• Anglia Ruskin University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
Middlesex University Featured Masters Courses
Barcelona Technology school Featured Masters Courses
University of Reading Featured Masters Courses
FindA University Ltd Featured Masters Courses
FindA University Ltd Featured Masters Courses
"tumour" AND "immunology"…×
0 miles

Masters Degrees (Tumour Immunology)

We have 11 Masters Degrees (Tumour Immunology)

  • "tumour" AND "immunology" ×
  • clear all
Showing 1 to 11 of 11
Order by 
The biggest modern breakthrough for cancer treatment has been antibody therapies. An increasing number of biotechnology companies have antibody - or vaccine-based cancer therapies in development. Read more

Overview

The biggest modern breakthrough for cancer treatment has been antibody therapies. An increasing number of biotechnology companies have antibody - or vaccine-based cancer therapies in development. This course aims to attract students interested in tumour immunology who wish to pursue a career either in industry (biotechnology) or academia.

The course covers both antibody and vaccine cancer therapies and explores the immunology of the tumour host interface. In addition, students will learn about intellectual property and how to exploit scientific research in scientific writings, patents and in development of business plans applicable to the biotechnology industry. To gain practical experience in research students will carry out a research project in the field of tumour immunology.

Aims and objectives

- Acquire a specialised knowledge in tumour immunology with particular reference to monoclonal antibody and cancer vaccines
- Develop the critical and analytical power to evaluate scientific literature
- Perform a scientific research project
- Acquire the ability to communicate scientific results orally and in writing
- Learn about business exploitation of cancer therapy

Innovative features of the course

- The only MSc course based entirely on tumour immunology
- Students undertake a substantial research project, during which time they acquire a considerable amount of laboratory-based skills
- A module based entirely on scientific writing and the development of a business plan
- Individuals from industry lecture on the course
- It is suitable for graduates in Life Sciences, Biomedical Sciences and allied subjects and also for people already in suitable employment who wish to improve and update their knowledge and experience
- It attracts students from the UK and worldwide

Student opinions

"I really enjoyed the course. At first I thought it might be too much of a challenge for me to catch up with everyone because I did not do much molecular science, but the lecturers and staff were really helpful. They made sure everyone was on the same level and there was always someone with whom you could speak if you had any problems. Let's just say they are always there if you need help.

The course also focused on the business side as well, which was a nice change. We were also given lectures by people from the industry. All in all, I would have no hesitation in recommending this course to anyone seeking to develop their scientific knowledge, skills and enhance their career prospects."

"The course prepared me for the cut-throat business of securing research funding, patents and the enormous opportunities available in this new and fascinating field.

Nottingham is a wonderful place to study with excellent academic support and several postgraduate social events throughout the year. I thoroughly enjoyed my one year here."

Comments from potential employers (biotechnology companies)

"This subject is currently undergoing massive expansion and yet qualified graduates are difficult to find. The industry as a whole would benefit from having a source of students with this qualification and from our point of view, such a course may provide candidates that are potentially useful to our company."

"A course in cancer immunotherapy would provide valuable training for people wanting to seek a career in the biopharmaceutical industry where much of the research and development effort is focussed on targeted biological therapies for cancer."

Read less
Translational Cancer Medicine enables you to gain detailed knowledge and understanding of research methods applied to rational drug design, clinical study design, molecular and cell biology, tumour immunology, genetics and cancer imaging. Read more

Translational Cancer Medicine enables you to gain detailed knowledge and understanding of research methods applied to rational drug design, clinical study design, molecular and cell biology, tumour immunology, genetics and cancer imaging. You'll gain practical experience through two six-month laboratory rotations. 

Key benefits

  • A unique research programme that includes the study of advanced imaging methods and tumour immunology.
  • The sponsoring laboratories and departments all have international standing and closely supervise research trainees throughout the study programme.
  • This programme is a competitive course to support PhD applications and continued translational and medical training.  

Description

The Translational Cancer Medicine MRes study pathway offers unique opportunities for you to join experienced research teams and work on particular projects from the outset. This course will allow you to develop an in-depth understanding of research methods, and of how theoretical academic studies and skills relate to research projects.

You will explore Fundamentals of Translational Cancer Medicine, providing you with advanced knowledge and skills to conceptualise, design, conduct and critically appraise specialist research. You will gain hands on research experience in two six month lab projects. 

Course format and assessment

Teaching

We use lectures, seminars and group meetings to deliver most of the modules on the course. 

