• Anglia Ruskin University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Durham University Featured Masters Courses
King’s College London Featured Masters Courses
University of Leeds Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Aberdeen University Featured Masters Courses
"trials"×
0 miles

Masters Degrees (Trials)

We have 192 Masters Degrees (Trials)

  • "trials" ×
  • clear all
Showing 1 to 15 of 192
Order by 
Clinical trials are essential in discovering whether new healthcare interventions improve outcomes for patients. This is an expanding field which offers many exciting career opportunities. Read more
Clinical trials are essential in discovering whether new healthcare interventions improve outcomes for patients. This is an expanding field which offers many exciting career opportunities. This new programme will provide an excellent grounding in clinical trials and enhance the knowledge and understanding of those already working in the field.

Degree information

Students learn about the scientific, methodological and practical issues involved in the design, conduct, analysis, and reporting of clinical trials. Teaching is delivered by researchers with expertise in many different healthcare fields. All types of trials, from early to late phase trials, and from simple to complex interventions are covered.

Students undertake modules to the value of 180 credits.

The programme consists of eight core modules (120 credits), and a dissertation/report (60 credits). A Postgraduate Diploma, consisting of eight core modules (120 credits) and available for full-time, part-time or flexible study is offered. A Postgraduate Certificate consisting of four modules (60 credits) and available for full-time, part-time and flexible study is offered.

Core modules
-Trial Design and Determining the Intervention
-Statistical Principles and Critical Appraisal
-Protecting Patients and Introduction to Patient Engagement
-Trial Set-up and Conduct - from an Idea to Reality
-Alternative Trial Designs and Outcomes
-Applying Clinical Trial Design Principles in Practice
-Managing Open Trials, Preparing for Analysis and Disseminating Trial Results
-Patient and Data Pathways through Clinical Trials

Dissertation/research project
All students undertake a project which consists of a project proposal of 2,000 words, a 20-minute oral presentation, and a journal paper of 6,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, workshops, tutorials, online resources and practical work. Assessment is through written examinations, oral and poster presentations, written assignments (for example, essays, abstracts, background section of a protocol, critical analysis of published work, patient information and communication plans) and the dissertation/report.

Careers

Potential career opportunities include trial and data management, statistics, regulation of clinical trials, and medical writing. Career destinations include academic trials units, the pharmaceutical industry or hospitals. Students may also use this qualification as a springboard for further study at doctoral level.

Future career prospects will be enhanced on completion of this programme. Students are equipped with the knowledge and skills to become key team members in the design, conduct, analysis, and reporting of high-quality clinical trials.

Employability
Clinical trials is an expanding and highly competitive field of research yet employers find it challenging to recruit people with the appropriate skills and knowledge. This programme has been designed in consultation with employers from academia, the pharmaceutical industry and the NHS. It will give graduates the critical thinking and problem-solving skills that employers seek in this multidisciplinary, collaborative field.

Why study this degree at UCL?

The Institute of Clinical Trials and Methodology (ICTM) at UCL is a global leader in the field with over 450 researchers (including clinicians, statisticians, trials managers) working within it. Students will meet and be taught by many of these researchers.

Using a diverse range of clinical trials designs and methodology the ICTM provides evidence that impacts on a wide variety of diseases and has a particularly strong track record in cancer, HIV, tuberculosis, primary care, and mental and women's health.

There is expertise from early to late phase clinical trials, stratified medicine and novel interventions such as targeted therapies.

Read less
The Master of Clinical Trials (Research) is a distinctive course, targeted at medical doctors and allied health professionals, which will allow you to acquire the expertise needed to design, develop, lead and conduct clinical trials. Read more
The Master of Clinical Trials (Research) is a distinctive course, targeted at medical doctors and allied health professionals, which will allow you to acquire the expertise needed to design, develop, lead and conduct clinical trials. The course is led by the NHMRC Clinical Trials Centre (CTC), Australia’s premier academic clinical trials research organisation and is specifically focussed on clinical trials design and research methodology.

The course is offered via distance learning. As a result of participation, you will have a solid understanding of clinical trials methodologies underpinning the design of good quality studies, as well as the knowledge to lead and/or design, conduct and appropriately interpret the results of single and multi-centre clinical trials.

This course complements a parallel course developed by Sydney Nursing School, the Master of Clinical Trials Practice. The Master of Clinical Trials Practice is specifically focussed on the practical aspects of conducting clinical trials for nurses and allied health professionals.

To ask a question about this course, visit http://sydney.edu.au/internationaloffice/

Read less
These courses provide students with a theoretical and practical understanding of the issues involved in the design, conduct, analysis and interpretation of randomised controlled trials of health interventions. Read more
These courses provide students with a theoretical and practical understanding of the issues involved in the design, conduct, analysis and interpretation of randomised controlled trials of health interventions. They are suitable for students working in high-, middle- and low-income countries.

The need for rigorous evaluation of components of health care is increasingly recognised worldwide. An important type of evaluation is the randomised controlled clinical trial. These courses will give students an understanding of trials which will equip them to work in this increasingly important field.

They are suitable both for those wishing to gain an overall understanding of trials before moving into the field, and those who have general or specialist experience in clinical trials and aim to broaden their role in the design, management, analysis and reporting of clinical trials in high, middle and low income countries.

The aims and learning outcomes of the courses are detailed in the programme specification.

