• University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Hertfordshire Featured Masters Courses
Nottingham Trent University Featured Masters Courses
King’s College London Featured Masters Courses
Imperial College London Featured Masters Courses
London School of Economics and Political Science Featured Masters Courses
"translational" AND "scie…×
0 miles

Masters Degrees (Translational Science)

We have 122 Masters Degrees (Translational Science)

  • "translational" AND "science" ×
  • clear all
Showing 1 to 15 of 122
Order by 
With constant developments across all disciplines, biomedical science is a fast-paced, ever-evolving field. Read more
With constant developments across all disciplines, biomedical science is a fast-paced, ever-evolving field. Looking for a programme that will help you deepen your theoretical knowledge, hone your clinical skills and broaden your professional experience? We give you a suite of award pathways that allow you to explore different research areas, develop your specialisms and focus your study into a practical clinical research project.

Key features

-Tap into the expertise of academic lecturers and tutors actively researching and developing new techniques in modern biomedical science. Our programme has a strong international reputation in translational research, with significant financial investment in laboratory infrastructure.
-Hone your skills and critical thinking, and grow your clinical experience.
-Work with high specification, regularly updated facilities serving post-genomics and proteomics, cell biology and imaging.
-Enrich your learning with teaching, expertise and insight from our NHS partners, plus members of Plymouth University School of Biomedical and Healthcare Sciences.
-Deepen your understanding with modules that explore modern practice, emerging techniques and the impact of new technologies on research methods.
-Benefit from a programme that’s reinforced by the research, facilities and expertise of the Centre for Biomedical Research and the Systems Biology Centre. Attend research events and work with leading scientists in a wide range of fields, including immunology, haematology and genomics.
-Focus your specific interests under the guidance of your personal project advisor and develop an individual final project within the Centre for Biomedical Research and the Systems Biology Centre.
-Gain the skills needed to study at masters level with specialist modules on research techniques and project development.

Choose from our modules to follow a path of study resulting in one of following MSc awards:
-Biomedical Science (Cellular Pathology)
-Biomedical Science (Clinical Biochemistry)
-Biomedical Science (Haematology and Transfusion)
-Biomedical Science (Immunology)
-Biomedical Science (Medical Genetics)
-Biomedical Science (Medical Microbiology)
-Begin your career with the confidence that the MSc Biomedical Science suite of awards are accredited by the Institute of Biomedical Science.
-Take the course as a full-time intercalated degree programme for those wishing to interrupt their studies as a medical or dental student.

For more information about the part-time version of this course, view this web-page: https://www.plymouth.ac.uk/courses/postgraduate/msc-biomedical-science-2

Course details

You’ll take five modules: three core modules, one diagnostic research applications module, plus one discipline-specific module to determine your final award. You'll design and execute a research project, supported by your project advisor. Other core modules include molecular biology (genomics, transcriptomics and proteomics) and project design and development, where you’ll also critically review scientific literature. Options for the diagnostic research applications include bioinformatics, contemporary applications of cell biology, and contemporary science of infection and immunity. Focussing in on the discipline that interests you the most for your final award, you can choose from a range of modules including: clinical immunology, clinical microbiology, haematology and transfusion, medical genomics and personalised medicine, molecular and cellular pathology and clinical biochemistry.

Core modules
-BIOM5005 Project Design and Development
-BIOM5001 Molecular Biology: Genomics, Transcriptomics and Proteomics
-BIOM5006 Research Project

Optional modules
-BIOM5008 Clinical Microbiology
-BIOM5002 Contemporary Applications of Cell Biology
-BIOM5003 Contemporary Science of Infection and Immunity
-BIOM5014 Bioinformatics
-BIOM5007 Cellular Basis of Clinical Immunology
-BIOM5009 Haematology and Transfusion
-BIOM5010 Medical Genomics and Personalised Medicine
-BIOM5011 Molecular and Cellular Pathology
-BIOM5012 Clinical Biochemistry

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
Recognising the need for the development of a cohort of appropriately qualified scientific, medical/dental and veterinary graduates, we are offering a research intensive, student-oriented MRes in Translational Medicine. Read more
Recognising the need for the development of a cohort of appropriately qualified scientific, medical/dental and veterinary graduates, we are offering a research intensive, student-oriented MRes in Translational Medicine. The MRes in Translational Medicine provides high quality graduates with the research rigour, the innovation culture and the leadership skills to be at the forefront of this translational revolution and so develop a cohort of appropriately qualified scientific medical/dental and veterinary graduates.

Translational Medicine allows experimental findings in the research laboratory to be converted into real benefit for the health and well-being of the patient, through the development of new innovative diagnostic tools and therapeutic approaches.

The main objective of the MRes Programme in Translational Medicine is to provide high quality candidates with the research rigour, innovation culture and the leadership skills to be at the forefront of this translational revolution. Students will receive expert training in all aspects of translational medicine including how new experimental findings are translated into treatments for patients; the experimental steps in the process, the development of innovative solutions, management and leadership skills and an appreciation of marketing and financial aspects of translational medicine through interaction with business leaders and scientists from Biotech and Pharmacy

This research intensive programme incorporates a 38 week research project in an area selected by the student in consultation with the research project co-ordinator. student selected area.

QUB has an international reputation in translational medicine, achieved through the recognised metrics of high impact peer review publications, significant international research funding, the generation of exploitable novel intellectual property and the establishment of successful spin-out biotech companies. This ethos of innovation was recently recognised with the award of the Times Higher Education Entrepreneurial University of the Year.

