. Read more
Our flexible research programme focuses on our key research themes. These are: cultural politics and policy; identity, community and place; and representation and media. The course is ideal for professionals interested in enhancing their career through research. It will also suit those who want to progress to doctoral study.

The Heritage Museums and Galleries MLitt is a researched based programme with some taught elements. The taught research methods part of the programme provides structured learning. This is ideal if you're unfamiliar with academic research or have been away from academia for a long time.

The flexible nature of the assignments make this programme particularly suitable for sector professionals. It will suit those interested in advancing their career and knowledge through research. The assignments offer the opportunity for you to explore a variety of smaller topics or carry out in-depth research on a single topic.

The programme is in Media, Culture, Heritage, within the School of Arts and Cultures. We also have links with the International Centre for Cultural and Heritage Studies (ICCHS). This is a leading academic centre for research and teaching in museum, gallery, and heritage studies.

ICCHS has a thriving, high-profile interdisciplinary research community of:
-Postgraduate research students
-Experienced academic researchers who are key figures in their fields

Facilities

As a research student in Media, Culture, Heritage, you will have access to a dedicated study space with networked PCs, printing and photocopying facilities. You can also use the common room and kitchen to meet with fellow researchers and academics.

You will have access to our top quality facilities, plus the extensive cultural resources available on campus and in the city:
-Our libraries and eResources
-The Great North Museum: Hancock, located on campus, houses the collections that previously made up the Hancock Museum, the Shefton Museum of Greek Art and Archaeology (an internationally-renowned collection of over 1,000 Greek and Etruscan artefacts), and the Museum of Antiquities
-The Hatton Gallery, located on campus, has been at the heart of cultural life in the North East since the early 20th century
-The Language Resource Centre is a specialist language facility providing free access to self-study materials in 50 languages
-Computing facilities with access to relevant databases and over 1,400 fully networked PCs
-The Gertrude Bell Archive
-Non-campus facilities that are often used for student projects include Tyne and Wear Archives and Museums and the Victoria Tunnel

In addition to our expertise in heritage studies, the city of Newcastle and the wider region offers a wonderful resource with two World Heritage Sites, many heritage sites and over 80 regional museums and galleries. Much of the region's countryside is designated as National Park or Area of Outstanding Natural Beauty.

Read less
World leading aircraft manufacturers predict the number of in-service commercial aircraft doubling to over 43,500 in the next 20 years. Read more
World leading aircraft manufacturers predict the number of in-service commercial aircraft doubling to over 43,500 in the next 20 years. Our MSc Aviation Engineering and Management course will provide you with the skills, knowledge and expertise to succeed in the aviation industry.
You’ll develop key problem-solving skills within the field of aviation including airlines, corporate aviation, general aviation, component manufacturing organisations, and related industries, and civil aviation governmental agencies.

You’ll gain an understanding of the various complexities facing aviation businesses through a breadth of industry related modules. Your studies will also cover a wide variety of tools, techniques, and research methods, and how they may be applied to research and solve real-life problems within the aviation industry.

See the website http://courses.southwales.ac.uk/courses/1878-msc-aviation-engineering-and-management

What you will study

The course consists of nine modules with a key theme throughout your studies including the ethical dimensions of decision-making and interpersonal relations. This means you can be confident that you will develop personally and professionally as part of the course, ultimately making yourself more employable. You’ll study the following modules:

- Aircraft Systems Design and Optimization (10 Credits)
This module will give you a comprehensive knowledge of the systems of the aircraft, including preliminary designing of systems primary and secondary systems, operation and maintenance concepts. You will be introduced to novel engineering design methods such as Multi Objective Design (MOD) and multi-disciplinary design optimisation. Part of the module will be delivered with the support of industrial partners and experts, which will bring real scale industrial experience and interaction with the industry.