- Full programme specification (pdf) (http://www.londoninternational.ac.uk/sites/default/files/progspec-clinicaltrials.pdf)
- Distance Learning prospectus (pdf) (http://www.londoninternational.ac.uk/sites/default/files/prospectus/lshtm-prospectus.pdf)

Visit the website http://www.lshtm.ac.uk/study/masters/dmsct.html

English Language Requirements

You will meet the English language requirement if you have passed, within the past three years:

- Cambridge Certificate of Advanced English when a minimum overall score of B or 190 is achieved;

- (IELTS) International English Language Testing System when an overall score of at least 7.0 is achieved with a minimum of 7.0 in the Written sub-test and a minimum of 5.5 in Listening, Reading and Speaking; or

- Pearson Test of English (Academic) overall score of 68 or above, with a minimum of 68 in Writing and a minimum of 59 in Listening, Reading and Speaking

- (TOEFL) iBT Test of English as a Foreign Language overall score of 100 or above with at least 24 in Writing, 23 in Speaking, 22 in Reading and 21 in Listening

Method of assessment

Assessment varies from module to module but will include a combination of unseen written examinations and written assignments. Details are given in the module specifications.

Examinations take place once a year in June (please note: it is not possible to hold examinations at other times of year). These are normally held in a student’s country of residence. We have examination centres in over 180 countries worldwide (for details please visit the assessment and examinations section).

Examinations are arranged mainly through Ministries of Education or the British Council. Students taking examinations will need to pay a fee to their local examination centre. Please note that if you fail an examination at the first entry you will be allowed one further attempt.

Credit awarded

Credits will be awarded to all modules (15 credits each) and (MSc only) the integrating module (30 credits) successfully completed. To successfully pass an award, the following credits must be gained:

- Postgraduate Certificate – 60 credits
- Postgraduate Diploma – 120 credits
- MSc – 180 credits

Study materials

The majority of the Clinical Trials module study materials are delivered online after course/module registration. You will receive details of how to use the online learning environment effectively. Study materials provided for non-Clinical Trials modules may include study guides, textbooks, CD-ROMs/additional computer software (e.g. Stata). You will have access to past examination papers and Examiners' reports, Student Handbooks, and to the School's online library resources. We also provide all students with a student registration card.

Flexible study

We know that if you have a full-time job, family or other commitments, and wish to study at a distance, you will have many calls on your time. The course allows you to study independently, at a time and pace that suits you (subject to some course-specific deadlines) using the comprehensive study materials provided, with support available from academic staff. You have between 1-5 years in which to complete the Postgraduate Certificate, and between 2-5 years in which to complete the Postgraduate Diploma or the MSc.

Once registered, you will be sent the learning materials for the module(s) you have chosen to study. Clinical Trials module materials are mostly delivered online. These materials will take you through a programme of directed self-study, and indicate how and where you can obtain supplementary study materials and access tutorial support to enhance your studies.

The study year runs from the beginning of October through to the June exams, during which time tutorial support is available. Those writing the Clinical Trials integrating report will also continue to have tutorial support over the summer. Deadlines for submission of coursework vary per course but are usually in March, May, August and September.

Support

- a web-based learning environment (including web conferencing, allowing you to engage in academic discussions with tutors and fellow students)

- personalised feedback from teaching staff and advice on assignments

- tutors are allocated to each module and are available to answer queries and promote discussion during the study year, through the online Virtual Learning Environment

- communicate with other distance learning students, either individually or through learning support groups

Blended learning: taking modules in London

After successful completion of a minimum number of core modules, Postgraduate Diploma and MSc students may also be eligible for the 'blended learning option', which allows for the study of up to two modules only (from a restricted list) at the School in London during the Spring or Summer terms in place of distance learning modules. Please note that these options, and the dates when the modules are held at the School, are subject to change - full details will be sent to all distance learning students in July each year.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/dmsct.html#seventh

Read less
Programme description. The online programme will provide a knowledge and understanding of the key elements and principles of clinical trial design, delivery and analysis. Read more

Programme description

The online programme will provide a knowledge and understanding of the key elements and principles of clinical trial design, delivery and analysis. In addition to a knowledge and understanding of the principles of GCP and their practical implementation in clinical trials.

This programme is suitable for graduates in medicine, nursing, pharmacy, life sciences and other allied disciplines involved in Clinical Trials.

This programme will support the demand for appropriately qualified investigators to lead clinical trials of all phases. Each course is divided into a set of themed sections in which material is presented in a blend of short online lectures, practical case studies, directed readings, podcasts and archived webinars. Discussion board tasks and live expert guest lectures offer opportunity for collaborative critical discourse and debate of current issues under the guidance of expert teaching staff.

The programme covers Commercial Aspects of Drug Discovery and Development, Trial and Project Management, Statistics and Data Management, Regulations and Ethics, Imaging, Medical Devices and Complex Interventions.

Online learning

The programme is delivered completely online, allowing for a curriculum design approach that caters to different ways of learning. Embracing the role that technology can play to enhance teaching, learning and assessment, the programme has been designed with the learner in mind.

Each student will be supported as an active member of a vibrant online community where clearly-defined learning outcomes are facilitated by tasks and materials that foster active, relevant and collaborative learning, supported by the purposeful use of digital media and online technology.

Programme structure

This programme is made up of compulsory and optional courses.

Compulsory courses:

  • Clinical Trials Foundation Module
  • Introduction to Clinical Trials
  • Good Clinical Practice, Ethics and Regulatory Issues

Optional courses:

  • Clinical Trial Management (20 credits)
  • Clinical Trials in Special Populations (20 credits)
  • Patient and Public Involvement (20 credits)
  • Study Design (20 credits)
  • Monitoring and Audit (20 credits)
  • Translational Imaging and Clinical Trials (10 credits)
  • Commercial Aspects of Drug Discovery (10 credits)

MSc Dissertation

Clinical Trials e-Portfolio

Career opportunities

The programme will offer candidates an alternative to traditional classroom based research training if they do not wish to or cannot take time away from their professional commitments.

It aims to equip students with the necessary knowledge and skills to be a leader of clinical trials, supplementing and extending any undergraduate training and work experience. The programme will also provide an important step towards gaining employment in either the commercial or non-commercial/industrial sectors.