On average teaching consists of:

  • 40 hours of lectures
  • 1.5 – 3 hours per week of Lab/group meetings (depending on projects)
  • supervision/feedback during each lab roation

You will also be expected to undertake a significant amount of independent study.

Typically, 1 credit equates to ten hours of work.

Throughout the year, you will also attend literature reviews and journal clubs that the labs/departments organise, as well as any other internal or external seminars deemed relevant to your projects/assignments.

Assessment

The primary method of assessment for this course is a combination of written essays, a thesis (research report), a presentation/Q&A session regarding the research report and a draft of a scientific paper.

The study time and assessment methods detailed above are typical and give you a good indication of what to expect. However, they are subject to change. 

Extra information

Occupational health clearance will be required for some of the projects.

Career prospects

Future PhD studies. Clinical and non-clinical academic careers in cancer medicine.



Read less
This M.Sc. in Immunology includes study of immunological processes and mechanism, how they contribute to disease and how they might be manipulated therapeutically. Read more
This M.Sc. in Immunology includes study of immunological processes and mechanism, how they contribute to disease and how they might be manipulated therapeutically. By focusing on the molecules, cells, organs and genes of the immune system, their interaction and how they are activated and regulated, students will develop a deep understanding of the pathological processes underpinning immune mediated disease and how they might be controlled. From a practical perspective the course involves in-depth instruction in modern methodologies used in immunology/biomedical research, including the fundamentals of molecular and cellular biology. Students will also be trained in experimental design, data handling and basic research skills. The masters course aims to provide students with a well-balanced and integrated theoretical and practical knowledge of Immunology, and to highlight the progress and intellectual challenges in this discipline. The following modules are mandatory, and make up the taught component of the course: Basic Immunology; Immunological Technologies; Communicating Science/Critical Analysis: How to read and evaluate scientific literature; Computational and Comparative Immunology; Genes and Immunity; Pathogen Detection and Evasion; Clinical Immunology: Immuno-technologies and diagnostics tests; Parasite Immunology; Tumour Immunology; Global Infectious Diseases; Immuno-therapeutics and product development. In addition, students will be required to submit a dissertation based on a research project conducted in one of the Immunology groups located within or affiliated to The School of Biochemistry and Immunology.

Read less
This is a full-time 1 year MSc programme suitable for biomedical or life scientists who wish to acquire an extensive knowledge and key skills relating to the fundamental molecular and cellular regulation of immunity and its application to the treatment of disease. Read more
This is a full-time 1 year MSc programme suitable for biomedical or life scientists who wish to acquire an extensive knowledge and key skills relating to the fundamental molecular and cellular regulation of immunity and its application to the treatment of disease. The programme will be delivered by world leaders at the forefront of immunology and immunotherapy research, each with an internationally renowned research group.

Over the past few years significant advances have been made in our understanding of the molecular and cellular control of immune responses. These discoveries are now being translated into the design and testing of immunotherapeutic interventions for a range of diseases including cancer, autoimmunity and inflammatory disease. This programme is for biomedical or life scientists who wish to extend their knowledge and skills in both immunology and its translation to immunotherapy.

A series of interlinked taught modules cover molecular mechanisms in immune cell differentiation and function, autoimmunity, transplant and tumour immunology, and inflammation. This is complemented by comprehensive coverage of the latest developments in immunotherapy including the use of microbial products in immunomodulation and vaccination, small molecules and biologics, as well as cellular immunotherapy.

The programme aims to allow you to understand the research process, from the fundamental discoveries at the forefront of immunological research, to the application of novel interventional immune-based therapies.

A key part of the MSc programme is the planning, execution and reporting of a piece of independent study leading to submission of a dissertation. This study will be in the form of an extensive laboratory research project carried out in internationally renowned research groups. Each student will be a fully-integrated member of one of the large number of research teams in a wide variety of topics across both immunology and immunotherapy. We also plan to offer some projects within external biotechnology companies.