- Aviation Sustainable Engineering
This module will explore the historical and contemporary perspectives in international aviation framework while looking at the socio-economic benefits of aviation since the Chicago Convention of 1944. You will analyse current and future design and manufacturing trends in the aerospace industry.

- Condition Monitoring and Non-Destructive Testing
This module analyses condition monitoring and non-destructive testing, giving you an appreciation for the key concepts and tools in this subject. You will evaluate the use of these tools in different situations within industry and make recommendations on necessary adjustments.

- Advanced Materials and Manufacture
You will look at a range of modern engineering materials and develop an awareness of the selection criteria for aeronautical and mechanical engineering applications. You will also look at a range of “standard” and modern manufacturing processes, methods and techniques.

- Lean Maintenance Operations & Certification
This module will help you develop and understand concepts in Six Sigma, lean maintenance, operational research, reliability centred maintenance and maintenance planning. You will evaluate and critically analyse processes within highly regulated industries.

- Safety, Health and Environmental Engineering Management
Covering the principles and implementation of the safety, health and environmental management within the workplace, you will look at key concepts in human cognition and other human factors in risk management and accident/incident investigation. You will also gain an understanding of the role of stakeholder involvement in sustainable development.

- Strategic Leadership and Management for Engineers
This module will explore a range of purposes and issues surrounding successful strategic management and leadership as well as appraising a range of leadership behaviours and processes that may inspire innovation, change and continuous transformation within different organisational areas including logistics and supply chain management.

- Research Methods for Engineers
The aim of this module is to provide you with the ability to determine the most appropriate methods to collect, analyse and interpret information relevant to an area of engineering research. To provide you with the ability to critically reflect on your own and others work.

- Individual Project
You will undertake a substantial piece of investigative research work on an appropriate engineering topic and further develop your skills in research, critical analysis and development of solutions using appropriate techniques.

Learning and teaching methods

You will be taught through a variety of lectures, tutorials and practical laboratory work.

You will have 10 contact hours per week, you will also need to devote around 30 hours per week to self-study, such as conducting research and preparing for your assessments and lectures.

Work Experience and Employment Prospects

Aerospace engineering is an area where demand exceeds supply. As a highly skilled professional in aircraft maintenance engineering, you will be well placed to gain employment in this challenging industry. The aircraft industry is truly international, so there is demand not only in the UK, but throughout the world.

Careers available after graduation include aircraft maintenance planning, engineering, materials, quality assurance or compliance, technical services, logistics, NDT, method and process technical engineering, aircraft or engine leasing, aviation sales, aviation safety, reliability and maintainability, operations and planning, airworthiness, technical support, aircraft surveying, lean maintenance, certification, production planning and control.

Assessment methods

You will be continually assessed coursework or a mixture of coursework and exams. The dissertation allows you to research a specific aviation engineering topic, to illustrate your depth of knowledge, critical awareness and problem-solving skills. The dissertation has three elements of assessment: a thesis, a poster presentation, and a viva voce examination.

Facilities

The aerospace industry has become increasingly competitive and in recognising this, the University has recently invested £1.8m into its aerospace facilities.

Facilities available to our students have been fully approved by the Civil Aviation Authority (CAA). With access to an EASA-approved suite of practical training facilities, our students can use a range of industry-standard facilities.

Our Aerospace Centre is home to a Jetstream 31 Twin Turboprop aircraft, assembled with Honeywell TPE331 Engines and Rockwell-Collins Proline II Avionics. It has a 19-passenger configuration.

The EASA-approved suite contains training and practical workshops and laboratories. Each area contains the tools and equipment required to facilitate the instruction of either mechanical or avionic practical tasks as required by the CAA.

Students use the TQ two-shaft gas turbine rig to investigate the inner workings of a gas turbine engine by collecting real data and subsequently analysing them for engine performance.

Our sub-sonic wind tunnel is used for basic aerodynamic instruction, testing and demonstrations on various aerofoil shapes and configurations.