The MSc programme is designed to highlight the candidate’s commitment to continual professional development and will ensure a competitive edge when applying for future employment positions.



Read less
Study for a prestigious Clinical Trials Masters degree. by distance learning. Read more

Study for a prestigious Clinical Trials Masters degree

by distance learning

"This online Masters degree is suitable for those who have general or specialist experience in clinical trials and aims to broaden their role in the design, management, analysis and reporting of clinical trials as well as for those wishing to gain an understanding of trials before moving into this increasingly important field." - Professor Diana Elbourne, Course Director.

Course aims

The course aims to develop:

- a theoretical and practical understanding of the issues involved in the design, conduct, analysis and interpretation of randomised controlled trials of health interventions.

- skills to scrutinize information, to critically analyse and carry out research, and to communicate effectively.

Prestige

The London School of Hygiene & Tropical Medicine (LSHTM) is the leading postgraduate medical institution in Europe in the subjects of public health and tropical medicine. Read about the Clinical Trials Unit at LSHTM being shortlisted for a prestigious BMJ Group Award for their role in Crash-2 clinical trial. This demonstrated the life-saving potential of a cheap drug and is up for BMJ Research Paper of the Year.

Excellent support

You study independently, at a time and pace that suits you (subject to some course-specific deadlines) using the comprehensive study materials provided, with support available from academic staff.

Once registered, you will be sent the learning materials for the module(s) you have chosen to study. Clinical Trials module materials are mostly delivered online. These materials will take you through a programme of directed self-study, and indicate how and where you can obtain supplementary study materials and access tutorial support to enhance your studies.

Tutors are allocated to each module and are available to answer queries and promote discussion during the study year (October to May), through the online Virtual Learning Environment.

Contact us

If you have any questions, please contact our Student Advice Centre.



Read less
Stratified Medicine holds huge potential in the timely development of new treatments for human disease. It is among the most important concepts to emerge in 21st century clinical science and will be a crucial component of the global drive to increase the efficacy, safety and cost effectiveness of new treatments. Read more
Stratified Medicine holds huge potential in the timely development of new treatments for human disease. It is among the most important concepts to emerge in 21st century clinical science and will be a crucial component of the global drive to increase the efficacy, safety and cost effectiveness of new treatments. This new taught postgraduate Masters programme draws on the current and future needs of the Life Sciences sector, to create a highly skilled workforce. It harnesses Scotland’s strengths in Stratified Medicine, Clinical Trials, Bioinformatics and Pharmacogenomics to provide focused training which integrates basic and clinical sciences, and equips students with grounding in the essential skills required to design, execute and evaluate modern clinical interventions.

Why this programme

◾The programme will cover the principles which underpin the emerging science at the interface between genetics and pharmacology and the clinical evaluation of the resultant new medicines, taught by internationally recognised experts
◾The aim of this programme is to train researchers who can break down the barriers that currently prevent discoveries at the bench from being translated into treatments at the bedside
◾University of Glasgow is rated in the top 1% of universities worldwide, and has a global reputation in the field of clinical trials and stratified medicine. You will be taught by a multidisciplinary team of world leading scientists and clinicians within the College of Medical, Veterinary and Life Sciences
◾Students will gain an understanding of statistical methods used to evaluate the efficacy and cost-effectiveness of new treatments
◾Students on the programme will undergo theoretical and practical training in state-of-the-art research processes available to researchers in Glasgow, enabling an appreciation of how to apply novel stratified approaches, together with clinical pharmacological, regulatory and ethical principles to the optimisation of future clinical research and therapeutic practice.
◾We have excellent opportunities to engage with industrial and clinical scientists, with guest lecturers from the pharmaceutical industry, medical diagnostic laboratories and bioscience business which will help you understand the science, methodology and terminology used by scientists and clinicians from different disciplines. You will learn to communicate effectively in a multidisciplinary environment, critically evaluate a wide range of scientific data and research strategies and learn how to make a significant contribution to research and treatment in the 21st century
◾You will be taught by a multidisciplinary team of world leading scienctists and clinicians within the College of Medical, Veterinary and Life Sciences
◾Students will learn how all of the above techniques are applied by academic and industrial researchers in the development of new medicines
◾Scholarships available

Programme structure

Students will undertake core courses which will account for 90 credits and a further 30 credits from options which will enable students to personalise their degree to better align it with their future career aspirations. Students will also be offered a choice of project.

Core Courses

◾Topics in Therapeutics - general topics and cardiovascular disease
◾Pharmacogenomics and Molecular Medicine - fundamentals of molecular medicine
◾Medical Statistics 1
◾Evidence based research in medicine
◾Drug disposition
◾Clinical trials: principles and methods.

Optional Courses

◾Pharmacogenomics & molecular medicine - applied pharmacogenomics and molecular medicine
◾Topics in therapeutics - commonly used drugs
◾Pharmaceutical medicine
◾Medical statistics 2
◾Established and novel techniques in cardiovascular & medical sciences research.

Project and Assessment

The project will account for the remaining 60 credits. The programme will include an opportunity for all students to present the outcomes of their projects to an audience of other students and academics. Assessment will consist of submission of a Dissertation and a viva examination.

Career prospects

Graduates of this programme will be competitive applicants for the positions in the commercial life sciences sector, or for PhD study in an academic or combined commercial / academic environment.

Read less
The course aim is to equip medical researchers with the key knowledge and skills required to contribute to the design and analysis of clinical trials and to critically appraise clinical trials published in the medical literature. Read more
The course aim is to equip medical researchers with the key knowledge and skills required to contribute to the design and analysis of clinical trials and to critically appraise clinical trials published in the medical literature.