This unique course offers students the chance to choose one of these three research streams with the indicated specialist modules:

-

Precision Cancer Medicine

This stream provides students with a unique opportunity to study cancer biology and perform innovative cancer research within the Centre for Cancer Research and Cell Biology (CCRCB). Prospective students are immersed in this precision medicine milieu from Day 1, providing for them the opportunity to understand the key principles in discovery cancer biology and how these research advances are translated for the benefit of cancer patients. The strong connectivity with both the biotech and biopharmaceutical sectors provides a stimulating translational environment, while also opening up potential doors for the student's future career.

-

Cardiovascular Medicine

This stream contains two complementary modules which significantly build on the foundation provided by undergraduate medicine or biomedical science to provide students with an advanced insight into current understanding of cardiovascular pathobiology and an appreciation of how this knowledge is being applied in the search for novel diagnostic, prognostic and therapeutic approaches for the clinical management of cardiovascular disease, which remains the leading cause of death worldwide. Students who select the Cardiovascular Medicine Stream will be taught and mentored within the Centre for Experimental Medicine which is a brand new, purpose-built institute (~7400m2) at the heart of the Health Sciences Campus. This building represents a significant investment (~£32m) by the University and boasts state-of-the-art research facilities which are supported by a world-leading research-intensive faculty, ensuring that all of our postgraduate students are exposed to a top quality training experience.

-

Inflammation, infection and Immunity

This stream exposes students to exciting concepts and their application in the field of infection biology, inflammatory processes and the role of immunity in health and disease. There will be detailed consideration of the role of the immune system in host defence and in disease. There is a strong emphasis is on current developments in this rapidly progressing field of translational medicine. Students learn how to manipulate the inflammatory/immune response and their interaction with microbes to identify, modify and prevent disease. Students will also be introduced to the concepts of clinical trials for new therapeutics, and the basic approach to designing a trial to test novel methods to diagnose/prevent or treat illness.

Read less
Recognising the need for the development of a cohort of appropriately qualified scientific, medical/dental and veterinary graduates, we are offering a research intensive, student-oriented MRes in Translational Medicine. Read more
Recognising the need for the development of a cohort of appropriately qualified scientific, medical/dental and veterinary graduates, we are offering a research intensive, student-oriented MRes in Translational Medicine. The MRes in Translational Medicine provides high quality graduates with the research rigour, the innovation culture and the leadership skills to be at the forefront of this translational revolution and so develop a cohort of appropriately qualified scientific medical/dental and veterinary graduates.

Translational Medicine allows experimental findings in the research laboratory to be converted into real benefit for the health and well-being of the patient, through the development of new innovative diagnostic tools and therapeutic approaches.

The main objective of the MRes Programme in Translational Medicine is to provide high quality candidates with the research rigour, innovation culture and the leadership skills to be at the forefront of this translational revolution. Students will receive expert training in all aspects of translational medicine including how new experimental findings are translated into treatments for patients; the experimental steps in the process, the development of innovative solutions, management and leadership skills and an appreciation of marketing and financial aspects of translational medicine through interaction with business leaders and scientists from Biotech and Pharma

This research intensive programme incorporates a 38 week research project in an area selected by the student in consultation with the research project co-ordinator. student selected area.

QUB has an international reputation in translational medicine, achieved through the recognised metrics of high impact peer review publications, significant international research funding, the generation of exploitable novel intellectual property and the establishment of successful spin-out biotech companies. This ethos of innovation was recently recognised with the award of the Times Higher Education Entrepreneurial University of the Year.

This unique course offers students the chance to choose one of these three research streams with the indicated specialist modules:

-

Precision Cancer Medicine

This stream provides students with a unique opportunity to study cancer biology and perform innovative cancer research within the Centre for Cancer Research and Cell Biology (CCRCB). Prospective students are immersed in this precision medicine milieu from Day 1, providing for them the opportunity to understand the key principles in discovery cancer biology and how these research advances are translated for the benefit of cancer patients. The strong connectivity with both the biotech and biopharmaceutical sectors provides a stimulating translational environment, while also opening up potential doors for the student's future career.

-

Cardiovascular Medicine

This stream contains two complementary modules which significantly build on the foundation provided by undergraduate medicine or biomedical science to provide students with an advanced insight into current understanding of cardiovascular pathobiology and an appreciation of how this knowledge is being applied in the search for novel diagnostic, prognostic and therapeutic approaches for the clinical management of cardiovascular disease, which remains the leading cause of death worldwide. Students who select the Cardiovascular Medicine Stream will be taught and mentored within the Centre for Experimental Medicine which is a brand new, purpose-built institute (~7400m2) at the heart of the Health Sciences Campus. This building represents a significant investment (~£32m) by the University and boasts state-of-the-art research facilities which are supported by a world-leading research-intensive faculty, ensuring that all of our postgraduate students are exposed to a top quality training experience.

-

Inflammation, infection and Immunity

This stream exposes students to exciting concepts and their application in the field of infection biology, inflammatory processes and the role of immunity in health and disease. There will be detailed consideration of the role of the immune system in host defence and in disease. There is a strong emphasis is on current developments in this rapidly progressing field of translational medicine. Students learn how to manipulate the inflammatory/immune response and their interaction with microbes to identify, modify and prevent disease. Students will also be introduced to the concepts of clinical trials for new therapeutics, and the basic approach to designing a trial to test novel methods to diagnose/prevent or treat illness.

Read less
Recognising the need for the development of a cohort of appropriately qualified scientific, medical/dental and veterinary graduates, we are offering a research intensive, student-oriented MRes in Translational Medicine. Read more
Recognising the need for the development of a cohort of appropriately qualified scientific, medical/dental and veterinary graduates, we are offering a research intensive, student-oriented MRes in Translational Medicine. The MRes in Translational Medicine provides high quality graduates with the research rigour, the innovation culture and the leadership skills to be at the forefront of this translational revolution and so develop a cohort of appropriately qualified scientific medical/dental and veterinary graduates.