The single-seater, full motion, three axes Merlin MP521 flight simulator can be programmed for several aircraft types that include the Airbus A320 and the Cessna 150.

Read less
Our Technology in the Marine Environment MRes provides research training, supervision and collaboration to international standards in the topics covered by the marine technology research groups. Read more
Our Technology in the Marine Environment MRes provides research training, supervision and collaboration to international standards in the topics covered by the marine technology research groups.

The MRes breaks down into approximately 40% taught modules and 60% research in collaboration with an industrial partner.

Your research project will normally be in one of the areas addressed by the marine technology research groups:
-Marine Hydrodynamics and Structures
-Marine Design, Production and Operations
-Sustainable Maritime Engineering
-New Energy Infrastructure

Depending on your previous academic training and the requirements of the project, you may receive formal instruction through taught modules in important areas.

The substantial marine technology research community, including 50 research students, 140 MSc students, six-10 post-doctoral students, six technicians and 16 full-time academic staff, provides you with opportunities to progress your career, whether in industry or academia.

Our annual Postgraduate Research Conference provides you with an opportunity to share research experience and practise vital presentation skills.

We hold joint meetings of the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST). You are invited to join these meetings as they offer vital insight into the workings of professional bodies.

Our research students have been very successful at finding employment across a wide range of sectors. Professional institutes hold Newcastle research degrees in high regard when assessing work applications.

Accreditation

Our course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the Engineering Council. This means that you are automatically recognised as satisfying the educational requirements leading to Chartered Engineer (CEng) status.

The Royal Institution of Naval Architects is an internationally renowned professional institution whose members are involved at all levels in the design, construction, maintenance and operation of marine vessels and structures. Members of RINA are widely represented in industry, universities and colleges, and maritime organisations in over 90 countries.

IMarEST is the first Institute to bring together marine engineers, scientists and technologists into one international multi-disciplinary professional body.

Our accreditations give you an additional benchmark of quality to your degree, making you more attractive to graduate employers. It can also open the door to higher-level jobs, most of which require Chartered Engineer status.

Placements

Leading industrial organisations in the Marine and Renewables sector sponsor many research projects. Other projects involve collaboration between Newcastle and other institutions.

Recent partnerships and collaborations include International Paint, Lloyds Register and BAE Systems.

Facilities

You have access to a wealth of excellent facilities within the School of Marine Science and Technology, including extensive laboratories such as the:
-Hydrodynamics laboratory
-Emerson Cavitation Tunnel
-Princess Royal, a versatile twin-hulled locally designed and built vessel supported by a dedicated shore station at Blyth Harbour

Read less
This programme will provide you with the necessary training and skills to undertake professional employment in the civil, environmental, engineering geology, geotechnical engineering and mining-related industries. Read more
This programme will provide you with the necessary training and skills to undertake professional employment in the civil, environmental, engineering geology, geotechnical engineering and mining-related industries. It also provides specialist knowledge in tunnel, surface and underground excavation design, and applied hydrogeology and risk assessment.

Taught modules take place at the Camborne School of Mines(CSM) over two semesters and individual projects are undertaken throughout the summer, often as industrial placements. The programme is suitable for geology and engineering graduates wishing to specialise in applied geotechnics.

This degree is professionally accredited under licence from the Engineering Council, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree.

Programme Structure

You can either study the course full time over a year or part-time over 3 years.

Compulsory modules

The compulsory modules can include; Project and Dissertation; Excavation and Geomechanics; Health and Safety in the Extractive Industry and Project Management

Optional modules

Some examples of the optional modules are; Resource Estimation; Economics, Processing & Environment; Hydrogeology; Surface Excavation Design; Tunnelling and Underground Excavation; Production and Cost Estimation; Mine Planning and Design; Geomechanics Computer Modelling for Excavation Design and Soil and Water Contamination.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Learning and teaching

The taught part of the programme is structured into two terms. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

The project is undertaken from June to September, after the second semester examinations. You are encouraged to undertake projects directly linked with industry, which may result in industrial placements for the project period. The projects are normally design-based and allow further specialisation in a topic that is of particular interest to you. This could involve the use of state-of-the-art engineering design software, risk and hazard analysis and other analytical techniques.