Read less
The MSc by Research programme will provide a dedicated route for high calibre students who want to carry out clinical, health or social care research using an evidence-based methodology, including randomised clinical trials, leading to PhD level study. Read more
The MSc by Research programme will provide a dedicated route for high calibre students who want to carry out clinical, health or social care research using an evidence-based methodology, including randomised clinical trials, leading to PhD level study. Alternatively it would be appropriate for students who are seeking a stand-alone research based qualification suitable for a career in research with transferable skills for graduate employment.

Structure

This MSc by Research programme requires the student to undertake a substantial piece of independent research at the cutting edge of clinical, health or social care (180 credits). It is the normal expectation that the independent research should be of a publishable standard in a high quality peer reviewed journal.

In addition to the support of the research project’s supervisors and from fellow postgraduate research and professional researchers within BIHMR, there will also be the opportunity to undertake taught modules at postgraduate level as well as attend workshops and courses provided for postgraduate research students by the University’s Academic Development Unit. Any additional taught modules and courses will not count as credits towards this or any other qualification but, if identified as being of developmental value by the student and the supervisory team, will provide the extra skills and knowledge needed to undertake postgraduate research.

The NWORTH Trials Unit

NWORTH, or the North Wales organisation for Randomised Trials (in health and social care), was founded in 2002 and is one of the original seventeen fully accredited UKCRC clinical trials units registered in 2007 in recognition of being able to provide the full spectrum of expertise required to deliver high quality clinical research and the capability to centrally co-ordinate multi-centre trials to the highest standards.

NWORTH is active across a wide range of clinical, health and social care research interests by collaborating with research-active specialists in disciplines such as cancer care, children’s health, dementia, dentistry, mental health, obstetrics, oncology, pharmacy and public health. Whilst students need to produce independent research, the NWORTH Trials Unit can provide a wealth of advice and support where appropriate including project design and governance, data collection and management, QA and compliance plus analysis.

Read less
The aim of this MSc is to provide a postgraduate education in pharmacovigilance, including relevant techniques, the basis of adverse drug reactions, regulations and guidelines, handling safety issues including labelling and risk management and systems and processes. Read more
The aim of this MSc is to provide a postgraduate education in pharmacovigilance, including relevant techniques, the basis of adverse drug reactions, regulations and guidelines, handling safety issues including labelling and risk management and systems and processes. Teaching consists of lectures and workshop activities in small groups and takes into account real world situations. There are opportunities for sharing experiences and networking which contributes to the development of your knowledge and understanding of pharmacovigilance issues.

Flexible programme

This is a flexible programme designed to meet the needs of those in either full or part-time employment who are likely to have a spread of responsibilities. Students are able to complete the MSc course in under three years if able to attend all modules at the earliest opportunity. Alternatively, they can take up to five years, progressing at a slower pace.

Participants will normally be graduates and/or experienced personnel and usually will need to have held positions in drug safety for one to several years. The programme is run as a series of intensive short courses supplemented with substantial pre and post-course reading and set coursework. In addition, if you are studying for an MSc, you will undertake a research project that is normally carried out at your workplace but may be done at the University, or an institution with appropriate experience of pharmacovigilance or adverse drug reactions.

The programme has attracted students from European Union countries, Norway, Switzerland, Japan and the USA and its success has led to the organisation of an annual Pharmacovigilance Update day for those who have completed their studies.

Recruitment will take place at the beginning of each taught module and the programme offers the awards of a PgC, PgD or MSc. Students are typically able to obtain any one of the awards in a minimum of two years; however you have a maximum registration of up to five years in order to complete the course. This course has the option of being a diploma if you do not feel you can commit to the full MSc programme.

Why choose this course?

-The MSc/PgD/PgC in Pharmacovigilance is a programme developed by the School of Life and Medical Sciences and the Pharmaceutical Information and Pharmacovigilance Association (PIPA).
-In addition to offering this course, The University of Hertfordshire is also part of the Eu2P European Programme in Pharmacovigilance and Pharmacoepidemiology, an online pan European e-learning/e-teaching MSc course.
-The programme includes eight taught modules, provided as intensive three-day workshops, and for the MSc award, a research project.
-It is taught mainly through teams of staff drawn from the professions appropriate to pharmacovigilance. This is a major feature of the programme, the majority of staff delivering the courses will be acknowledged experts.
-The aim is to provide a postgraduate education in pharmacovigilance, including relevant techniques, the basis of adverse drug reactions, regulations and guidelines, handling safety issues and the role of systems and processes.

Professional Accreditations

PIPA (Pharmaceutical Information and Pharmacovigilance Association)

Careers

Potential candidates will normally be in either full or part-time employment and are likely to have a spread of responsibilities, mostly in pharmacovigilance and medical information, monitoring safety data in either pre- and post-marketing studies or from spontaneous reports. They will be graduates and/or experienced personnel and usually will have held positions in drug safety for one to several years. Some applicants may have doctorates and may be medically qualified. Following successful completion of the course the knowledge gained should enable the post-graduates to make a greater contribution to the pharmacovigilance industry.

Teaching methods

Taught modules normally consist of approximately 24 hours class contact. In addition, about 120 hours will be needed to complete the pre and post-course activities. The actual amount of time spent will depend upon your existing knowledge and ability. All modules are free-standing. Satisfactory completion of four modules is compulsory for the PgCert; all eight modules are required for the PgDip and MSc. Coursework will contribute significantly to assessment and may comprise some or all of the following: summaries of pre-course reading, written reports of class discussions, essays, performances in seminars, poster presentations, problem solving or data interpretation exercise, short projects and case studies. Unseen written examinations will feature in some courses; they may be used to examine understanding of pre-course reading material. Attendance at the taught component and satisfactory completion of both coursework and examinations (where present), with a minimum mark of 50% in each element, is normally required to pass each module.