About the College of Medical and Dental Sciences

The College of Medical and Dental Sciences is a major international centre for research and education, make huge strides in finding solutions to major health problems including ageing, cancer, cardiovascular, dental, endocrine, inflammatory diseases, infection (including antibiotic resistance), rare diseases and trauma.
We tackle global healthcare problems through excellence in basic and clinical science, and improve human health by delivering tangible real-life benefits in the fight against acute and chronic disease.
Situated in the largest healthcare region in the country, with access to one of the largest and most diverse populations in Europe, we are positioned to address major global issues and diseases affecting today’s society through our eight specialist research institutes.
With over 1,000 academic staff and around £60 million of new research funding per year, the College of Medical and Dental Sciences is dedicated to performing world-leading research.
We care about our research and teaching and are committed to developing outstanding scientists and healthcare professionals of the future. We offer our postgraduate community a unique learning experience taught by academics who lead the way in research in their field.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This M.Sc. program in Translational Oncology will provide high-quality training for basic scientists and clinicians in the theoretical and practical aspects of the causes and treatment of cancer. Read more
This M.Sc. program in Translational Oncology will provide high-quality training for basic scientists and clinicians in the theoretical and practical aspects of the causes and treatment of cancer. A major focus of the programme is the cellular genetic and epigenetic basis of cancer. The course also covers the scientific and clinical challenges pertinent to the management of site specific cancers, and all aspects of cancer treatment from standard therapies to 'individualised' molecular targeted therapies. The focus of the course is research led teaching in the practical aspects of translational cancer research. This innovative M.Sc. program in Translational Oncology is aimed at scientists and doctors in training who wish to:

Develop their research skills
Broaden their expertise in oncology
Develop advanced knowledge in specific areas of scientific, translational and clinical oncology.

The proposed course will offer an opportunity for graduates from a variety of backgrounds to specifically train in translational oncology in advance of undertaking an MD or PhD. Modules are taught using a variety of methods including lectures, tutorials, workshops and laboratory practicals. Lectures are provided by leaders in the field of translational oncology from both scientific and medical backgrounds. The core modules are Cellular and Molecular Oncology, Cancer Epigenetics, Disease Specific Cancers, Radiation / Chemotherapy and Molecular Targeted Therapies, Tumour Immunology, Molecular Pathology and Imaging, Clinical Statsitics and Research Skills. Students can tailor the course to their interests with optional modules in Obesity, metabolism and Cancer, Gemomic Instability, Cancer Drug Development, Tumour Microenvironment, Clinical Pharmacology, and Surgical Oncology and Economics. Students will be required to submit a dissertation based on an emperical research project conducted in one of the many oncology groups located within or affiliated with Trinity College Dublin and the Institute of Molecular Medicine. Opportunities for national and international placements to conduct research projects will also be available in collaborating universities, hospitals and industry.

All applicants should provide two academic or clinical references confirming their eligibility and suitability for the course, before their application can be considered. Applicants should also include a 500 word personal statement addressing why they are interested in the course, their suitability for the programme and how it will impact on their future career development. Applications for admission to the course should be made through the online system no later than July 31st. Late applications will be considered provided places are available.

Read less
If you want to pursue a research career in academia or industry, our MSc Cancer Biology will provide you with the essential advanced skills and knowledge for a role in biopharma, healthcare or cancer research. Read more
If you want to pursue a research career in academia or industry, our MSc Cancer Biology will provide you with the essential advanced skills and knowledge for a role in biopharma, healthcare or cancer research. We offer many opportunities for you to explore medically relevant research in the School of Biological Sciences including hospital-based sessions through our collaboration with local cancer specialists and clinicians.

An important and exciting part of your programme is an extensive independent research project, based in one of our academic research groups using advanced laboratories facilities and bioinformatics tools. There are also opportunities for research projects to take place within an industrial or clinical setting.

Throughout the course, you develop your knowledge in the essential areas of molecular and cellular biology which complement your specialist modules in cancer biology. You gain expertise in areas including:
-Specific cancer types (including breast, prostate, pancreatic and colon cancer)
-Clinical aspects of cancer
-Emerging trends in cancer research

You are also trained in modern research methods and approaches which will develop your skills in complex biological data analysis and specific techniques in cancer research.

Within our School of Biological Sciences, two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you will learn from and work alongside our expert staff as you undertake your own research.

Our expert staff

We have a very strong research team in the area of cancer biology, who are well placed to deliver the specialist teaching on this course.

The team includes the course leader Professor Elena Klenova (molecular oncology and cancer biomarkers), Dr Ralf Zwacka (apoptotic and survival signalling in cancer), Dr Greg Brooke (steroid hormone receptor signalling in cancer), Dr Metodi Metodiev (clinical proteomics and bioinformatics), Dr Pradeepa Madapura (cancer epigenetics), Dr Vladimir Teif (computational and systems biology), Professor Nelson Fernandez (tumour immunology) and Dr Filippo Prischi (structural biology and biophysics of novel drug targets).