Translational Medicine allows experimental findings in the research laboratory to be converted into real benefit for the health and well-being of the patient, through the development of new innovative diagnostic tools and therapeutic approaches.

The main objective of the MRes Programme in Translational Medicine is to provide high quality candidates with the research rigour, innovation culture and the leadership skills to be at the forefront of this translational revolution. Students will receive expert training in all aspects of translational medicine including how new experimental findings are translated into treatments for patients; the experimental steps in the process, the development of innovative solutions, management and leadership skills and an appreciation of marketing and financial aspects of translational medicine through interaction with business leaders and scientists from Biotech and Pharmacy

This research intensive programme incorporates a 38 week research project in an area selected by the student in consultation with the research project co-ordinator. student selected area.

QUB has an international reputation in translational medicine, achieved through the recognised metrics of high impact peer review publications, significant international research funding, the generation of exploitable novel intellectual property and the establishment of successful spin-out biotech companies. This ethos of innovation was recently recognised with the award of the Times Higher Education Entrepreneurial University of the Year.

This unique course offers students the chance to choose one of these three research streams with the indicated specialist modules:

-

Precision Cancer Medicine

This stream provides students with a unique opportunity to study cancer biology and perform innovative cancer research within the Centre for Cancer Research and Cell Biology (CCRCB). Prospective students are immersed in this precision medicine milieu from Day 1, providing for them the opportunity to understand the key principles in discovery cancer biology and how these research advances are translated for the benefit of cancer patients. The strong connectivity with both the biotech and biopharmaceutical sectors provides a stimulating translational environment, while also opening up potential doors for the student's future career.

-

Cardiovascular Medicine

This stream contains two complementary modules which significantly build on the foundation provided by undergraduate medicine or biomedical science to provide students with an advanced insight into current understanding of cardiovascular pathobiology and an appreciation of how this knowledge is being applied in the search for novel diagnostic, prognostic and therapeutic approaches for the clinical management of cardiovascular disease, which remains the leading cause of death worldwide. Students who select the Cardiovascular Medicine Stream will be taught and mentored within the Centre for Experimental Medicine which is a brand new, purpose-built institute (~7400m2) at the heart of the Health Sciences Campus. This building represents a significant investment (~£32m) by the University and boasts state-of-the-art research facilities which are supported by a world-leading research-intensive faculty, ensuring that all of our postgraduate students are exposed to a top quality training experience.

-

Inflammation, infection and Immunity

This stream exposes students to exciting concepts and their application in the field of infection biology, inflammatory processes and the role of immunity in health and disease. There will be detailed consideration of the role of the immune system in host defence and in disease. There is a strong emphasis is on current developments in this rapidly progressing field of translational medicine. Students learn how to manipulate the inflammatory/immune response and their interaction with microbes to identify, modify and prevent disease. Students will also be introduced to the concepts of clinical trials for new therapeutics, and the basic approach to designing a trial to test novel methods to diagnose/prevent or treat illness.

Read less
Goal of the pro­gramme. Life Sciences.  is one of the strategic research fields at the University of Helsinki. The multidisciplinary Master’s Programme in Life Science Informatics (LSI) integrates research excellence and research infrastructures in the Helsinki Institute of Life Sciences (. Read more

Goal of the pro­gramme

Life Sciences is one of the strategic research fields at the University of Helsinki. The multidisciplinary Master’s Programme in Life Science Informatics (LSI) integrates research excellence and research infrastructures in the Helsinki Institute of Life Sciences (HiLIFE).

The Master's Programme is offered by the Faculty of Science. Teaching is offered in co-operation with the Faculty of Medicine and the Faculty of Biological and Environmental Sciences. As a student, you will gain access to active research communities on three campuses: Kumpula, Viikki, and Meilahti. The unique combination of study opportunities tailored from the offering of the three campuses provides an attractive educational profile. The LSI programme is designed for students with a background in mathematics, computer science and statistics, as well as for students with these disciplines as a minor in their bachelor’s degree, with their major being, for example, ecology, evolutionary biology or genetics. As a graduate of the LSI programme you will:

  • Have first class knowledge and capabilities for a career in life science research and in expert duties in the public and private sectors
  • Competence to work as a member of a group of experts
  • Have understanding of the regulatory and ethical aspects of scientific research
  • Have excellent communication and interpersonal skills for employment in an international and interdisciplinary professional setting
  • Understand the general principles of mathematical modelling, computational, probabilistic and statistical analysis of biological data, and be an expert in one specific specialisation area of the LSI programme
  • Understand the logical reasoning behind experimental sciences and be able to critically assess research-based information
  • Have mastered scientific research, making systematic use of investigation or experimentation to discover new knowledge
  • Have the ability to report results in a clear and understandable manner for different target groups
  • Have good opportunities to continue your studies for a doctoral degree

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The Life Science Informatics Master’s Programme has six specialisation areas, each anchored in its own research group or groups.

Algorithmic bioinformatics with the Genome-scale algorithmicsCombinatorial Pattern Matching, and Practical Algorithms and Data Structures on Strings research groups. This specialisation area educates you to be an algorithm expert who can turn biological questions into appropriate challenges for computational data analysis. In addition to the tailored algorithm studies for analysing molecular biology measurement data, the curriculum includes general algorithm and machine learning studies offered by the Master's Programmes in Computer Science and Data Science.

Applied bioinformaticsjointly with The Institute of Biotechnology and genetics.Bioinformatics has become an integral part of biological research, where innovative computational approaches are often required to achieve high-impact findings in an increasingly data-dense environment. Studies in applied bioinformatics prepare you for a post as a bioinformatics expert in a genomics research lab, working with processing, analysing and interpreting Next-Generation Sequencing (NGS) data, and working with integrated analysis of genomic and other biological data, and population genetics.

