• Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Swansea University Featured Masters Courses
University of Nottingham in China Featured Masters Courses
Birmingham City University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Anglia Ruskin University Featured Masters Courses
Plymouth Marjon University (St Mark & St John) Featured Masters Courses
"tropical" AND "ecology"×
0 miles

Masters Degrees (Tropical Ecology)

We have 50 Masters Degrees (Tropical Ecology)

  • "tropical" AND "ecology" ×
  • clear all
Showing 1 to 15 of 50
Order by 
The Ecology and the Environment master’s programme prepares students to work with the management of ecosystems, ecological communities and populations, based on a thorough knowledge of ecological concepts and theories. Read more

The Ecology and the Environment master’s programme prepares students to work with the management of ecosystems, ecological communities and populations, based on a thorough knowledge of ecological concepts and theories.

The programme has a critical scientific approach to ecology and its applications in society. Students acquire training in practical areas such as experiment design, data interpretation, ecological fieldwork and theoretical modelling, both in a classroom setting and through fieldwork.

There is a strong focus on the practical application of ecological knowledge in society. You learn about environmental and natural resource management, and how it is implicated by various stakeholders. Courses cover population ecology, community ecology and ecology systems theories, including their relationship to current environmental problems. Furthermore, the programme has an internship period and a course that focuses on ecological decision support for forestry and agriculture.

One-year thesis project

The key part of the programme is a one-year master’s project in which students apply their theoretical and methodological knowledge. The project can be linked to current research projects at the Division of Biology in subjects such as conservation ecology, ecology of shallow waters, design and management of treatment wetlands, spatio-temporal ecology, and population and community ecology. Alternatively, the master’s project can be conducted at a university or research institute abroad, in a field such as tropical ecology or ecological engineering.

Emphasis on mathematical models

This programme also emphasises the need for mathematical models and statistical analyses to address complex ecological and environmental problems. Typical applications are in helping to identify crop management strategies for effective biological control, understanding the impact of life-history strategies on the risk of population extinction in a varying environment, and evaluating the preservation status of nature reserves and how they should be managed.



Read less
The world’s environments have long been threatened by human impact. As pressures on the natural environment intensify, there is a growing need for professionals skilled in conservation and environmental management. Read more
The world’s environments have long been threatened by human impact. As pressures on the natural environment intensify, there is a growing need for professionals skilled in conservation and environmental management. They need a wide range of skills, including biodiversity, survey techniques, environmental management and monitoring systems, geographical information systems and an understanding of relevant ecological principles, legislation and regulatory frameworks, which demands a multidisciplinary approach.

This Masters programme in Wildlife and Conservation Management brings together the physical, chemical, biological, socioeconomic, administrative and legislative aspects of land planning, providing the skills you need for an exciting and rewarding career as an environmental conservation manager. It combines a broad understanding of the science and management of conservation, putting emphasis on integrating specialist knowledge and practical skills with IT and communication.

Our extensive and exciting fieldwork programme will train you in a wide range of environmental survey and assessment techniques.

This Masters degree is accredited by the Environment and Resources Professional Group of the Royal Institution of Chartered Surveyors (RICS).

See the website http://courses.southwales.ac.uk/courses/385-msc-wildlife-and-conservation-management

What You Will Study

Modules include:
- Applied Geospatial Analysis
- Restoration Ecology
- Environmental Management and Legislation
- Wildlife Surveying
- Terrestrial and Aquatic Conservation
- European Field Expedition*
- MSc Project

Optional modules:
- Tropical Ecology*
- Tropical Environmental Monitoring*
- Tools for Sustainable Development
- Work Based Learning Project
- Remote Sensing for Environmental Management

*Please visit our course page on the University of South Wales website for information regarding our Field Trips.

*Please note:* the course structure outlined above is indicative of what you will study and may change from year to year. Consequently there may be a difference between the information shown here and the course when it is delivered.

Learning and teaching methods

Full-time students spend two days at University, usually Wednesday and Thursday, and around 12 hours per week in lectures and practical sessions.

Part-time students attend one day per week. First year part-time students attend on Wednesdays and second years attend on Thursdays.

We teach using a combination of lectures, laboratory sessions, problem solving tutorials, video presentations and practicals. You will also undertake fieldwork excursions within the UK and overseas (additional costs apply). The number of hours of formal teaching will vary depending on your module choice. You will also be encouraged to take responsibility for your own learning by completing guided reading and various interactive computer packages. Based on individual circumstances the MSc Project may be extended into your third year of study and will be agreed as part of a discussion with the course leader.

Please note: some field trips will take place on weekdays besides Wednesdays and Thursdays.

Work Experience and Employment Prospects

- Work based learing project:
This optional module enables our students to gain 60 hours work experience under the supervision of an employer. You will also be assigned an academic supervisor who will advise you on a suitable employer based on your area of interest. Recent organisations who have hosted our students include Capita Symonds, Natural Resources Wales, Wales Heritage Coastal Path and Warwickshire Wildlife Trust.

- Employment prospects:
Graduates from our MSc Wildlife and Conservation Management have progressed to careers in the Environment Agency, utility companies, local, national and international conservation organisations, environmental consultancies, and regional and national government. Several others have progressed on to PhD study and into academic careers.

Assessment methods

You will be assessed through a range of methods depending on your module choice, these include: examinations, coursework such as writing reports of field excursions. You will also analyse case studies, undertake presentations, participate in workshops and analyse data.

Field trips

Fieldwork provides unforgettable educational and social experiences, bringing to life the theory and concepts of the lecture theatre. South Wales is a fantastic study location on the edge of rural and urban environments.

Cardiff, Wales’ capital city, the Brecon Beacons National Park and the Glamorgan Heritage Coast are all close to the University. They provide exceptional fieldwork locations that can be explored in a day. We make full use of these locations across our earth and environment courses to cover the practical aspects of our modules.

As part of this degree you will undertake residential fieldwork excursions, typically to Portugal and Mid Wales (additional fees apply). Some fieldwork trips will extend beyond the two days of study, but you will be notified in advance in order to plan appropriately.