Structure

Year 1
Optional
-Adverse Drug Reactions by Major Body Systems I
-Adverse Drug Reactions by Major Body Systems II
-Drug Safety in Clinical Trials
-Labelling and Risk Management
-Management of Pharmacovigilance Data
-Pharmacoepidemiology
-Pharmacovigilance Regulations and Guidelines
-Principles of Pharmacovigilance

Year 2
Optional
-Adverse Drug Reactions by Major Body Systems I
-Adverse Drug Reactions by Major Body Systems II
-Drug Safety in Clinical Trials
-Labelling and Risk Management
-Management of Pharmacovigilance Data
-Pharmacoepidemiology
-Pharmacovigilance Regulations and Guidelines
-Principles of Pharmacovigilance

Year 3
Optional
-Adverse Drug Reactions by Major Body Systems I
-Adverse Drug Reactions by Major Body Systems II
-Drug Safety in Clinical Trials
-Labelling and Risk Management
-Management of Pharmacovigilance Data
-Pharmacoepidemiology
-Pharmacovigilance Regulations and Guidelines
-Principles of Pharmacovigilance
-Project, Pharmacovigilance

Year 4
Optional
-Adverse Drug Reactions by Major Body Systems I
-Adverse Drug Reactions by Major Body Systems II
-Drug Safety in Clinical Trials
-Labelling and Risk Management
-Management of Pharmacovigilance Data
-Pharmacoepidemiology
-Pharmacovigilance Regulations and Guidelines
-Principles of Pharmacovigilance
-Project, Pharmacovigilance

Year 5
Optional
-Adverse Drug Reactions by Major Body Systems I
-Adverse Drug Reactions by Major Body Systems II
-Drug Safety in Clinical Trials
-Labelling and Risk Management
-Management of Pharmacovigilance Data
-Pharmacoepidemiology
-Pharmacovigilance Regulations and Guidelines
-Principles of Pharmacovigilance
-Project, Pharmacovigilance

Read less
This course provides you with the opportunity to work within a world class Phase 1 cancer clinical trials unit and, through a mix of taught and experiential learning, to master the discipline of experimental cancer medicine. Read more
This course provides you with the opportunity to work within a world class Phase 1 cancer clinical trials unit and, through a mix of taught and experiential learning, to master the discipline of experimental cancer medicine.

You will spend a year as a member of the Experimental Cancer Medicine Team at The Christie. During this year, you will participate in four structured taught modules.

Alongside the taught elements, you will be allocated to one or more clinical trials that are being conducted by The Christie experimental cancer medicine team. You will have a named trainer and be exposed to tasks required in the setup, delivery, interpretation and audit of a clinical study.

As a nursing and physician student enrolled on this course, you will be expected to participate in patient care, with physicians and nursing staff participating in new and follow-on patient clinics, treatment and care giving episodes with patients.

For clinical trials coordinators, no direct patient contact is envisaged and duties will involve clinical trial setup, protocol amendments, database setup, data entry, costing and billing for clinical research.

Aims

The primary purpose of the MRes in Experimental Cancer Medicine is to provide you with the opportunity to work within a premier UK Phase 1 cancer clinical trials unit and, through a mix of taught and experiential learning, master the discipline of Experimental Cancer Medicine.

Teaching and learning

Our course is structured around a 2:1 split between clinical-based research projects and taught elements respectively.

Taught course units will predominantly use lectures and workshops, with e-learning limited to parts of course unit 1.

For the research projects, teaching and learning will take place through one-to-one mentoring from a member of the Experimental Cancer Medicine team.

The clinical and academic experience of contributors to this course will provide you with an exceptional teaching and learning experience.

Coursework and assessment

You will be are assessed through oral presentations, single best answer exams, written reports and dissertation.

Career opportunities

The MRes in Experimental Cancer Medicine is relevant to physician, nursing and clinical research students who are considering a career in Phase 1 clinical studies.

The course provides a theoretical and experiential learning experience and offers a foundation for roles within other experimental cancer medicine centres within the UK and EU, as well as careers in academia, the pharmaceutical industry, clinical trials management and medicine.

The MRes is ideal for high calibre graduates and professionals wishing to undertake directly channelled research training in the clinical and medical oncology field.

Read less
The Cancer MSc reflects the depth and breadth of research interests, from basic science to translational medicine, within the UCL Cancer Institute. Read more
The Cancer MSc reflects the depth and breadth of research interests, from basic science to translational medicine, within the UCL Cancer Institute. The programme, taught by research scientists and academic clinicians, provides students with an in-depth look at the biology behind the disease processes which lead to cancer.

Degree information

This programme offers a foundation in understanding cancer as a disease process and its associated therapies. Students learn about the approaches taken to predict, detect, monitor and treat cancer, alongside the cutting-edge research methods and techniques used to advance our understanding of this disease and design better treatment strategies.

Students undertake modules to the value of 180 credits. The programme consists of two core modules (60 credits), four specialist modules (60 credits) and a research project (60 credits). A Postgraduate Diploma (120 credits, full-time nine months) is offered. A Postgraduate Certificate (60 credits, full-time 12 weeks) is offered.

Core modules
-Basic Biology and Cancer Genetics
-Cancer Therapeutics

Specialist modules
-Behavioural Science and Cancer
-Biomarkers in Cancer
-Cancer Clinical Trials
-Haematological Malignancies and Gene Therapy

Dissertation/report
All MSc students undertake a laboratory project, clinical trials project or systems biology/informatics project, which culminates in a 10,000–12,000 word dissertation and an oral research presentation.

Teaching and learning
Students develop their knowledge and understanding of cancer through lectures, self-study, database mining, wet-lab based practicals, clinical trial evaluations, laboratory training, assigned reading and self-learning. Each taught module is assessed by an unseen written examination and/or coursework. The research project is assessed by the dissertation (75%) and oral presentation (25%).