Biomathematics with the Biomathematics research group, focusing on mathematical modelling and analysis of biological phenomena and processes. The research covers a wide spectrum of topics ranging from problems at the molecular level to the structure of populations. To tackle these problems, the research group uses a variety of modelling approaches, most importantly ordinary and partial differential equations, integral equations and stochastic processes. A successful analysis of the models requires the study of pure research in, for instance, the theory of infinite dimensional dynamical systems; such research is also carried out by the group. 

Biostatistics and bioinformatics is offered jointly by the statistics curriculum, the Master´s Programme in Mathematics and Statistics and the research groups Statistical and Translational GeneticsComputational Genomics and Computational Systems Medicine in FIMM. Topics and themes include statistical, especially Bayesian methodologies for the life sciences, with research focusing on modelling and analysis of biological phenomena and processes. The research covers a wide spectrum of collaborative topics in various biomedical disciplines. In particular, research and teaching address questions of population genetics, phylogenetic inference, genome-wide association studies and epidemiology of complex diseases.  

Eco-evolutionary Informatics with ecology and evolutionary biology, in which several researchers and teachers have a background in mathematics, statistics and computer science. Ecology studies the distribution and abundance of species, and their interactions with other species and the environment. Evolutionary biology studies processes supporting biodiversity on different levels from genes to populations and ecosystems. These sciences have a key role in responding to global environmental challenges. Mathematical and statistical modelling, computer science and bioinformatics have an important role in research and teaching.

Systems biology and medicine with the Genome-scale Biology Research Program in BiomedicumThe focus is to understand and find effective means to overcome drug resistance in cancers. The approach is to use systems biology, i.e., integration of large and complex molecular and clinical data (big data) from cancer patients with computational methods and wet lab experiments, to identify efficient patient-specific therapeutic targets. Particular interest is focused on developing and applying machine learning based methods that enable integration of various types of molecular data (DNA, RNA, proteomics, etc.) to clinical information.



Read less
This research-based course has a taught component that is the same as an MSc. It provides a springboard into a career that involves a working knowledge of scientific research. Read more

This research-based course has a taught component that is the same as an MSc. It provides a springboard into a career that involves a working knowledge of scientific research.

The course is designed for graduates with a BSc in the life sciences or other science disciplines, and for intercalating and fully qualified MBBS or BDS students. It can be taken either as a stand-alone qualification or as an entry route onto a PhD or MD.

What you'll learn

The taught component of the course includes subject-specific content in the area of translational medicine and therapeutics. You have the flexibility to develop your own bespoke course by selecting additional, complementary modules. You will also participate in training in general research principles, and other professional and key skills.

Subject-based modules in translational medicine and therapeutics provide the opportunity to learn about the development and evaluation of new medicines and to develop skills in translational research relating to therapeutics. Teaching and supervision is provided by both university-based academics and experts from the pharmaceutical industry.

Your project

Your research project comprises the major element of the course. This project will involve 24 weeks of research in an area of translational medicine and therapeutics under the supervision of an expert academic researcher in the field.

The course allows you to experience an internationally competitive research area, predominantly in academia but also potentially in industry.

Our MRes courses

Translational Medicine and Therapeutics MRes is closely linked to a suite of MRes courses that you may also be interested in:

Faculty of Medical Sciences Graduate School

Our Medical Sciences Graduate School is dedicated to providing you with information, support and advice throughout your research degree studies. We can help and advise you on a variety of queries relating to your studies, funding or welfare.

Our Research Student Development Programme supports and complements your research whilst developing your professional skills and confidence.

You will make an on-going assessment of your own development and training needs through personal development planning (PDP) in the ePortfolio system. Our organised external events and development programme have been mapped against the Vitae Researcher Development Framework to help you identify how best to meet your training and development needs.



Read less
The UCL Institute for Women's Health is an internationally recognised centre of excellence and leading provider of postgraduate taught programmes in women's health. Read more

The UCL Institute for Women's Health is an internationally recognised centre of excellence and leading provider of postgraduate taught programmes in women's health. This new MRes gives students the opportunity to take a programme with greater emphasis on research skills and experience, and on development of transferable academic and professional skills.

About this degree

Students choose taught modules and select research areas from a variety of subjects across reproductive science and women's health, spanning the four themes of the institute: maternal and fetal health; neonatology; women’s cancer; and reproductive health. Students learn how to conduct an independent research project. They will also gain practical experience and theoretical understanding in research methodologies and critical analysis.

Students undertake modules to the value of 180 credits.

The programme consists of four optional modules (60 credits) and a research project (120 credits).

Core modules

All students undertake an independent research project in women's health.

Students may choose to focus on a laboratory or non-laboratory project (such as a social or ethical-based project), or an epidemiology project (analysing cohort or registry data).

Optional modules

Students choose four optional modules; a minimum of three from the reproductive science and women's health modules listed below. One option can also be chosen from the transferable skills modules marked * below. 

  • Basic Genetics and Technology
  • Breast and Reproductive Cancer
  • Female Reproductive Anatomy, Physiology and Pathology
  • Gametogenesis, Preimplantation Development and IVF
  • Pregnancy and Childbirth
  • Preimplantation Genetic Diagnosis and New Technology
  • Prenatal Diagnosis and Screening
  • Reproductive Health
  • Perinatal Epidemiology and Maternal Health*
  • Sexual Health: Designing Sexual and Reproductive Health Programmes in Low and Middle Income Countries*
  • Leadership and Professional Development*
  • Research Methodology and Statistics*
  • Understanding Research and Critical Appraisal*

Dissertation/research project

The independent research project in women's health culminates in a dissertation of 20,000 words. Students will be involved in the conceptualisation, design, data collection, analysis, interpretation and presentation of the project. This will allow the development of research skills in a specific field as well as a range of transferable skills, including literature searching, statistical analysis and written and verbal communication.