If you choose to study the Tropical Ecology module, you will have the opportunity to complete a scientific scuba diving course, either locally or at a tropical location (for an additional fee which is approximately £2000). Previous locations have included Indonesia, Costa Rica, Honduras and Borneo.

The Tropical Environmental Monitoring module, will enable you to undertake studies in Southern Africa in locations such as Botswana for an additional fee which is approximately £2000.

The European Field Expedition module involves studying in Portugal. The fee is approximately £500-£600.

Please note: the exact locations of all overseas field trips may vary each year and is based on the area’s suitability for academic study and the overall cost of the trip. In addition some field trips will take place on weekdays besides Wednesdays and Thursdays.

Important Information

Please be aware of the physical demands of this course which has modules with significant fieldwork elements. If you therefore have a disability which is likely to be affected by these physical demands, please get in touch with the course leader Dr Gareth Powell as soon as possible. We will then investigate the reasonable adjustments that we can make to ensure your Health and Safety. Please note that if any Health & Safety aspects cannot be overcome, we may not be able to offer you a place on the course of your choice.

Read less
Global ecological change is occurring at a rapid rate and we are seeing an unprecedented spread of diseases, collapses in biodiversity and disruption to ecosystems. Read more

Global ecological change is occurring at a rapid rate and we are seeing an unprecedented spread of diseases, collapses in biodiversity and disruption to ecosystems. We aim to understand not just patterns in the natural environment, but the ecological and evolutionary factors that drive them, from the behaviour of individual organisms to population and whole community dynamics.

You will study the concepts and theories that will help you understand factors underpinning global ecology and evolutionary change, including modern techniques for environmental process research, invasive species ecology and conservation genetics. Students also learn techniques important for environmental policy and management and as such, our graduates are well placed to progress onto PhD research or careers in industry, consultancy and conservation. 

You will conduct your own substantive six-month research project, which may be jointly supervised by contacts from related institutes or within industry. Students also take part in a field course in Borneo - see photos from a recent trip on Flickr - giving you the opportunity to develop first hand experience of theory in action.

You will have access to advanced analytical research facilities at the Freshwater Biological Association's River Laboratory in Dorset through our River Communities Research Group. You will have the opportunity to conduct both fieldwork and lab projects at this site.

Programme highlights

  • Two-week tropical ecology field trip (currently in Borneo), as well as fieldwork in Dorset, UK
  • Modules that develop pure research and applied practical skills
  • Guest lectures by stakeholders and potential employers
  • Opportunities for research projects in UK and overseas, and in conjunction with collaborators such as the Institute of Zoology, Royal Botanic Gardens, Kew, and the Natural History Museum

Research and teaching

By choosing to study at a Russell Group university, you will have access to excellent teaching and top-class research. You can find out more about our research interests and view recent publications on the School of Biological and Chemical Science's Evolution and Genetics group page.

Structure

Your taught modules take place in blocks of two weeks of full-time teaching (normally 9am-5pm), followed by week-long study breaks for independent learning and coursework. This structure allows for an intensive learning experience, giving students the opportunity to immerse themselves in their subject.

This programme combines taught modules with individual and collaborative research projects. You will apply the knowledge and techniques from your taught modules in a practical setting and may be able to publish your project findings.

Taught modules

  • Ecological Theory and Applications: Look at the theory behind our understanding of ecological systems and how that theory can be applied to ecological problems in the real world. Starting with populations of a single species we will progress to understanding two-species interactions including predation, competition and parasitism and then to whole communities of interacting organisms. We will then study how ecological theory, used in concert with population genetics and evolutionary theory, can be applied to understanding ecological issues such as the conservation of small populations, harvesting natural populations and predicting responses to environmental change.
  • Ecosystem Structure and Function: Ecosystems are under continued and growing threat from human activity (e.g. habitat loss, invasive species and diffuse pollution) and if we seek to preserve them we need to understand how ecosystems function and how they respond to either enforced or natural change. Here we focus on the structural and functional elements of many ecosystems, from shallow lakes to tropical forests, with a particular focus on contrasting aquatic environments.
  • Statistics and Bioinformatics: Covers core statistics methods, within the R statistical computing environment. R has become the de facto environment for downstream data analysis and visualisation in biology, thanks to the hundreds of freely available R packages that allow biological data analysis solutions to be created quickly and reliably.
  • Research Frontiers in Evolutionary Biology: Explore the frontiers of research in evolutionary biology. Topics covered will include: incongruence in phylogenetic trees, neutral versus selective forces in evolution, the origin of angiosperms, the origin of new genes, the evolution of sociality, the significance of whole genome duplication and hybridisation. Current methods being used to tackle these areas will be taught, with an emphasis on DNA sequence analysis and bioinformatics.
  • Tropical field course - usually in Borneo; see photos from a recent trip on Flickr. Topics will encompass aspects of taxonomy, ecology, biogeography, conservation and evolution. Specific areas of content will include ecological processes in tropical rainforests (decomposition, pollination and seed dispersal); rainforest structure and defining characteristics (including the importance of rainforests as centres of biodiversity) and anthropogenic factors affecting rainforests (including disturbance, forest fragmentation and agriculture). There will be strong emphasis on practical training. In particular, students will be trained in a range of survey methods covering diverse terrestrial and aquatic taxonomic groups. The module will also provide training in data collection, analysis and presentation.
  • Science, Policy and Management: Here a broad spectrum of human environmental impacts and their mitigation will be explored. The first half of the module will bring the student ‘face to face’ with potential regulators, practitioners and potential employers (typically Defra, EA, Natural England) through a series of guest lectures. These topics are then explored and summarised through an unpacking and feedback workshop. The second half is field based with current practitioners working directly in the field of bioassessment and biomonitoring. National and international legislation and directives are introduced through a series of ‘Case Studies’ to look at the link between successful science and policy.

Research module

  • Research project (90 credits)

Part-time study

You can take the MSc over two years via studying part-time; you should aim to register for 50% of taught modules per year. You can discuss the exact combination of modules with the programme director, Dr Christophe Eizaguirre

Projects can also be undertaken over a two-year period, subject to finding an approved schedule of work which equates to the same time requirements as a full-time MSc. You may also enrol on a Postgraduate Certificate in Ecology and Evolutionary Biology (60 credits), which is comprised of four taught modules.