External experts also input to your teaching, including guest speakers from hospitals and research institutions, who deliver classes both on-campus and within the hospital environment.

As one of the largest schools at Essex, we offer a lively, friendly and supportive environment with research-led study and high-quality teaching, and you benefit from our academics’ wide range of expertise and research.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Study in an open and friendly department, with shared staff-student social spaces
-Carry out your research project in shared lab space, alongside PhD students and researchers engaged in cutting-edge cancer research
-Learn to use state-of-the-art research facilities, including an advanced microscopy suite, proteomics laboratory, cell culture, bioinformatics and genomics facilities, modern molecular biology laboratories, and protein structure analysis

Your future

Graduates who are skilled in the research methods embedded into your course are in demand from the biotechnology and biomedical research industries in this area of the UK and beyond.

Many of our Masters students progress to study for a PhD, and there are many opportunities within our school leading to a career in science.

We work with our University’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Advanced Cancer Biology
-Practical Skills in Cancer Research
-Gene Technology and Synthetic Biology
-Protein Technologies
-Professional Skills and the Business of Molecular Medicine
-Cancer Biology (optional)
-Research Project: MSc Cancer Biology
-Genomics (optional)
-Cell Signalling (optional)
-Molecular Medicine and Biotechnology (optional)
-Human Molecular Genetics (optional)
-Molecular and Developmental Immunology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)

Read less
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Read more
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Whilst these treatment have served well and new drugs will continue to be designed, clinical trials over the last five years have shown that boosting the body’s immune system, whose main task is to deal with invading pathogens, can help our immune system to destroy tumour cells. Many of the new immunotherapies may be tested in combination with more conventional treatments or tested alone, but investigators and oncologists now believe immunotherapy, initially combined with pharmacological treatments, will soon provide curative therapies and certainly give many patients a new lease of life.

More about this course

Worldwide the incidence of cancer is increasing, and is expected to reach 22 million new cases per year by 2030. In addition to treatments such as radiotherapy and surgery, chemotherapy has a vital role to play in prolonging the lives of patients.

The aims of the Cancer Immunotherapy MSc are to:
-Provide an in-depth understanding of the molecular targets at which the different classes of anticancer drugs are aimed, and of how drug therapies are evolving
-Review the biology of cancer with respect to genetics, pathological considerations, and the molecular changes within cells which are associated with the progression of the disease
-Enhance intellectual and practical skills necessary for the collection, analysis, interpretation and understanding of scientific data
-Deliver a programme of advanced study to equip students for a future career in anti-cancer drug and immunotherapy development
-Cover new areas in immunotherapy (some of which may enhance existing pharmacological therapies including: History of immunotherapy and review of immune system; Monoclonal antibodies in cancer therapy and prevention; DNA vaccines against cancer; Adoptive T cell therapy; Dendritic cell vaccines; Antibodies that stimulate immunity; Adjuvant development for vaccines; Epigenetics and cancer: improving immunotherapy; Immuno-chemotherapy: integration of therapies; Exosomes and Microvesicles (EMVs) in cancer therapy and diagnosis; Dendritic cell vaccine development and Pox virus cancer vaccine vectors; Microbial causes of cancer and vaccination

Students will have access to highly qualified researchers and teachers in pharmacology and immunology, including those at the Cellular and Molecular Immunology Research Centre. Skills gained from research projects are therefore likely to be highly marketable in industry, academia and in the NHS. Students will be encouraged to join the British Society of Immunology and the International Society of Extracellular Vesicles.

Assessment is a combination of coursework, which includes tests and essays, the research project and its oral defence and examination.

Modular structure

The modules listed below are for the academic year 2016/17 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules include:
-Advanced Immunology (core, 20 credits)
-Cancer Immunotherapy (core, 20 credits)
-Cancer Pharmacology (core, 20 credits)
-Cancer: Diagnosis and Therapy (core, 20 credits)
-Molecular Oncology (core, 20 credits)
-Research Project (core, 60 credits)
-Scientific Frameworks for Research (core, 20 credits)

After the course

Students will have many opportunities to work in industry. There are established industries working hard to develop cancer immunotherapies including Bristol-Myers Squibbs, MERCK, AstraZeneca and Roche. There are also an innumerate number of start-up companies appearing including Omnis Pharma, UNUM Therapeutics and Alpine Immune Sciences.