Teaching and learning

In addition to taught modules and the long research project, there is a full induction week at the start of the programme and six careers afternoons. A comprehensive range of assessment methods cover the key research, communication and practical skills required for future employment.

Further information on modules and degree structure is available on the department website: Reproductive Science and Women's Health MRes

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The first cohort of students on this programme will graduate in 2018. We expect the programme to prepare science-orientated students to go on to further research. Medically-orientated students may wish to develop their careers in the field of reproductive science and women’s health or undertake further research.

Employability

The programme provides students with an excellent introduction to research. It will equip them with the general and scientific skills required to embark on lifelong careers in research and related fields.

Why study this degree at UCL?

The UCL Institute for Women's Health delivers excellence in research, clinical practice, education and training in order to make a real and sustainable difference to women's and babies' health worldwide.

The UCL/UCL Hospitals NHS Foundation Trust collaboration provides an academic environment in which students can pursue graduate studies with world-class researchers and clinicians. We offer excellent basic science facilities, opportunities to work in cutting-edge clinical and translational research, and expertise in study methodology.

A comprehensive careers programme is embedded in all our degrees. This ensures students are exposed to a range of different job opportunities. We have alumni who give talks on their diverse career journeys.



Read less
This new and innovative course builds upon the integrated nature of the School of Dentistry’s clinical and basic science divisions, and aims to prepare future researchers, from scientific or clinical backgrounds for research careers based in addressing oral health needs. Read more

This new and innovative course builds upon the integrated nature of the School of Dentistry’s clinical and basic science divisions, and aims to prepare future researchers, from scientific or clinical backgrounds for research careers based in addressing oral health needs. You’ll gain a thorough background in oral sciences, the investigative, cutting edge technologies that enable oral scientific discovery and the necessary training in research governance and rigour. All areas of translational research pathways will be addressed, including aspects of commercialisation which will be taught through the Leeds University Business School (LUBS). Disease focused modules provide opportunities for in-depth exploration with research experts in the fields of Cancer, Musculoskeletal and Oral and systemic disease links.

Our teaching staff includes world leading experts with track records in translating research discoveries into novel healthcare products and practices. Student integration within the wider Dental school will be facilitated by undertaking recently updated modules shared with students from other MSc programmes.

Aimed at dental and biosciences graduates, the course will facilitate a career path focussed on oral research and its translation into positive impacts on health.

Course content

The programme will:

  • provide structured individualised learning and training in a research environment of international excellence.
  • be delivered by academics at the forefront of knowledge generation ranging from molecular discovery to translational application
  • engage students in research projects using the latest technologies that generate results with scientific impact and potential for improving patient health
  • equip students for the full process of translational oral research, which will be relevant for a range of biomedical scientific careers, providing the skills and insight to excel in multidisciplinary research.

For more information on typical modules, read Translational Research in Oral Sciences MSc in the course catalogue

Learning and teaching

Teaching will be split between the Dental school on the main campus and the Wellcome Trust Brenner Building (WTBB) at the St James’s University Hospital. The WTBB is a modern purpose built research facility, housing cutting edge facilities in imaging, tissue and microbiological culture and next generation sequencing technologies. On the main campus students can benefit from all the expertise, facilities (such as the Leeds Dental Translational and Clinical Research Unit) and support provided by the Dental school.

Our course emphasises student directed and multidisciplinary learning. Teaching methods include lectures, seminars and workshops, complemented by e-learning and will be delivered by research active scientists and clinicians with additional input from industrial partners and Leeds University Business School (LUBS) academics.

Assessment

Summative assessment will provide you with on-going feedback on your depth of subject knowledge and skills. Assessment methods for formative and summative assessment will include oral and poster presentations, unseen examinations and literature reviews. Exercises to identify research questions formulate research plans and prepare mock applications for funding and ethical/ governance approvals will also contribute to assessment.

Career opportunities

You will gain insight into all stages of translational research, preparing you for a career working across multi-disciplinary teams within research and innovation management. The course aims to enhance your career prospects of securing PhD studentship positions, whether that be in pre-clinical or clinical research.

The innovation management in practice module enables you to learn about the commercial aspects of translational research. It may be that you want to go into the oral healthcare industry, so knowledge of business skills will be a useful transferable skill.

You may want to go into academic teaching positions within your own country; this MSc will provide the knowledge required to teach oral biology at undergraduate level. 



Read less
Our MSc Health Data Science course aims to create a new breed of scientist who can understand the healthcare sector and medicine, how data is collected and analysed, and how this can be communicated to influence various stakeholders. Read more

Our MSc Health Data Science course aims to create a new breed of scientist who can understand the healthcare sector and medicine, how data is collected and analysed, and how this can be communicated to influence various stakeholders.

The current model of healthcare delivery in the UK is subject to unprecedented challenges. An ageing population, the impact of lifestyle factors and increasing costs mean that the existing approaches may become unsustainable. 

This, coupled with a drive towards personalised medicine, presents an opportunity for a step change in healthcare delivery.

To do this, we need to make best use of the health data we collect and create a better understanding of the relationship between treatments, outcomes, patients and costs. 

This MSc promotes the need for translational thinking to provide the knowledge, skills and understanding that will be applied across new challenges within healthcare delivery.

Students from a variety of professional backgrounds will benefit from the course, as the structure of the MSc ensures that you will share this knowledge with each other and learn to work in multidisciplinary teams, rather than in specialist silos.

The course has eight taught units covering key skills for health data science. Seven units are core and there is one optional unit depending on training needs and background. For those studying for an MSc, there is also a 60-credit research project.