Read less
Aquatic ecosystems and species are under intense anthropogenic threats. These threats directly affect services such as sustainable fisheries, drinking water or ecosystem resilience. Read more

Aquatic ecosystems and species are under intense anthropogenic threats. These threats directly affect services such as sustainable fisheries, drinking water or ecosystem resilience. To adequately respond to these 21st century challenges and conserve these goods and services, a fundamental understanding of the biodiversity and ecosystem processes is needed, as without knowledge there can be no application or effective management.

Considering both freshwater and marine ecosystems and species, we have designed a programme to equip you with the interdisciplinary practical skills and theoretical understanding to pursue a career in aquatic research, consultancy or environmental protection, and give you a good understanding of applying scientific understanding to science policy. 

This programme balances the latest in ecological theory, conservation biology and evolutionary biology with practical application. You will take part in three residential field-courses (Dorset, Cumbria and Cape Verde) for practical, hands-on training.

You will be supervised by research-active scientists, becoming part of their research groups. We support links with a range of NGOs or potential employer organisations and strongly encourage you to publish your project work.

Programme highlights

  • Balances the latest in ecological theory with practical application
  • Residential field courses for practical, hands-on training in the field
  • Access to analytical, mesocosm and temperature-controlled facilities within the Centre for the Aquatic and Terrestrial Environment
  • Strong foundation for employment with environmental protection and conservation agencies, the water industry and environmental consultancies or PhD research 

Research and teaching 

You will have access to analytical research facilities within our Centre for the Aquatic and Terrestrial Environment, developed from an investment of £1.8 million in analytical equipment and specialist laboratory facilities. You will also have access to the Freshwater Biological Association’s River Laboratory on the River Frome in Dorset, via our River Communities Group, and to mesocosm and temperature controlled facilities at QMUL. Furthermore you can make use of our network of partner NGOs, research labs and industries to create further opportunities.

By choosing to study at a Russell Group university, you will have access to excellent teaching and top-class research. You can find out more about our research interests and view recent publications on the School of Biological and Chemical Science's Aquatic Ecology Research group page.

Centre for the Aquatic and Terrestrial Environment (CATE)

(CATE) at Queen Mary is an interdisciplinary collaboration between the School of Biological and Chemical Sciences and the School of Geography.

CATE builds on existing research strengths in areas of environmental research such as biogeochemistry, freshwater and marine ecology, terrestrial ecology and conservation. These facilities are used either in the formal teaching of this programme or are available for individual research projects.

Dorset Field Facilities

The Aquatic Ecology Group has a complementary unit (the River Communities Group) who do applied research, based at the River Laboratory of the Freshwater Biological Association in Dorset. We have a suite of ponds, 50% of which are heated above ambient temperatures, in which run long-term climate change experimentation. You will have the opportunity to conduct both field work and lab projects at this site.

Structure

  • Ecosystem Structure and Function: Ecosystems are under continued and growing threat from human activity (e.g. habitat loss, invasive species and diffuse pollution) and if we seek to preserve them then we need to understand how ecosystems function and how they respond to either enforced or natural change. Here we focus on the structural and functional elements of many ecosystems, from shallow lakes to tropical forests, with a particular focus on contrasting aquatic environments.
  • Statistics and Bioinformatics: Covers core statistics methods, within the R statistical computing environment. R has become the de facto environment for downstream data analysis and visualisation in biology, thanks to the hundreds of freely available R packages that allow biological data analysis solutions to be created quickly and reliably.
  • Quantitative Techniques for Surveying and Monitoring in Ecology: In the first week, there will be a series of lectures, workshops and practical data analyses classes where you will learn the theory behind designing and initiating surveys and monitoring campaigns for research projects and also for conservation & management. In the subsequent week, you will be able to put the theory into practice in the field at a location such as Lake Windermere and environs: here you will undertake electrofishing and hydroacoustic surveys for fish populations, zooplankton and benthic invertebrate surveys, a census for aquatic birds, and camera-trapping for aquatic mammals. Other skills such as the use of the modern telemetric tools will be demonstrated.
  • Science into Policy and Management – includes week in Dorset: Here a broad spectrum of human environmental impacts and their mitigation will be explored. The first half of the module will bring the student ‘face to face’ with potential regulators, practitioners and potential employers (typically Defra, Environment Agency, Natural England) through a series of guest lectures. These topics are then explored and summarised through an unpacking and feedback workshop. The second half is field based with current practitioners working directly in the field of bioassessment and biomonitoring. National and international legislation and directives are introduced through a series of case studies to look at the link between successful science and policy.
  • Marine Mammals and Turtles – field course to Cape Verde: The module focuses on the diversity, behaviour, ecology, physiology, conservation and management of cetaceans (whales and dolphins), and marine turtles. It covers such issues as the life history and migrations of turtles, their diving ability and behaviours, the social behaviour of dolphins, and the conservation of whales. It also includes (even though they are not mammals or reptiles!) a brief look at the sea-birds and sharks that will likely also be seen during field excursions. For part of the module you will be taught in the archipelago of Cape Verde, with boat trips for whales and shark observations, sea turtle monitoring. Mornings will be dedicated to lectures and workshops while afternoons and evening will be dedicated to hands-on practical experience.
  • Tropical Ecology and Conservation – field course, usually to either Borneo or Cape Verde


Read less
The objective of this MRes is to provide a cutting-edge interdisciplinary programme that attracts and trains to a high level the best students from around the world, who are interested to pursue a research career in tropical forest ecology. Read more

Course Overview

The objective of this MRes is to provide a cutting-edge interdisciplinary programme that attracts and trains to a high level the best students from around the world, who are interested to pursue a research career in tropical forest ecology.

The aim is to provide students with high-level research training in the latest developments in tropical forest ecology, covering the physical and biological aspects of the forest ecosystem and with an emphasis on understanding the linkages between these two components. This will best prepare students for a career in tropical forest ecology research and possible PhD studies.

Course Structure

The course involves three months of full time teaching, a three week field course in Sabah, Malaysia and a 30 week independent research project.