Careers

The knowledge and skills developed will be suitable for those in an industrial or healthcare setting, as well as those individuals contemplating a PhD or medical studies in cancer.

Top career destinations for this degree:
-Research Technician, NHS Imperial College Healthcare NHS Trust
-Cancer and Genetics, ETH Zurich
-PhD Cancer Research, University of New South Wales (UNSW)
-Clincial Trial Project Manager, Beijing Lawke Health Laboratory Inc.
-Research Scientist, SporeGen

Employability
Skills include critical evaluation of scientific literature, experimental planning and design interpretation of data and results, presentation/public speaking skills, time management, working with a team, working independently and writing for various audiences.

Why study this degree at UCL?

UCL is one of Europe's largest and most productive centres of biomedical science, with an international reputation for leading basic, translational and clinical cancer research.

The UCL Cancer Institute brings together scientists from various disciplines to synergise multidisciplinary research into cancer, whose particular areas of expertise include: the biology of leukaemia, the infectious causes of cancer, the design of drugs that interact with DNA, antibody-directed therapies, the molecular pathology of cancer, signalling pathways in cancer, epigenetic changes in cancer, gene therapy, cancer stem cell biology, early phase clinical trials, and national and international clinical trials in solid tumours and blood cancers.

Read less
This Master's degree in Cell and Gene Therapy provides an in-depth education in this cutting-edge and rapidly developing field. Read more
This Master's degree in Cell and Gene Therapy provides an in-depth education in this cutting-edge and rapidly developing field. It is delivered by scientists and clinicians researching, developing and testing new treatments for genetically inherited and acquired diseases using gene delivery technology, stem cell manipulation and DNA repair techniques.

Degree information

The degree covers all aspects of the subject, including basic biomedical science, molecular basis of disease, current and developing technologies and clinical applications. Students also receive vocational training in research methodology and statistics, how to perform a research project and complete a practical laboratory-based project.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a research dissertation (60 credits). A Postgraduate Diploma (120 credits, full-time nine months or flexible up to five years) is offered. A Postgraduate Certificate (60 credits, full-time 12 weeks, part-time nine months, or up to two years flexible) is offered.

Core modules
-Molecular Aspects of Cell and Gene Therapy
-Clinical Applications of Cell and Gene Therapy
-Research Methodology and Statistics
-Stem Cell and Tissue Repair

Research Methodology and Statistics is not a core module for the PG Certificate. Students of the PG Certificate can choose an optional module.

Optional modules
-Foundations of Biomedical Sciences
-Applied Genomics
-HIV Frontiers from Research to Clinics
-Molecular and Genetic Basis of Paediatric Disease
-Understanding Research and Critical Appraisal: Biomedicine
-Laboratory Methods in Biomedical Science
-Research Methodology and Statistics

Dissertation/report
All MSc students undertake an independent research project which culminates in a dissertation.

Teaching and learning
Teaching includes lectures, seminars, problem classes and tutorials. Assessment varies depending on the module, but includes written coursework, multiple-choice questions, written examinations, a practical analysis examination and the dissertation.

Careers

The majority of our graduates have gone on to secure PhD places. Please see our programme website to read testimonials from past students which include their destinations following graduation.

Employability
This novel programme aims to equip students for careers in research, education, medicine and business in academic, clinical and industrial settings. Examples of potential careers could include academic research and/or lecturing in a university or other higher education setting, conducting clinical trials as part of a team of clinicians, scientists and allied health professionals, monitoring and analysing the results of clinical trials as part of a clinical trials unit, developing new therapies or intellectual property in the pharmaceutical industry or other business ventures.

Why study this degree at UCL?

The Institute of Child Health (ICH), and its clinical partner Great Ormond Street Hospital (GOSH), is the largest centre in Europe devoted to clinical, basic research and post-graduate education in children's health, including haematopoietic stem cell transplantation (HSCT) and gene therapy.

The UCL School of Life & Medical Sciences (SLMS) has the largest concentration of clinicians and researchers active in cell and gene therapy research in Europe. This is reflected by the many groups conducting high-quality research and clinical trials in the field including researchers at the Institute of Child Health, the Division of Infection and Immunity, the Institute of Ophthalmology, the Institute for Women's Health, the Institute of Genetics and the Cancer Institute.

Keywords: Stem Cells, Therapy, Genomics, Regenerative Medicine, Gene Editing

Read less
The MSc in Medical Statistics combines in-depth training in mainstream advanced statistical modelling with a specialisation in medical applications. Read more

The MSc in Medical Statistics combines in-depth training in mainstream advanced statistical modelling with a specialisation in medical applications.

This flexible degree programme allows you to blend theoretical and applied statistical disciplines, ideal for training in medical statistics. It combines compulsory and optional modules allowing you to train in a range of statistical techniques (and transferable skills) suitable for either careers in medical statistics and research-related professions, or for further academic research.

Options within the course vary from mainstream topics in statistical methodology to more specialised areas such as epidemiology and biostatistics.

You can also study this programme part time over 24 months.

If you do not meet the full academic entry requirements then you may wish to consider the Graduate Diploma in Mathematics. This course is aimed at students who would like to study for a mathematics related MSc course but do not currently meet the entry requirements. Upon completion of the Graduate Diploma, students who meet the required performance level will be eligible for entry onto a number of related MSc courses, in the following academic year.

Accreditation

Accreditation from the Royal Statistical Society is pending.

Course content

The first two semesters of your course will consist of taught modules, and in the third semester you’ll devote your time to a major dissertation in statistics or a research project in applied epidemiology and biostatistics. Within each semester you have the opportunity to choose from a range of optional modules, allowing you to specialise in the area of study of most interest to you.