Read less
Civil engineering problems require the application of analytical, decision making and critical thinking skills - this course will provide students with the technical knowledge and skills needed to develop these skills. Read more
Civil engineering problems require the application of analytical, decision making and critical thinking skills - this course will provide students with the technical knowledge and skills needed to develop these skills. It will also equip students with a range of transferable skills; an ideal combination for a leading career in Civil Engineering.

The MSc in Civil Engineering provides a comprehensive programme of study across a range of subject areas. You may prefer to opt for a more specialised approach by adopting a subject theme and choosing specific modules in the first two semesters with a research project related to the theme.

You may choose from the following subject themes:
Geotechnical Engineering
Management
Pavement Engineering
Structural Engineering
Transportation
Environmental Fluid Mechanics

Students will develop:
the ability to communicate ideas effectively in written reports, verbally and by means of presentations to groups
the ability to exercise original thought
the ability to plan and undertake an individual project
interpersonal, communication and professional skills

Previous research projects have included:
Weather impact on construction schedules
Predicted future climate change trends
The use and abuse of GPS in current UK survey practices
The utilization of laser scanning system for examination and monitoring of tunnel deformation and structural integrity
Life cycle assessment of the M25 highway widening scheme

This degree is accredited by the as meeting the requirements for Further Learning as a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) Undergraduate first degree.

This course is also taught at The University of Nottingham's Malaysia Campus

Read less
Structural engineers are required to design structures to be safe for their users and to successfully fulfill the function for which they have been designed for. Read more
Structural engineers are required to design structures to be safe for their users and to successfully fulfill the function for which they have been designed for. This course allows for specialisation in the field of structural engineering. An introduction into the broader civil engineering subjects will be followed by a choice of specialised optional modules on your chosen theme.

The course will concentrate on the technical knowledge and skills that are most relevant to the field of structural engineering for the award of MSc in Civil Engineering: Structural Engineering.

Students will develop:
the ability to communicate ideas effectively in written reports, verbally and by means of presentations to groups
the ability to exercise original thought
the ability to plan and undertake an individual project
interpersonal, communication and professional skills

Previous projects have included:
Wind tunnel testing for tall buildings
Base isolation for reducing ground-borne vibration
The effect on ordinary and high strength concrete columns when introducing bar chip polypropylene fibres

Scholarship information can be found at http://www.nottingham.ac.uk/graduateschool/funding/index.aspx

Read less
Structural Design aims to provide an understanding of aircraft structures, airworthiness requirements, design standards, stress analysis, fatigue and fracture (damage tolerance) and fundamentals of aerodynamics and loading. Read more

Course Description

Structural Design aims to provide an understanding of aircraft structures, airworthiness requirements, design standards, stress analysis, fatigue and fracture (damage tolerance) and fundamentals of aerodynamics and loading. The suitable selection of materials, both metallic and composite is also covered. Manufacturers of modern aircraft are demanding more lightweight and more durable structures. Structural integrity is a major consideration of today’s aircraft fleet. For an aircraft to economically achieve its design specification and satisfy airworthiness regulations, a number of structural challenges must be overcome. This course trains engineers to meet these challenges, and prepares them for careers in civil and military aviation.

Overview

This course is suitable for students with a background in aeronautical or mechanical engineering or those with relevant industrial experience.

The Structural Design option consists of a taught component and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:
- To build upon knowledge to enable students to enter a wide range of aerospace and related activities concerned with the design of flying vehicles such as aircraft, missiles, airships and spacecraft
- To ensure that the student is of immediate use to their employer and has sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression
- To provide teaching that integrates the range of disciplines required by modern aircraft design
- To provide the opportunity for students to be immersed in a 'Virtual Industrial Environment' giving them hands-on experience of interacting with and working on an aircraft design project.