Aims

This course will allow you to:

  • gain key background knowledge and an understanding of the healthcare system, from the treatment of individuals to the wider population;
  • gain an understanding of the governance structures and frameworks used when working with health data and in the healthcare sector;
  • experience key technical skills and software for working with and manipulating health data;
  • understand the breadth and depth of application methods and the potential uses of health data;
  • comprehend key concepts and distinctions of the disciplines that need to be synthesised for effective health data science;
  • appreciate the role of the health data scientist and how they fit into the wider healthcare landscape;
  • understand the importance of patient-focused delivery and outcomes;
  • develop the in-depth knowledge, understanding and analytical skills needed to work with health data effectively to improve healthcare delivery;
  • develop a systematic and critical understanding of relevant knowledge, theoretical frameworks and analytical skills to demonstrate a critical understanding of the challenges and issues arising from heterogeneous data at volume and scale, and turn them into insight for healthcare delivery, research and innovation;
  • apply practical understanding and skills to problems in healthcare;
  • work in a multi-disciplinary community and communicate specialist knowledge of how to use health data to a diverse community;
  • evaluate the effectiveness of techniques and methods in relation to health challenges and the issues addressed;
  • extend your knowledge, understanding and ability to contribute to the advancement of healthcare delivery knowledge, research or practice through the systematic, in-depth exploration of a specific area of practice and/or research.

Special features

Research project options

MSc students will have an opportunity to conduct their research project in other settings such as the NHS and the biopharmaceutical industry, as well as academia.

Teaching and learning

The course covers four main areas that bring together technical, modelling and contextual skills to apply these to real world problems when harnessing the potential of health data. 

In each of the units that deliver the key skills, both the importance of the patient and the governance surrounding working in the healthcare environment (especially structures around information governance) is embedded throughout.

Each unit will use case studies provided by existing work and research at the Health eResearch Centre(HeRC). The course will focus on large and complex health datasets (often routinely collected) in environments that safeguard patient confidentiality.

The course will encourage intellectual curiosity, creativity, and critical thinking, providing transferable skills for lifelong learning and research and cultivation of reflective practice. 

Through the development of these innovation, critical, evaluative, analytical, technical, problem solving and professional skills, you will be able to conduct impactful work and advance healthcare delivery. 

We see learning and teaching as collaborative knowledge construction, which recognises the contribution of all stakeholders (academic staff, service users and carers and students). This is demonstrated in the course through contributions made by these stakeholders through case studies, examples, invited seminars and participation in group work. 

A variety of teaching methods will be used within the constraints of the method of delivery. The course will be student centred and will be delivered from the outset using a combination of face-to-face, distance learning and blended learning units.

Coursework and assessment

A range of assessments are used within each course unit and across the course as a whole.

All assessments require you to integrate knowledge and understanding, and to apply this to case studies and the outcomes of each unit.

Assessment will occur in a variety of forms including (but not exclusively) essays, case studies, assessed seminar/tutorial presentations and literature reviews.

Written assignments and presentations have a formative role in providing feedback (particularly in the early stages of course units) as well as contributing to summative assessment.

Online quizzes provide a useful method of regular testing, ensuring that you actively engage with the taught material.

The assessment of tutorials contains an element of self and peer evaluation, so you can learn the skills associated with the effective management of and participation in collaborative activity.

The course also places an emphasis on group work, as this a vital skill for professionals operating in a multidisciplinary area such as health data science, and this is shown in the teaching methods and assignments. 

Each unit has a different emphasis on the group work assessment based on the nature of the material being covered, how they are to apply the knowledge and the work they are to complete.

The dissertation for the MSc requires you to undertake an extended written piece of work (10,000 to 15,000 words) that focuses on a specific aspect of health data science.



Read less
With constant developments across all disciplines, biomedical science is a fast-paced, ever-evolving field. Read more
With constant developments across all disciplines, biomedical science is a fast-paced, ever-evolving field. Looking for a programme that will help you deepen your theoretical knowledge, hone your clinical skills and broaden your professional experience? We give you a suite of award pathways that allow you to explore different research areas and develop your specialisms.

Key features

-Tap into the expertise of academic lecturers and tutors actively researching and developing new techniques in modern biomedical science. Our programme has a strong international reputation in translational research, with significant financial investment in laboratory infrastructure.
-Hone your skills and critical thinking, and grow your clinical experience.
-Work with high specification, regularly updated facilities serving post-genomics and proteomics, cell biology and imaging.
-Enrich your learning with teaching, expertise and insight from our NHS partners, plus members of Plymouth University School of Biomedical and Healthcare Sciences.
-Deepen your understanding with modules that explore modern practice, emerging techniques and the impact of new technologies on research methods.
-Benefit from a programme that’s reinforced by the research, facilities and expertise of the Centre for Biomedical Research and the Systems Biology Centre. Attend research events and work with leading scientists in a wide range of fields, including immunology, haematology and genomics.
-Gain the skills needed to study at masters level with specialist modules on research techniques and project development.
-Part of the Institute of Biomedical Science (IBMS) accredited suite of MSc Biomedical Science awards.

Course details

You’ll take five modules: the core module (molecular biology: genomics, transcriptomics and proteomics), at least one diagnostic research applications module and one discipline-specific module to determine your final award. Options for the diagnostic research applications include bioinformatics, contemporary applications of cell biology, and contemporary science of infection and immunity. Focussing in on the discipline that interests you the most for your final award, you can choose from a range of modules including: clinical immunology, clinical microbiology, haematology and transfusion, medical genomics and personalised medicine, molecular and cellular pathology and clinical biochemistry.

Read less
This programme aims to provide you with a firm foundation in biomedical research methodology, focused on translational cardiovascular medicine, by enhancing your knowledge, understanding, critical awareness and practical research experience in this area. Read more

Programme overview

This programme aims to provide you with a firm foundation in biomedical research methodology, focused on translational cardiovascular medicine, by enhancing your knowledge, understanding, critical awareness and practical research experience in this area. The programme provides a firm theoretical grounding in the scientific principles and clinical applications of translational cardiovascular medicine, as well as intensive training in research methodology, experimental design, statistical analyses, data interpretation and science communication.