Students will also have ample opportunity for future postgraduate study either within the School of Human Sciences and the Cellular and Molecular Immunology Centre at the MPhil/PhD level or beyond, even with some of our research partners within the UK, Europe and beyond.

Read less
This course will provide an in-depth understanding of the disease processes involved in malignancy and the opportunity to explore the scientific rationale for various therapeutic options. Read more
This course will provide an in-depth understanding of the disease processes involved in malignancy and the opportunity to explore the scientific rationale for various therapeutic options. It will allow you to link academic knowledge with the practical applications of cancer biology, with a focus on the latest advances in this field. This course is, therefore, excellent preparation for a wide variety of careers in hospital laboratories, commercial laboratories, cancer research, pharmaceutical companies and academic institutions.

-You will be taught by active researchers and expert practitioners, and have the opportunity to work in industry with companies like GlaxoSmithKline, or at a research institute, such as the Institute of Cancer Research.
-Your research project can be carried out with one of our research groups or as part of an industrial placement (if you are a part-time student) at your place of work.
-Flexible study options (such as single modules) can be taken as part of a continuing professional development (CPD) programme.

What will you study?

You will be trained in science research methods and learn about the techniques used in molecular biology. You will study the biology of disease, tumour biology, immunology, molecular oncology, haematological malignancy, plus diagnostic and therapeutic techniques for cancer.

In addition to developing a comprehensive understanding of the principles and practice of core topics in current areas of medical science, you will gain an in-depth knowledge of oncology topics – and their relationship to other medical disciplines. You will also learn how to plan, carry out and report on a piece of independent scientific research.

Assessment

Coursework, written exam, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.
-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Modules
-Cellular and Molecular Biology of Cancer
-Immunology and the Biology of Disease
-Cancer Diagnosis and Therapy
-Research Techniques and Scientific Communication
-Research Project

Read less
The UBC Department of Pathology and Laboratory Medicine offers a remarkable opportunity to study with numerous world renowned faculty and research programs. Read more

General Information

The UBC Department of Pathology and Laboratory Medicine offers a remarkable opportunity to study with numerous world renowned faculty and research programs. We are recognized as national and international leaders in both basic and clinical research. Experimental Pathology refers to research in any area of biomedical investigation that is relevant to human disease. Since it is necessary to understand the normal working of the system to fully define the changes associated with disease, the areas represented at UBC cover a wide range of fields and approaches. Work at all levels of biological organization is involved, from protein to lipoprotein biochemistry and molecular biology through cell and tumour biology, animal models for studies on pulmonary and cardiovascular pathophysiology and viral and bacterial infection processes, to clinical studies on human population and the AIDS epidemic.

We train students with varied backgrounds in science and medicine including: biochemistry, physiology, cell biology and microbiology/immunology.

We are committed to effective, cutting-edge, ethical research. The results of which will reach beyond the academic realm to effect positive change in the lives of our families, communities and, ultimately, our world.

Quick Facts

- Degree: Master of Science
- Specialization: Pathology and Laboratory Medicine
- Subject: Life Sciences
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Registration options: Full-time
- Faculty: Faculty of Medicine

Read less
The Department of Medical Biophysics, an interdisciplinary department with three fields—Cellular and Molecular Biology, Medical Physics, and Molecular and Structural Biology—is located primarily at the Princess Margaret Cancer Centre, the Toronto Medical Discovery Tower, and the Sunnybrook Research Institute. Read more
The Department of Medical Biophysics, an interdisciplinary department with three fields—Cellular and Molecular Biology, Medical Physics, and Molecular and Structural Biology—is located primarily at the Princess Margaret Cancer Centre, the Toronto Medical Discovery Tower, and the Sunnybrook Research Institute.

The department offers opportunities for research—leading to the Master of Science and Doctor of Philosophy degrees—in a variety of problems in medical science; projects which cut across the conventional boundaries of biology, physics, engineering, chemistry, and medicine are encouraged. The department emphasizes basic and applied research related to cancer. Projects include the following areas: tumour biology, radiobiology, membrane function, molecular interactions, gene expression, cell differentiation and growth control, viral and chemical carcinogenesis, cellular and molecular immunology, hemopoiesis, macromolecular structure via x-ray crystallography, NMR spectroscopy and electron microscopy, the physics and engineering of diagnostic imaging and radiation therapy, development of imaging and therapy systems using x-rays, ultrasound, nuclear magnetic resonance, light and electron optics.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X