English Language Requirements

If you are an international student you will need to provide evidence that you have achieved a satisfactory test result in an English qualification. The minimum standard expected from a number of accepted courses are as follows:

IELTS - 6.5
TOEFL - 92
Pearson PTE Academic - 65
Cambridge English Scale - 180
Cambridge English: Advanced - C
Cambridge English: Proficiency - C

In addition to these minimum scores you are also expected to achieve a balanced score across all elements of the test. We reserve the right to reject any test score if any one element of the test score is too low.

We can only accept tests taken within two years of your registration date (with the exception of Cambridge English tests which have no expiry date).

Core Modules

The taught programme for the Structural Design masters is generally delivered from October to March. After completion of the four compulsory taught modules, students have an extensive choice of optional modules to match specific interests.

Core:
- Fatigue Fracture Mechanics and Damage Tolerance
- Finite Element Analysis (including NASTRAN/PATRAN Workshops)
- Design and Analysis of Composite Structures
- Structural Stability

Optional:
- Loading Actions
- Computer Aided Design (CAD)
- Aircraft Aerodynamics
- Aircraft Stability and Control
- Aircraft Performance
- Detail Stressing
- Structural Dynamics
- Aeroelasticity
- Design for Manufacture and Operation
- Initial Aircraft Design (including Structural Layout)
- Airframe Systems
- Aircraft Accident Investigation
- Crashworthiness
- Aircraft Power Plant Installation
- Avionic System Design
- Flight Experimental Methods (Jetstream Flight Labs)
- Reliability, Safety Assessment and Certification
- Sustaining Design (Structural Durability)

Individual Project

The individual research project aims to provide the training necessary for you to apply knowledge from the taught element to research, and takes place from January to September.

Recent Individual Research Projects include:
- Review, Evaluation and Development of a Microlight Aircraft
- Investigation of the Fatigue Life of Hybrid Metal Composite Joints
- Design for Additive Layer Manufacture
- Rapid Prototyping for Wind Tunnel Model Manufacturing.

Group project

There is no group project for this option of the Aerospace Vehicle Design MSc.

Assessment

Taught modules (20%); Individual Research Project (80%)

Career opportunities

The AVD option in Structural Design is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

Graduates from the have gone onto pursue engineering careers in disciplines such as structural design, stress analysis or systems design. Many of our former graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry.

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Typical student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce.

For further information

On this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/AVD-Option-in-Structural-Design

Read less
This course provides a quality, career-enhancing education for museum professionals already working in the sector and for others who aspire to enter the field. Read more
This course provides a quality, career-enhancing education for museum professionals already working in the sector and for others who aspire to enter the field. You will add to your existing knowledge with current theories underpinning the sector, develop research skills within an academic environment and conduct a work-based research project.

We have strong working relationships with museums in the region, such as Tyne and Wear Archives and Museums and Beamish – the Living Museum of the North, whose staff members teach on the course. These relationships mean that the course is at the cutting edge of museum practice. Due to our international reputation in museum studies, we attract students from a wide range of countries, contributing to our dynamic learning environment.

Delivery

The course consists of two elements:
-Taught component taking place on our city centre campus
-Work-based project at your work, or an approved volunteer host

Recent work-based projects have explored the future of digital media in learning programmes and the impact of the recession on museum provision.

The programme leader for the Heritage, Gallery and Museum Studies PGCert is Andrew Newman. Andrew will be your personal tutor and will work closely with you throughout your studies.

Placements

The course includes a work-based research project. If you are already employed in the museum, gallery, or heritage sector you will need to agree the study time and research project topic with your employer. If you are not already employed in the sector then you can volunteer in an appropriate organisation, as long as the host organisation agrees with any arrangements necessary to allow the completion of a work-based research project.