Taught Element

* Statistics and Programming in R
* Experimental Design and advanced Statistics
* Environmental data and Geographic Information Systems
* Scientific writing and science communication
* Forests as linked ecological systems
* Understanding and modelling climate systems
* Understanding and modelling hydrological systems
* Understanding and modelling biogeochemical systems
* Understanding and modelling biodiversity
* Understanding and modelling metabolic ecology
* Field skills: sampling methods and taxonomy
* Field skills: hydrological measurements
* Field skills: biogeochemical measurements
* Field skills: community ecology

Read less
Tropical ecosystems provide important resources locally and globally, and coral reefs are the most diverse of marine ecosystems threatened by human activities. Read more
Tropical ecosystems provide important resources locally and globally, and coral reefs are the most diverse of marine ecosystems threatened by human activities.

Our unique multidisciplinary course, MSc Tropical Marine Biology, is designed to deliver advanced tropical marine biology theory and to facilitate the development of a comprehensive range of practical and professional skills required by today’s employers.

As a student of our School you will benefit from the breadth of research carried out by our internationally recognised academics, and will engage with current research activities both in the UK and abroad. You also have opportunity to put theory into practice and study coral reef conservation first hand during the School’s annual field trip to Wakatobi Marine National Park, Indonesia.

Explore topics including:
-Hands-on experience of coral reef conservation on our pioneering underwater lectures in Indonesia
-The biotechnological ‘treasure chest’ of marine microbes, algae and invertebrates
-Tropical oceans, seagrass beds, mangroves and coral reefs
-Coral reef resource management

During the summer term, you will embark on your own extensive research project under the supervision of researchers at the forefront of their fields. This can be conducted within our in-house Coral Reef Research Unit, or alongside one of our research partners from across the globe, addressing key questions on the functioning of and threats to tropical marine ecosystems.

Two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you learn from and work alongside our expert staff.

Professional accreditation

To expand your skillset and boost your employability, we provide you with £125 to spend on externally accredited learning, such as certification as a Marine Mammal Surveyor, participation in Sea Survival courses or gaining the skills and background knowledge needed to drive a powerboat.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high quality teaching. You benefit from our academics’ wide range of expertise on important national and international problems using cutting-edge techniques.

Key academic staff for this course include: Dr Leanne Appleby Hepburn, who works on community ecology of coral reefs; Professor Dave Smith, who is researching tropical marine biology and conservation; Dr Michael Steinke, who is working on biogenic trace gases in marine environments; Dr Tom Cameron, who specialises in aquatic community ecology; and Dr Etienne Low-Decarie, who is investigating ecological and evolutionary responses to global change.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for imaging biological systems, aquatic community ecology, photosynthesis and eco-physiology. On our course you have the opportunity to:
-Work in an open and friendly department, with shared staff-student social spaces
-Conduct your research alongside academics and PhD students in shared labs
-Our local marine biology field centre, with direct access to the Colne estuary, a recently designated marine conservation zone (MCZ). -Develop your practical skills through mapping habitats, Geographical Information Systems (GIS) and boat handling
-Learn to use state-of-the-art research facilities

Your future

As the world's environmental problems increase, the demand for qualified marine biologists continues to grow, and postgraduate study is often a requirement for becoming a researcher, scientist, academic journal editor and to work in some public bodies or private companies.

Many of our Masters students progress to study for their PhD, and we offer numerous studentships to support our students in their studies.

Our graduates go on to a range of careers. Some work with governmental and non-governmental environmental agencies, organisations, consultancies and voluntary organisations, or go on to conduct doctorate research. Many overseas students return to comparable posts in their home country.

We work with our university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Tropical Marine Resources
-Tropical Marine Systems
-Methods in Tropical Marine Biology
-Professional Skills in Tropical Marine Biology
-Research Project: MSc Tropical Marine Biology

Read less
Goal of the pro­gramme. Ecology and evolutionary biology offer a perspective on biology from the level of genes to communities of species. Read more

Goal of the pro­gramme

Ecology and evolutionary biology offer a perspective on biology from the level of genes to communities of species.

In the master's degree program, you can become familiar with a wide variety of topics in three areas: ecology, evolutionary biology and conservation biology. You can choose studies from any of these areas, as well as from other master's degree programmes. The programme is diverse and multidisciplinary: teaching is done with lectures, laboratory and computer training courses, interactive seminars, study tours and field courses. The field courses range from the northern subarctic region to tropical rainforests.

Our wide expertise extends from molecular ecology to population and community biology. The Centres of Excellence of Metapopulation Biology and Biological Interactions are located in our department.

Our programme offers you a wide range of options: evolutionary biology or genetics for those interested in ecological genetics and genomics, as well as the ability to take advantage of the high-quality molecular ecology and systematics laboratory; conservation biology for those interested in regional or global environmental problems; and ecological modelling skills for those interested in computational biology. Our training also offers Behavioural Ecology. 

Ecology, evolutionary biology and conservation biology are not only fascinating topics for basic research, they also have a key role in addressing global environmental challenges.

Upon graduating from the Master's degree in ecology and evolutionary biology programme, you will:

  • Have mastered the main theories and methods in ecology and evolutionary biology and be able to apply them to practical problems
  • Be able to plan and carry out a scientific research project
  • Have read the relevant scientific literature and be able to utilise your expertise in different types of work
  • Be able to work as an expert in your field
  • Be able to to write good scientific English
  • Be able to work in research projects and groups
  • Be able to continue on to doctoral studies

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The Master's degree program includes studies of ecology, evolutionary biology and conservation biology. The studies are organised in modules. You can affect the content of the studies by planning your personal curriculum. You can study the following themes:

  • Ecology studies the abundance and distribution of species (animals, plants, microbes) and the interactions among them and with the environment. The perspective ranges from the molecular to the ecosystem level. In ecology, a central question is: Why are some species able to invade new habitats and displace native species? Which species are able to adapt to environmental change or migrate with the changing climate, and which species will become extinct?
  • Evolutionary biology examines the processes which support biodiversity on its various levels (genes – individuals – populations – species – ecosystems). You will learn about the theory of evolution and how to use population genetics and genomics methods in researching evolutionary issues.
  • Conservation Biology studies the depletion of biodiversity, its causes and consequences. You will learn to apply ecological theory to the problems of environmental conservation, to assess the effectiveness of methods of conservation, as well as to resolve the problems relating to conservation e.g. by modelling and computational methods. The training emphasizes the importance of interdisciplinary education in the area of conservation.