The core of the programme is a six-month research project, conducted within one of the University of Bristol's internationally recognised translational cardiovascular medicine research groups. Opportunities will be available in laboratory or clinical-based investigations.

The programme is suitable for clinical and bioscience graduates who wish to develop their research skills within this exciting field. It is also suitable for clinical students interested in pursuing a research-intensive intercalation option after three years of study.

Programme structure

This programme is delivered by research scientists and clinicians through lectures, tutorials, seminars, research clubs and practical classes. In addition to four mandatory units relating to research methodology, students choose two units on aspects of cardiovascular science.

Mandatory units

- Introduction to Research Methods in Health Sciences (10 credits)
This unit introduces a variety of research methods used in basic and applied clinical research including: finding and reading relevant research information; presenting research results; basic statistical analysis; data interpretation; ethics.
- Further Research Methods in Health Sciences (20 credits)
This unit aims to develop further knowledge and practical experience in statistical analyses, experimental design and laboratory methods and includes training in the use of a statistical software package and practical experience in several laboratory techniques.
- Research Club in Health Sciences (10 credits)
This unit aims to develop your ability to present, critically evaluate and discuss scientific findings by contributing to journal clubs, attending and summarising research seminars and presenting your own research.
- Research Project in Translational Cardiovascular Medicine (100 credits)
During this unit you will gain extensive experience in scientific/clinical research by conducting an independent project. You will write up your research in the form of a thesis, present and discuss your work in a viva and research symposium.

Plus a choice of two of the following units:

- Coronary Artery Disease I (20 credits)
- Coronary Artery Disease II (20 credits)
- Heart and Valve Disease (20 credits)
- Paediatric Heart Disease (20 credits)
- Aneurysm, Peripheral Vascular Disease and Stroke (20 credits)

Careers

This programme is suitable for those with a bioscience or clinical background who wish to develop their research skills before embarking on a research/clinical career in academia or the pharmaceutical industry. It provides the ideal foundation for further studies leading to a PhD.

Read less
This Masters in Translational Medicine is the first year of a British Heart Foundation 4-Year PhD studentship. it is not offered as an individual programme of study. Read more
This Masters in Translational Medicine is the first year of a British Heart Foundation 4-Year PhD studentship: it is not offered as an individual programme of study.

Why this programme

◾The programme will provide you with the skills needed to assess critically recent advances in biology relevant to human disease.
◾It covers the areas of cardiovascular medicine, inflammation and immunology, neuroscience, mathematics, bioinformatics and cell biology, and advances in fundamental biomedical science relevant to integrative mammalian biology.
◾You will be taught the administrative procedures and ethical and project planning requirements for applying for statutory licenses (personal and project) for animal work as well as ethical aspects of gene and cell therapy.
◾The University is one of the few centres in the UK offering BHF 4-Year PhD studentships. Successful applicants accepted into the programme will be fully funded. For more information, see: BHF 4 year PhD programme.

Programme structure

The programme is part of a 4-year PhD with the first year being an MRes. The MRes is made up of three individual 12-week research placements after an intense two-week induction. Each project will be based on different themes with three different supervisors. Years 2-4 make up the PhD portion of the programme.

Induction

You will be required to attend an in-depth introductory programme, which will provide training in research ethics, statistics, project design, literature review and laboratory safety techniques.

Placements

The induction is followed by three individual research placements. These are at the core of this programme, providing three separate projects to allow you to define your areas of interest for your PhD studies. Each placement is a 12-week project and this will be with three different principal supervisors. You will be encouraged to choose placements beyond your undergraduate subject experience to maximise your exposure to new techniques and science. Supervisors are drawn from a wide range of academic disciplines, such as medicine, biomedical and life sciences, mathematics, electronics and electrical engineering, and veterinary medicine.

Career prospects

You will be taught the practical laboratory skills needed to pursue a career in basic translational medicine and applied science through research projects. After successfully completing year 1, you will be awarded an MRes, and progress to a PhD. The programme produces fully trained scientists ready for progression to academic or industrial careers.

Read less
Lead academic 2016. Dr Jonathan Wood. Translational Neuroscience looks at how laboratory research relating to brain structure and function informs the development of new therapies for diseases of the nervous system. Read more

About the course

Lead academic 2016: Dr Jonathan Wood

Translational Neuroscience looks at how laboratory research relating to brain structure and function informs the development of new therapies for diseases of the nervous system.

Combining the research strengths from the Faculty of Medicine, Dentistry and Health and the Faculty of Science, leading international basic and clinical scientists will provide an innovative and progressive programme. You’ll study basic neurobiology and molecular biology through to neuroimaging and applied clinical practice.

The MSc will provide you with up-to-date knowledge of advances in the field, research experience with internationally renowned research groups and transferable skills to provide a springboard for your future career.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

Molecular Neuroscience; CNS Structure and Function; Genetics and Modelling of Neurodegenerative Disease; Mechanisms of Neurodegenerative Disease; Applied Neuroimaging; Neurophysiology and Psychiatry. A 20 week Research Project will be undertaken in the Summer Term.

Examples of optional modules

Option one: Literature Review and Critical Analysis of Science; Ethics and Public Awareness of Science.

Option two: Computational Neuroscience: Neurons and Neuronal Codes; Mathematical Modelling and Research Skills.

Teaching and assessment

Lectures, seminars, tutorials, laboratory demonstrations, computer practicals and student-led group work. Assessment is primarily by written assignments and coursework, although there are some written examinations and oral presentations. The research project is assessed by a thesis 
and presentation.