You’ll be taught by experts from the School of Mathematics, The Centre for Epidemiology and Biostatistics, and The Clinical Trials Research Unit at Leeds, each bringing a different perspective to the subject of medical statistics.

You’ll be supervised for both your taught modules and your research project by professionals across the teaching units and you will be given the opportunity to utilise existing links with individual clinicians and medical research groups in the University of Leeds, Leeds NHS trust, and the Department of Health’s Information Centre in Leeds.

Throughout the course you’ll learn about new developments in statistics and be provided with the opportunity to undertake data analysis for a wide variety of statistical problems. You’ll build an appreciation of theoretical and practical perspectives on issues in medical statistics, whilst developing the ability to select and apply appropriate statistical methods for the analysis of medical data using suitably chosen software packages.

Course structure

Compulsory modules

  • Introduction to Clinical Trials 15 credits
  • Core Epidemiology 15 credits
  • Introduction to Modelling 15 credits
  • Statistical Computing 15 credits

Optional modules

  • Research Project 60 credits
  • Multilevel and Latent variable Modelling 15 credits
  • Professional Spine 15 credits
  • Independent Learning Skills in Epidemiology and Biostatistics 15 credits
  • Advanced Modelling Strategies 15 credits
  • Advanced Epidemiological Techniques 15 credits
  • Linear Regression and Robustness 15 credits
  • Statistical Theory 15 credits
  • Multivariate Analysis 10 credits
  • Time Series 10 credits
  • Bayesian Statistics 10 credits
  • Generalised Linear Models 10 credits
  • Introduction to Statistics and DNA 10 credits
  • Linear Regression and Robustness and Smoothing 20 credits
  • Multivariate and Cluster Analysis 15 credits
  • Time Series and Spectral Analysis 15 credits
  • Bayesian Statistics and Causality 15 credits
  • Generalised Linear and Additive Models 15 credits
  • Independent Learning and Skills Project 15 credits
  • Dissertation in Statistics 60 credits
  • Statistics and DNA 15 credits

For more information on typical modules, read Medical Statistics MSc in the course catalogue

Learning and teaching

This course is taught by experts from the School of Mathematics, the Centre for Epidemiology and Biostatistics, and the Clinical Trials Research Unit at Leeds. You’ll study a mixture of modules taught by specialists in each area depending on your chosen optional modules. Teaching is done through a combination of lectures, small group workshops and a small number of practical exercises.

Assessment

The taught course is primarily assessed by end-of-semester examinations with a small component of continuous assessment. The project is assessed by a written dissertation and a short oral presentation.

Career opportunities

There is a shortage of well-qualified statisticians in the UK and other countries. Numeracy, in general, is an attribute keenly sought after by employers.

The emergence of data mining and analysis means that demand for statisticians is growing across a wide range of professions - actuarial, betting and gaming industries, charitable organizations, commercial, environmental, financial, forensic and police investigation, government, market research, medical and pharmaceutical organisations. The course is designed specifically to meet this demand.

As a graduate of medical statistics you will have specialist knowledge that will help you progress your career into areas such as medical or epidemiological research. There are several aims to medical research, all of which involve a significant amount of statistics, monitoring and surveillance of health and disease, establishing causes of disease or factors associated with death or disease, detecting disease, preventing death or disease and evaluating treatments for disease. Medical statisticians looking to follow a career in medical research are mainly employed by pharmaceutical companies, university medical schools, research units and the NHS.

A medical statistician could also go into consultancy giving advice to researchers looking to set up clinical trials and needing their project to be assessed before funding is granted.

Careers support

We encourage you to prepare for your career from day one. That’s one of the reasons Leeds graduates are so sought after by employers.

The Careers Centre and staff in your faculty provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.




Read less
This programme will provide a world-class education for advanced training in translational research, from preclinical discovery through to first-time-in-man studies in human and clinical trials in healthy volunteers and patients across neurology and neurodegeneration. Read more
This programme will provide a world-class education for advanced training in translational research, from preclinical discovery through to first-time-in-man studies in human and clinical trials in healthy volunteers and patients across neurology and neurodegeneration.

Degree information

The programme combines theoretical and practical teaching on both the breadth of, and complexity in conducting clinical research. Topics include clinical pharmacology, pharmacokinetics, research governance, medical statistics and the fundamental principle for using the correct enabling technologies within the context of medical research and drug development.

Students undertake modules to the value of 180 credits. The programme consists of four core modules (60 credits), and a dissertation/report (120 credits). There are no optional modules for this programme.

Core modules
-Cellular & Molecular Mechanisms of Disease (15 credits)
-Experimental Neurology (30 credits)
-Research Skills & Statistics (15 credits)
-MRes Translational Neurology Research Project (120 credits)

Dissertation/report
Students will have the opportunity to work with internationally recognised researchers from the UCL Institute of Neurology, and the Leonard Wolfson Experimental Neurology Centre as they undertake their research projects, which culminates in a dissertation of 15,000 words.

Teaching and learning
The programme will combine lectures, workshops and tutorials. Practicals will focus on the role of surrogate markers and emerging technologies in drug development e.g. pre-clinical discovery, first time in man studies, and early phase clinical trials in healthy volunteers and patients. Assessment is through short answer unseen exams, coursework, simulated grant applications and written clinical abstract as well as a small component with a short answer exam.

Careers

The programme is designed to cater to graduates in medicine and biomedical sciences who wish to gain valuable training in clinical research before embarking on a clinical PhD programme, medical training, or professional work in clinical trials. The successful completion of the MRes should also enhance opportunities for graduates to enter medical school or for MBBS graduates to progress to specialist medical training.

Employability
Whatever your chosen career pathway, the MRes in Translational Neurology will equip graduates to either get a first step on the ladder, change career directions or help to become more experienced with a specific expertise in your chosen career.