Read less
What you will study. Tropical Ecology- 20 credits (Optional). This module encompasses dive training; a 16-day excursion (variable destinations, e.g. Read more

What you will study

  • Tropical Ecology- 20 credits (Optional)
  • This module encompasses dive training; a 16-day excursion (variable destinations, e.g. Borneo, Honduras, Philippines); one-week tropical forest surveys, one-week coral reef diving – organism identification and surveying.
  • Environmental Management and Legislation - 10 credits
  • We look at how legislation protects the environment, planning laws and policies, environmental economics and cost-benefit analysis.

  • Wildlife Surveying - 10 credits
  • You will conduct pond and river water quality surveys (BMWP and PSYM methods) and river habitat surveys (RHS). You will learn freshwater invertebrate identification skills and plant identification.

  • Tools for Sustainable Development - 20 credits (Optional)
  • This 100% coursework module includes a four-day workshop. We look at energy use/resources and climate change. We also investigate sustainable alternatives to current lifestyles, consumerism, fossil fuel use and the implications for conservation policy and practices, plus how to obtain funding for community and sustainability projects.

  • Restoration Ecology - 20 credits
  • In this module we study ecology and biodiversity; re-wilding: beaver, lynx, wolf reintroduction; restoration approaches for various habitats and tropical forest management.
  • Terrestrial and Aquatic Conservation - 20 credits
  • You will study protected areas and their management; the impact of climate change on terrestrial habitats; agricultural systems and impact on conservation; the 
  • ecology of rivers, lakes and marine habitats; the human impacts on freshwater habitats and identifying freshwater life.

  • European Field Expedition - 20 credits
  • You will study vegetation surveys (forest structure surveys, thermal zone assessment, various transect techniques, habitat mapping); land use and management issues; bird survey methods (bird identification skills); offshore marine surveys and measurements.

  • Work Based Learning Project - 20 credits (Optional)
  • The optional Work Based Learning module enables our students to gain 60 hours work experience under the supervision of an employer. You will also be assigned an academic supervisor who will advise you on a suitable employer based on your area of interest. Recent organisations who have hosted our students include Capita Symonds, Natural Resources Wales, Wales Heritage Coastal Path and Warwickshire Wildlife Trust.

  • MSc Project - 60 credits 
  • This project is often done in co-operation with conservation organisations such as National Parks; English Nature / Countryside Council for Wales; National Botanic Garden; Environment Agency and Wildlife Trusts. Examples of recent projects include coral reef conservation in the Bahamas; feeding habits of Groupers off Honduras; deforestation in SE Asia; invasive species in Cardiff Bay; biodiversity increase with organic farming; butterfly reintroduction and habitats; recognition of Japanese Knotweed by remote sensing.

  • Tropical Environmental Monitoring - 20 credits (Optional)
  • This module is all about conservation and wildlife / safari management. We look at field monitoring techniques and identification skills, and animal tracking on both foot and by vehicle.
  • Applied Geospatial Analysis - 20 credits
  • This offers a practical introduction to Geographical Information Systems and their use in environmental management. We will look at remote sensing techniques; animal population modelling; pollution modelling and the use of statistical software for parametric and non-parametric analysis, correlation, regression and ANOVA analysis. 

Teaching

Full-time students spend two days at University, usually Wednesday and Thursday, and around 12 hours per week in lectures and practical sessions.

Part-time students attend one day per week. First year part-time students attend on Wednesdays and second years attend on Thursdays.

We teach using a combination of lectures, laboratory sessions, problem solving tutorials, video presentations and practicals. You will also undertake fieldwork excursions within the UK and overseas (additional costs apply). The number of hours of formal teaching will vary depending on your module choice. You will also be encouraged to take responsibility for your own learning by completing guided reading and various interactive computer packages. Based on individual circumstances the MSc Project may be extended into your third year of study and will be agreed as part of a discussion with the course leader. Please note some field trips will take place on weekdays besides Wednesdays and Thursdays.

Assessment

You will be assessed through a range of methods depending on your module choice, these include: examinations, coursework such as writing reports of field excursions. You will also analyse case studies, undertake presentations, participate in workshops and analyse data.



Read less
Ecologists and evolutionary biologists now routinely use next-generation DNA sequencing in their research, and graduates who are skilled in both genome analysis as well as ecology and evolution are rare. Read more

Ecologists and evolutionary biologists now routinely use next-generation DNA sequencing in their research, and graduates who are skilled in both genome analysis as well as ecology and evolution are rare. Genome-enabled approaches are helping rapidly to advance our understanding of the dynamic relationship between genotype, phenotype and the environment.

Our programme will give you cross-disciplinary skills in a rare combination of areas of expertise, from bioinformatics and evolutionary inference to computational biology and fieldwork.

You will be taught by researchers who apply genomic methods to a wide range of issues in ecology and evolution, from bat food-webs and genome evolution to microbial biodiversity in natural and engineered ecosystems. For example, Professor Steve Rossiter carries out world-leading research on bat genome evolution; Dr Yannick Wurm has discovered a social chromosome in fire-ants; and Dr China Hanson is using genetic methods to study microbial biogeography. This means that teaching on our programme is informed by the latest developments in this field, and your individual research project can be at the forefront of current scientific discovery. 

You will conduct your own substantive six-month research project, which may be jointly supervised by contacts from related institutes or within industry. You will also take part in a field course in Borneo - see photos from a recent trip on Flickr - giving you the opportunity to develop first hand experience of theory in action.

Programme highlights

  • Work with leading researchers in environmental genomics - learn more on the Evolution and Genetics research group page 
  • Two-week tropical ecology field trip (currently to Borneo)
  • Strong foundation for careers in consultancy, environmental policy and management or research
  • Strong foundation for PhD training in any area of genomics, ecology or evolution

Research and teaching

By choosing to study at a Russell Group university you will have access to excellent teaching and top class research. You can find out more about our research interests and view recent publications on the School of Biological and Chemical Science's Evolution and Genetics group page.