Facilities

You will have access to our top quality facilities within Media, Culture, Heritage and across the University:
-Our libraries and eResources
-The Great North Museum: Hancock, located on campus, houses the collections that previously made up the Hancock Museum, the Shefton Museum of Greek Art and Archaeology (an internationally-renowned collection of over 1,000 Greek and Etruscan artefacts), and the Museum of Antiquities
-The Hatton Gallery, located on campus, has been at the heart of cultural life in the North East since the early 20th century
-The Language Resource Centre is a specialist language facility providing free access to self-study materials in 50 languages
-Computing facilities with access to relevant databases and over 1,400 fully networked PCs
-The Gertrude Bell Archive
-Non-campus facilities that are often used for student projects include Tyne and Wear Archives and Museums and the Victoria Tunnel

In addition to our expertise in heritage studies, the city of Newcastle and the wider region offers a wonderful resource with two World Heritage Sites, many heritage sites and over 80 regional museums and galleries. Much of the region's countryside is designated as National Park or Area of Outstanding Natural Beauty.

Read less
Our Museum Practice MPrac, the first in the UK and internationally, blends theory with work-based placements to extend and complement your Museum Studies MA. Read more
Our Museum Practice MPrac, the first in the UK and internationally, blends theory with work-based placements to extend and complement your Museum Studies MA. You will gain essential and relevant work experience in the museum sector, applying theoretical frameworks within a work-based context.

The Museum Practice MPrac offers a mixture of taught modules and two work-based placements, providing you with a unique blend of theoretical knowledge and understanding, and practical experience.

The first year of the MPrac is the Museum Studies MA, which must be completed successfully before undertaking the second year extended work-based placement

During this programme you will:
-Gain the skills and knowledge required to work in the museum sector
-Undertake an extended placement to further enhance your practical skills and knowledge
-Study in an environment responsive to the professional requirements and skills needs of the museum sector, both nationally and internationally
-Understand current developments in the museum sector and gain a critical awareness of problems and new insights, along with the key theoretical principles and conceptual approaches of museum studies

Through our close links with the sector, we welcome a large range of external speakers from all areas of the heritage, museum, and gallery world to lead sessions. This means that the course balances theory with practice and maintains the latest insights into the industry.

Delivery

We are based at our city centre campus with work placements or work related-projects usually taking place off campus. Part time study consists of the same modules and options as in the full time course, but spread over a longer period.

Placements

After completing your Museum Studies MA in year 1, you will supervised and mentored through a 36-week work placement in year 2. Placements can be in the UK or abroad, depending upon availability. We will set up the placement for you, based on the submission of a project agreed between you, your tutor and the placement host organisation.

Previous cohorts of students have undertaken placements with:
-BALTIC Centre for Contemporary Art
-Beamish North of England Open Air Museum
-Tyne and Wear Archives and Museums
-Great North Museum: Hancock
-Victoria Tunnel
-Hartlepool Arts, Museums and Events

Read less
Structural engineers help to make, shape and maintain the built environment, from buildings and bridges to water supply systems, power plans and flood defences. Read more

Structural engineers help to make, shape and maintain the built environment, from buildings and bridges to water supply systems, power plans and flood defences. They are professionals who enjoy innovation, challenges, opportunities, responsibility and excitement in a varied and very satisfying career. As a profession, structural engineering provides a tremendous opportunity to make a real difference to peoples' lives and their environment.

This programme will equip you with the advanced knowledge and skills to succeed in this challenging industry. You’ll build your knowledge of a range of core topics such as concrete and steel design, structural analysis, design optimisation and how structures are designed and managed in earthquake zones. You’ll also develop your research skills and focus on a specific topic when you complete your own research project.

Taught by leading academics and practitioners, you’ll prepare to face some of the major challenges of the 21st century.