Why study this degree at UCL?

The programme is delivered by the UCL Institute of Neurology, a specialist postgraduate institute and a worldwide centre of excellence in clinical research across neurological diseases, including movement disorders (e.g. Parkinson’s disease), multiple sclerosis, neuro-inflammation, epilepsy, stroke, cognitive dysfunction, Alzheimer’s Disease and other dementias.

Students will be taught by experts in the field and have the opportunity to network with internationally recognised opinion leaders in neurology and neurodegeneration.

By the end of the programme students will gain a thorough understanding of the challenges involved in setting up research projects, and learn how to design, implement, analyse and report clinical studies. Undertaking an extended piece of primary research in a clinical trials setting is particularly attractive to students wishing to pursue doctoral or clinical research. The focus on translational neurology, from within the specialist research setting of the Leonard Wolfson Experimental Neurology Centre, is also of note.

Read less
Pharmaceutical Science will appeal to those of you who want to understand how the human body functions at a molecular level and the science that we can use to manage human health. Read more
Pharmaceutical Science will appeal to those of you who want to understand how the human body functions at a molecular level and the science that we can use to manage human health.

Based in our state-of-the-art Science Centre, you will explore the biochemical and cellular make-up of the human body, investigate what happens when things go wrong through, for example disease or illness, and how these may be prevented or cured by the action of drugs.

Alongside this, you will build a clear understanding of drugs and medicines, their structures, discovery and development, their biological delivery and activity, and their testing, regulation, production and quality assurance by analytical methods.

The MSci course combines Bachelors-level and Masters-level study in one integrated programme, giving you the opportunity to undertake professional work experience or an extended research project. However, whichever degree you choose to complete, you’ll develop wide ranging specialist skills and an in-depth knowledge of pharmaceutical science and its industry.

If you would like to study this degree but your current qualifications do not meet our entry requirements for degree level study, our Pharmaceutical Science with a Foundation Year is available.

Course content

In Year 1, you’ll be introduced to the theoretical principles and practical techniques of pharmaceutical science and pharmacology. You’ll study the underpinning biology and chemistry and learn about the activity of drugs on the human body.

During Year 2, you’ll look more thoroughly at the analysis and quality assurance of drugs using a range of laboratory techniques and QA methodologies. Your understanding of the human body will extend to the molecular and cellular levels, giving you the depth of knowledge to understand the functions of a healthy body and when disease and illness strike.

Between years 2 and 3 you will take the sandwich placement year. By doing this, you’ll complete a one-year placement with a company within the pharmaceutical industry specifically or a wider scientific field. You might work in drug discovery, isolating and characterising new potential drugs, undertake laboratory or clinical trials, or be involved in full scale industrial drug production that will further develop your employability skills. You will be supported by an onsite placement supervisor and receive regular visits and support from your academic supervisor too.

In Year 3, your final year, you’ll follow the complete process – from the stages involved in identifying potential new drugs, synthesising them for laboratory and then clinical trials, and subsequently, how their approval and production for commercial markets. You will also undertake independent research in an area of your choice, designing your research to probe a current issue in pharmaceutical science.

As an MSci student, your fourth year will provide the opportunity to gain an even greater breadth and depth of specialist knowledge. You’ll also hone your professional skills by completing a work placement or research assistantship, where there may be the opportunity to work closely with a leading employer.

Year 1 (Core)
-Introduction to Pharmaceutical Science and Pharmacology
-Introduction to Scientific Practice
-Molecules to Cells
-Basic Chemical Principles
-Molecular Structure and Synthesis

Year 2 (Core)
-Drug Analysis and Quality Assurance
-Genetics and Cell Biology
-Human Biochemistry and Physiology
-Professional Practice and Placement

Year 3 (Core)
-Drug Testing, Trials and Legislation
-Pharmaceuticals Industry and Drug Production
-Independent Project
-Drug Design, Synthesis and Characterisation

Year 3 (Options)
-Neuropharmacology
-Clinical Immunology
-Toxicology
-Medical Genetics

Year 4 (Core)
-Placement or Research Assistantship
-Advanced Research Methods
-Advanced Pharmaceutical Science

Year 4 (Options)
-Choice of one Year 3 option

Employment opportunities

Graduates can progress into a wide range of roles either within the pharmaceutical industry specifically or a wider scientific field. You might work in drug discovery, isolating and characterising new potential drugs, undertake laboratory or clinical trials, or be involved in full scale industrial drug production. Graduates with an in-depth scientific knowledge are also highly sought after to work in marketing, sales and business management in this and other scientific industries.

Our courses aim to provide you with the relevant knowledge, approach and skill set demanded of a practicing scientist. You will develop skills and knowledge to study a variety of topics relevant to your degree, and the acquisition of Graduate skills and attributes developed in core modules will allow you to find employment in a variety of laboratory based environments such as the biopharmaceutical industry, food processing and quality assurance, veterinary and agricultural laboratories.

Some graduates apply for Graduate Entry Programmes in various healthcare professions such as Medicine, Dentistry, Physiotherapy and Nursing. A significant number of our graduates apply for postgraduate study. Those who aspire to a career in teaching progress to a PGCE, whereas graduates with an interest in a research choose to continue onto Masters and PhD programmes.

Graduates from science courses are increasingly sought after due to their skills in numeracy, IT, problem solving and abilities to analyse and evaluate. Consequently, many of the non-laboratory based industries such as regulatory affairs, scientific editing, technical sales and marketing, insurance and management preferentially employ graduate scientists. All students carry out a work placement in year 2. These are flexible so you can angle your experience towards your career aspirations. Your final year research project in a topic of your choice enables you to undertake a major piece of investigative work culminating in a professional style paper, suitable to present to prospective employers.

Read less

Show 10 15 30 per page



Cookie Policy    X