Structure

This MSc programme combines taught modules with individual and collaborative research projects. You will apply the knowledge and techniques from your taught modules in a practical setting and may be able to publish your project findings.

If you have any questions about the content or structure, contact the programme director Dr Christophe Eizaguirre.

Taught modules

  • Genome Bioinformatics: Covers the essential aspects of next generation sequence (NGS) analysis, including genome assembly, variant calling and transcriptomics. Also covers essential computer skills needed for bioinformatics, such as Linux and using our high performance computing cluster.
  • Coding for scientists: Assuming no prior programming knowledge, teaches you how to program in Python, using biological examples throughout. Python is one of the most popular languages in the bioinformatics community, and understanding Python provides the perfect foundation for learning other languages such as Perl, Ruby and Java.
  • Statistics and bioinformatics: Covers core statistics methods, within the R statistical computing environment. R has become the de facto environment for downstream data analysis and visualisation in biology, thanks to the hundreds of freely available R packages that allow biological data analysis solutions to be created quickly and reliably.
  • Post-genomics bioinformatics: Introduces techniques that have developed as a consequence of developments in genomics (i.e. transcriptomics, proteomics, metabolomics, structural biology and systems biology) with particular emphasis on the data analysis aspects. Practicals cover the popular Galaxy framework, advanced R, and machine learning.
  • Research frontiers in evolutionary biology: Exploring the frontiers of research in evolutionary biology. Topics covered will include: incongruence in phylogenetic trees, neutral versus selective forces in evolution, the origin of angiosperms, the origin of new genes, the evolution of sociality, the significance of whole genome duplication and hybridisation. Current methods being used to tackle these areas will be taught, with an emphasis on DNA sequence analysis and bioinformatics.

Research modules

  • Evolutionary/Ecological Analysis/Software Group Project module: Students are organised into small teams (3-4 members per team). Each team is given the same genomic or transcriptomic data set that must be analysed by the end of the module. Each team must design an appropriate analysis pipeline, with specific tasks assigned to individual team members. This module serves as a simulation of a real data analysis environment, providing invaluable experience for future employability.
  • Individual Research Project (50 per cent of the programme)


Read less
The programme includes the following profiles. Molecular and Cellular Life Sciences . This profile introduces students into the study of animal and plant development, microbiology, cell signaling pathways, cytoskeleton dynamics, cancer biology, virology and immunology. Read more

The programme includes the following profiles:

Molecular and Cellular Life Sciences 

This profile introduces students into the study of animal and plant development, microbiology, cell signaling pathways, cytoskeleton dynamics, cancer biology, virology and immunology. Courses of this profile span multiple levels of biological organization, from whole organisms down to the molecular level. Students choosing this profile not only receive up-to-date knowledge on these topics but also acquire the laboratory skills required to engage in cutting-edge research.

Ecology and Biodiversity 

This profile allows students to gain experience in the research methods used to study the evolution and ecology of organisms found in terrestrial, freshwater and coastal ecosystems. A staff of experts teaches up-to-date knowledge on individual organisms, populations, species communities and ecosystems, backed up by their active research experience in taxonomy and phylogeny, vertebrate and invertebrate ecology, evolutionary ecology, biogeography, plant ecology, plant-animal interactions, and nature management. In addition, students are introduced into ecological research by means of practical field training and excursions in Belgium and abroad.

Herpetology

This unique profile addresses biology students with a passion for amphibians and reptiles. An international team of visiting scientists organizes lectures on diversity, ecology, physiology, behavior, evolution and conservation biology and prepares students for a professional career in herpetology. Ecological and herpetological field courses in European and tropical countries form an important part of this programme. As a student, you will be in a stimulating environment, with fellow students and top-experts sharing your passion. For more information, have a look at http://www.herpetology.be.

Human Ecology

This profile focuses on the interaction between humans and their natural environment. The increasing impact of the human population on ecosystems worldwide stresses the urgent need for researchers with a multidisciplinary background, that engage in developmental plans for a durable use and management of natural resources. The profile Human Ecology addresses an international audience of students and offers a course programme that, besides scientific topics, also addresses technological, socio-economical and political aspects. For more information, have a look at http://www.humanecology.be.

EMMC Tropical Biodiversity and Ecosystems

The world faces a crisis risking extinction of species through global warming. Due to impact of e.g., changes in land use and destruction of habitats, tropical rain forests, mangrove forests and coral reefs are disappearing and with them ecosystem functions, goods and services on which human populations are dependent. In order to conserve nature, to manage or even to restore tropical biodiversity and ecosystems, we must understand patterns of tropical biodiversity, study how organisms interact with their environment and how they respond to perturbations and change. Next to research, this is dealt with in this unique masters programme. http://www.tropimundo.eu



Read less
The Tropical Forestry MSc represents a natural addition to our highly successful and well-respected MSc Forestry, MSc Environmental Forestry and MSc Agroforestry degree courses. Read more
The Tropical Forestry MSc represents a natural addition to our highly successful and well-respected MSc Forestry, MSc Environmental Forestry and MSc Agroforestry degree courses.

The course provides part-time students from across the world with training in the management of forest resources, understanding of the scientific, academic and practical principles which underpin forest management, forest measurement and forest ecosystem function and the interrelationships between government, industry and communities’ forests and associated land-use.

The Tropical Forestry MSc is part-time and the full MSc is completed in three years. It builds on the existing links and strengths of the highly successful forestry masters programmes in SENRGY: MSc Sustainable Forest Management (SUFONAMA), MSc Sustainable Tropical Forestry (SUTROFOR) and Forest and Nature for Society (FONASO). These programmes were developed by European Masters consortiums and funded by the EU Erasmus Mundus programme.

Our distance-learning course is designed to provide students with training in the subject of tropical forestry, understanding of the scientific, academic and practical principles which underpin forest conservation, protection and management and forest ecosystem function and the interrelationships between government, industry and communities’ forests and associated land-use. Suitable applicants include individuals working in forestry/forest-related industries/natural resource management, particularly in the fields of planning, regulation, policy, monitoring and environmental protection. The course is also suited to individuals working in forestry education who wish to further their knowledge and expertise in order to improve their teaching.