This programme has close links with local and regional industry as well as the Yorkshire branch of the Institution of Structural Engineers (IStructE) – and you’ll benefit from the expertise of our Institute for Resilient Infrastructure and the active research groups across the Faculty of Engineering.

You’ll also benefit from using our specialist facilities, such as bench-top testing facilities to look at the fundamental behaviour of material soils and testing rigs for full-scale structures. We have all the specialist software you’ll need for your programme, and you’ll have access to a dedicated study suite for Masters students.

Accreditation

This degree is accredited by the Joint Board of Moderators as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

This course is also accredited by EUR-ACE, the European quality label for engineering degree programmes at Bachelor and Master level.

Course content

You’ll study a set of core modules that give you a firm foundation in the key elements of structural engineering. You’ll develop and expand your understanding of structural analysis and foundation engineering, and explore design issues related to key building materials like concrete, steel and composites. From there you’ll explore design optimisation and examine real-life examples.

We place a strong emphasis on applying your knowledge to real-world problems. Over the 2 semesters, you’ll work on your own design project, where you’ll develop, evaluate and recommend concept design solutions to a structural engineering problem and even put together an outline construction programme for the project.

During Semester 1 and 2 but particularly over the summer months, you’ll also develop and apply your research skills to a real-world problem when you complete an independent research project.

Want to find out more about your modules?

Take a look at the Structural Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Design and Management of Structures in Earthquake Zones 15 credits
  • Advanced Structural Analysis (MSc/PGD) 15 credits
  • Design Optimisation - MSc 15 credits
  • Advanced Concrete Design (MSc) 15 credits
  • Structural Engineering Dissertation 60 credits
  • Foundation Engineering (MSc) 15 credits
  • Advanced Steel and Composite Design - (MSc) 15 credits
  • Structural Engineering Design Project 30 credits

For more information on typical modules, read Structural Engineering MSc(Eng) Full Time in the course catalogue

For more information on typical modules, read Structural Engineering MSc(Eng) Part Time in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The dissertation project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects by MSc Structural Engineering students have included:

  • Dynamic shear resistance of collar jainted masonry panels
  • Performance of reinforced concrete tunnel linings in fire situations
  • A comparison of tensile and compressive creep in concrete
  • Review of the latest developments in the design and construction of plastic bridges

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

This programme greatly enhances your ability to obtain status as a Chartered Structural Engineer. As a result, you may expect to find employment in the major structural engineering consulting practices, while opportunities also exist with multidisciplinary consulting organisations.

Graduates have gone on to succeed in a range of careers around the world for organisations sucj as Arup, Delf Consulting Engineers (India), G2 Structural Ltd, JN Bentley Ltd, KA Tech Tips Ltd, SkyCon Design & Construction Co. Ltd and Sterling Engineering Consultancy Services among others.

If you are taking the course on a part-time basis, you will return to your existing jobs with enhanced potential for progression.

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UK’s leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
Modern industries rely on engineering innovations and continuous advancement in this field means that today's engineers enjoy dynamic and rewarding career opportunities. Read more
Modern industries rely on engineering innovations and continuous advancement in this field means that today's engineers enjoy dynamic and rewarding career opportunities. The automotive sector continues to be a success, building over 1 million vehicles across more than 70 different types of model in 2013 and generating exports of over £30 billion*.

This course is designed for the aspiring automotive engineer who wishes to work at the forefront of automotive technology. If you have a background in mechanical, manufacturing and engineering systems, or a closely related science discipline, such as chemical, applied sciences or industrial design, then this is the course for you.

This course should equip you with the advanced practical skills and expert knowledge needed to succeed in the industry. You will be taught by staff who are dedicated professionals in their field and supported by an excellent range of industry standard equipment. This includes an open plan design studio equipped with design and analysis software and an advanced automotive laboratory with vehicle and engine test facilities including a four-post ride simulator, wind tunnel and thermal imaging facilities.

*Engineering UK Report, 2015

Read less

Show 10 15 30 per page



Cookie Policy    X