The course, which is accredited by the Institute of Chartered Foresters, is designed to provide students with detailed knowledge of direct relevance to the modern forest manager. Key course modules cover the increasing importance of social issues in forest management, the complex challenges and multiple benefits of well-managed agroforestry systems and the sustainable use of non-timber forest products. Modules in inventory, assessment and monitoring look at other significant issues surrounding the sustainable management of global forest resources. The course also includes a compulsory 14-day study tour to a country with notable tropical forest resources.

What Will I Study?
DDL-4202 Silviculture (20)
DDL-4004 Agroforestry Systems & Practice (20)
DDL-4205 Forest Inventory, Assessment &; Monitoring (20)
DDL-4206 Sustainable use of NTFPs (20)
DDL-4201 Social Issues in Forest Management (20)
DDL-4545 Tropical Forestry Study Tour (20)
DDL-4999 Distance learning Dissertation (60)

Work-Placements/Links with Industry
The course is closely linked with all aspects of the forest industry, both in the UK and beyond. Students are encouraged to seek opportunities and make their own links that relate to their own area of interest and expertise and are supported in this process. Students on the course receive regular updates regarding the latest news, jobs, placements and other opportunities in the forestry sector.

Read less
This MRes is designed for students with a passion for the diversity of life on earth, and who wish to be trained in cutting-edge biological research. Read more
This MRes is designed for students with a passion for the diversity of life on earth, and who wish to be trained in cutting-edge biological research.

New technologies such as next-generation DNA sequencing are revolutionising biology.

There are also huge amounts of biodiversity data to be collated and meta-analysed to respond to urgent research needs in a world of rapid global changes.

This course will offer an intensive one-year full-time programme designed to provide you with postgraduate-level training in research skills.

Uniquely, it will start with seven-week intensive training modules in the latest developments of informatics and genomics for whole-organism research.

This is followed by a single nine-month research project in the Division of Ecology and Evolution.

Project opportunities include genetics, conservation, tropical and environmental biology; they will either be purely analytical or have strong field and/or laboratory components.

It will also provide you with a solid grounding in a range of professional and transferable skills and the opportunity to make a more informed decision on the area of research and specific PhD project you wish to pursue in the future.

It will be ideal training for those who wish to pursue a career in academic, government or non-governmental organisations engaged in research into biodiversity.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Biosciences at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Biosciences at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

This MRes in Biosciences programme will provide you with research training in one or more of our Research Pathways and you will benefit from training in our Specialist Research Facilities. Research staff will share their expertise and assist you in developing the skills necessary to do independent research, leading to a dissertation written as a scientific paper.

All research students in Biosciences undertake taught modules followed by a major research project under the guidance of academic staff in one or more of our Research Pathways, and benefitting from training in our specialist research facilities.

The MRes Biosciences is a one-year programme. All research students undertake taught modules followed by a major research project under the guidance of academic staff in one or more of our Research Pathways , and benefiting from training in our Specialist Research Facilities.

Biosciences at Swansea has a good relationship with a wide range of external partners, including SMEs, Government Agencies, Local Government, UK and overseas research institutes and universities.

Research Pathways

1) Behavioural and Movement Ecology

Studying adaptations, and the selective pressures in the social and ecological environment that bring them about. We specialise in the movement ecology of individuals and collectives and can provide specialist research training to understand the role of the environment in structuring the properties of animal movement and behaviour.

2) Evolutionary and Molecular Biology

Understanding the diversity of life from a molecular perspective. We use the latest genetic and genomics techniques to address key questions in ecology, behaviour and conservation from an evolutionary perspective in a range of non-model organisms, from fungi to plants and animals.

3) Marine Biology, Fisheries and Aquaculture

From developing new techniques in fish husbandry and rearing of commercially important aquaculture species, to research in food and fuel security, low carbon technologies, biogeochemical cycles and climate change. Specialist research training can be provided on a diverse range of temperate to tropical aquatic organisms, from microplankton to invertebrates to fish, inhabiting marine to freshwater environments.

4) Mathematical and Statistical Ecology

Research that complements the full range of our academic expertise, from theoretical investigations of ecosystem complexity, stoichiometric ecology, pattern formation and animal movement, to practical agricultural applications and the operation of micro-algal biotechnology.

5) Population and Community Ecology

Combining experimental and theoretical approaches to develop our understanding of how species interactions with their environment (including other species) generate the spatial-temporal biodiversity patterns we observe in nature. Study systems include plankton ecosystems, coastal ecosystem functioning, disease control, conservation, and the impact of spatial-temporal environmental variation on community dynamics.

6) Whole Organism Biology

Our staff comprises world-leading experts on a range of organisms studied around the world, and welcome students who want to develop projects around such species.

7) Wildlife Diseases and Pest Control

Research focused on developing natural agents and solutions for the control of wildlife diseases and invertebrate pests that impact on food security and human and animal health. Research training provided in disease detection methods, disease management, and the socioeconomic benefits of pest control.

Facilities

As a student on the MRes Biosciences programme, you will benefit from a range of facilities such as:

Our excellent facilities include a unique built Animal Movement Visualisation Suite (£1.35m), incorporating an electronic wall linked to a computer-tesla cluster for high-speed processing and visualisation of complex accelerometry and magnetometry data derived from animals. Coupled with this facility is the Electronics Lab with capacity for research, development and realisation of animal tags with new capacities (sensors, energy-harvesting systems, miniaturization, 3-D printing of housings etc.); a custom-designed 18m on coastal research vessel; a recent investment of £4.2m on a new suite of state-of-the art Science laboratories; and the £2m unique Centre for Sustainable Aquatic Research (CSAR) with a 750 m2 controlled environment building, with programmable recirculating aquatic systems, unique within the UK’s higher-education sector. These are tailored for research on a diverse range of organisms, ranging from temperate to tropical and marine to freshwater. Coupled with this are nutrient and biochemical analytical capabilities.

Theoretical/mathematical research uses advanced university computing facilities that includes high-end graphics workstations, high-speed network links and the Blue Ice supercomputer located at the Mike Barnsley Centre for Climatic Change Research.

Several dedicated Bioscience labs housed within our grade 2 listed Wallace Building recently benefitted from a £4.2 million renovation programme, providing world-class research facilities that includes a specialist molecular ecology lab and a dedicated arthropod facility.

Research

We are 7th in the UK and top in Wales for research excellence (REF 2014)

93.8% of our research outputs were regarded as world-leading or internationally excellent and Swansea Biosciences had the highest percentage of publications judged ‘world-leading’ in the sector. This is a great achievement for the Department, for the College of Science and indeed for Swansea University.



Read less
The course. Forests are the lungs of the world. The great boreal forests cover almost 17 million square kilometers of North America, Europe and Asia. Read more

The course

Forests are the lungs of the world. The great boreal forests cover almost 17 million square kilometers of North America, Europe and Asia. Tropical forests cover perhaps 6.5 million square kilometers and temperate forest systems another 10 million square kilometers. Tropical forests are renowned as sources of biodiversity, the northern boreal forests are major regions of carbon sequestration and they too are under threat through timber and mineral exploitation. Without forests our climate would be drastically different from the one we experience today, much of the globe would be desert and uninhabitable. Yet despite their importance as sources of biodiversity and climate regulation they are, especially in the tropics and the far north, constantly under threat. In temperate regions commercially managed forests are important sources of much needed products for our homes and industry. They are also important refugia for threatened wild life and provide educational and recreational uses for a significant proportion of the population. Despite their importance we still know very little about how to manage them sustainably and how to protect our rapidly shrinking natural forests and woodlands and the organisms that live within them.

This course covers a broad range of topics in conservation and forestry related topics. All students receive training in fundamental skills which will enable them to enter a conservation or forestry related work environment or a research career in conservation or forestry and woodland ecology. There is, however, considerable flexibility enabling each student to focus on specialist subjects consistent with their interests and future career intentions. The MSc was designed in response to demands from conservation bodies for people with practical conservation skills as well as a strong academic background and has a strong practical field based component in each taught module.

A distinctive and integral feature of our MSc is the high degree of input from forest and conservation scientists in collaborating governmental organizations and consultancies. This participation takes a variety of forms, including guest lectures, field visits and specific training courses, but may also include providing research projects in their organizations.

Examples of collaborating organizations include, Butterfly Conservation, CEH Wallingford, Forest Research, The James Hutton Institute, The Natural History Museum London, and Rothamsted Research.

How will it benefit me?

Having completed the MSc you will be able to recognize the major biotic and abiotic problems affecting temperate and tropical trees and forests. The course will develop your analytical skills to enable you to recognize and resolve environmental, conservation and landscape management problems using fundamental principles of forest ecology and integrated forest management. You will also be able to show how forest and tree protection is directed to economic and social objectives and how ecological processes can be used to meet these objectives. You will also learn how to source and evaluate the latest developments in technology, and produce integrated management solutions that pay due regard to silvicultural, social and environmental requirements. There is, however, considerable flexibility enabling each student to focus on specialist subjects consistent with their interests and future career intentions Students also learn how to disseminate issues and ideas relating to forest ecology and conservation to a range of audiences using various methods of communication.

The research project for the MSc will allow you to test hypotheses relevant to pure and applied forest conservation research by designing, carrying out, analysing and interpreting experiments or surveys. You will also learn to evaluate and interpret data and draw relevant conclusions from existing entomological studies.

The aims of the MSc are to provide students with which will (a) prepare them for a career in sustainable forest management and/or conservation (b) prepare them for PhD studies (c) enable them to make a more informed choice for their PhD research and (d) offer practical vocational training in the area of conservation

The MSc covers a broad range of topics providing specialized training in practical conservation and forest ecology and all students receive training in fundamental skills which will enable them to enter an appropriate work environment or a research career. There is, however, considerable flexibility enabling each student to focus on specialist subjects consistent with their interests and future career intentions. 

Funding

The full-time and two year part-time courses are eligible for a postgraduate loan.



Read less
Postgraduate Loans are now Open for Home/EU students. -. https://www.gov.uk/postgraduate-loan/how-to-apply. Scholarships & Discounts available. Read more

Postgraduate Loans are now Open for Home/EU students - https://www.gov.uk/postgraduate-loan/how-to-apply

Scholarships & Discounts available

This programme provides advanced contemporary training in parasitology and the study of disease vectors. The broad scope of the programme ranges from the biology, immunology, ecology and population biology of the organisms to public health, disease epidemiology and tropical health issues. In addition to providing a solid foundation in parasite and vector biology, the programme provides practical experience of essential techniques, as well as significant theoretical and practical knowledge in all important and topical areas of the field. Following the taught component, participants complete a dissertation including a period of applied research either overseas or in Liverpool.

AIMS

LSTM education courses are taught within a dynamic environment by staff working at the cutting-edge of research in tropical medicine and global health. They are designed to enable the professional development of the student, to be relevant to students from both the UK and overseas and to promote approaches to study that will enable students to continue their learning into the future. 

This course aims to: 

To equip students with the knowledge and practical skills needed to develop a career in research, training or control of parasitic and vector-borne diseases.

To provide practical experience of a range of specialised technical and analytical skills relevant to the study of parasites and disease vectors.

To enable students to conduct independent research in the laboratory and/or field.

To produce graduates who are experienced, committed, informed, proactive and effective professionals, capable of taking substantial and leading professional roles.

To facilitate high quality learning that is informed by critical analysis of current research.

To develop independent and reflective approaches to study that will enable graduates to continue to learn in the future.

CAREERS

Over many years, we have educated hundreds of Masters students, many of whom have established successful careers in research in the academic or private sectors, or who have gone on to work in development as part of government or NGO teams. Graduates of the MSc Biology & Control of Parasites and Disease Vectors typically follow careers in research (some in LSTM) or training in areas related to the control of infectious disease, in particular parasitic and vector-borne tropical diseases. Other careers paths have led to teacher training, working overseas for NGO’s, military and public health-related careers.



Read less

Show 10 15 30 per page



Cookie Policy    X