Read less
Dementia (including a raft of neurodegenerative diseases such as Alzheimer’s Disease) has recently become the leading cause of death in the UK. Read more

Dementia (including a raft of neurodegenerative diseases such as Alzheimer’s Disease) has recently become the leading cause of death in the UK. Stem cells are a novel and relatively young branch of scientific research that hold the potential for not only therapies but to be able to accurately model these distinctly human diseases.

This unique programme will offer students real-world perspectives from patients, carers, scientists and a range of health care professionals including world-leading experts on the impact of neurological diseases.

This programme offers cutting edge translational neuroscience focused on stem cells, neurodegenerative diseases, regeneration and models (both animal and cell). Furthermore the inclusion of patients and importantly their carers and the real-life impacts of these diseases on individuals will be a common thread running throughout this programme making it truly unique and exceptionally novel.

This programme is designed for medical and/or scientific professionals and aims to introduce students to the fields of neurodegenerative diseases, stem cells, industry and emerging therapeutic opportunities in regenerative / translational neurology. Overall students will gain the knowledge and understanding of the clinical, real-life impact and scientific realities of these fields and thus advance their own learning and be able to carry this forward into their future careers.

Therefore students will be introduced to a range of topics as they progress through the programme from introducing the basic anatomy, structure and development of the central nervous system, a critical understanding of stem cells including sources, locations and roles, an introduction to multiple neurodegenerative diseases (such as Alzheimer’s, Motor Neurone Disease and Parkinson’s disease), from both clinical and patient angles, before being introduced to in vitro and in vivo modelling of these diseases, neuroimaging techniques, stem cells and industry.

Online learning

This part-time, fully online programme will support the need for up-to-date knowledge, skills and theory in a wide variety by the use of not only world leading clinical and scientific experts but also by using the real-life impacts as viewed by patients, the people who care for them and the frontline health professionals. All of this expertise will be presented utilising a range of techniques including: online lectures, practical studies, directed readings and other video and audio resources.

Discussion boards will provide directed assessment tasks while input from expert guest lecturers and tutors offer students opportunity for collaborative critical discourse and debate of current issues.

Programme structure

Within the programme, students can progress from Postgraduate Certificate (60 credits), to Postgraduate Diploma (120credits) and to Master of Science degrees (180 credits) as they successfully complete the required number of credits for each level and can therefore stop at any stage or continue onwards depending on their situation.

Postgraduate Certificate

Composed of 4 core courses to provide the fundamental foundations for the Diploma and MSc but can also be taken as a self-contained PGCert. It will cover fundamental areas including key basic research skills (such as how to critically evaluate scientific manuscripts, as well as a basic understanding of statistics) whilst introducing students to the central nervous system, its basic anatomy and development and stem cells. In parallel students would cover an introduction to neurodegenerative diseases (that would include Alzheimer’s Disease, Parkinson’s Disease and Motor Neurone Disease) before being introduced to in vitro and in vivo modelling of these diseases. Finally students would also learn about neuroimaging and its potential roles for scientific research.

Postgraduate Diploma

Expands on the PGCert courses as well as introducing greater depth to novel areas such as the roles of pharma and industry with respect to stem cells. A proportion of the Diploma credits are elective and students will be assisted in choosing appropriate options from across the broad spectrum available from Edinburgh University that are relevant to their own situation, employment and career goals.

MSc

Students have the opportunity to explore a specialist area from within the broad spectrum of stem cells, regeneration and translational neuroscience in the form of either a dissertation, or, a structured project (the student would themselves have to source this if desired), which would aim to deliver a ‘real world’ project with a direct impact for an employer, organisation or personal goal. A third option available for students is a choice of 60 fully taught credits.

The minimum recommended time for completion of the full Masters programme is three years, and the maximum time for completion is six years. The Certificate and Diploma can be completed on a pro rata basis.

Postgraduate Professional Development (PPD)

Postgraduate Professional Development (PPD) is aimed at working professionals who want to advance their knowledge through a postgraduate-level course(s), without the time or financial commitment of a full Masters, Postgraduate Diploma or Postgraduate Certificate.

You may take a maximum of 50 credits worth of courses over two years through our PPD scheme. These lead to a University of Edinburgh postgraduate award of academic credit. Alternatively, after one year of taking courses you can choose to transfer your credits and continue on to studying towards a higher award on a Masters, Postgraduate Diploma or Postgraduate Certificate programme.

Although PPD courses have various start dates throughout a year you may only start a Masters, Postgraduate Diploma or Postgraduate Certificate programme in the month of September. Any time spent studying PPD will be deducted from the amount of time you will have left to complete a Masters, Postgraduate Diploma or Postgraduate Certificate programme.

Career opportunities

Potential career paths, exits routes and employers are very diverse and depend on the students chosen carer. For students working in a clinical environment this programme would offer them career advancement/specialism within their clinical setting.

For students coming from a scientific background there is the opportunity to improve carer prospects in laboratory research settings or alternatively to help in progressing to a PhD.



Read less
Over the last decades, improvements in technology have led to a rapid increase in the use of neuroimaging to study human brain function non-invasively in health and disease. Read more
Over the last decades, improvements in technology have led to a rapid increase in the use of neuroimaging to study human brain function non-invasively in health and disease. In particular, functional magnetic resonance imaging (fMRI), electro-encephalography (EEG), magneto-encephalography (MEG) and transcranial magnetic stimulation (TMS) are now routinely used by neuroscientists to study brain-behaviour relationships. Our MSc in Brain Imaging showcases Nottingham’s multi-disciplinary environment and offers a comprehensive programme that will provide you with the theoretical knowledge and practical skills required to conduct high-quality neuroimaging work and neuroscience research. Translational in vivo neuroscience approaches in animal models will also be considered, and interested students will have the opportunity to receive research training in this area.

The MSc in Brain Imaging has a flexible course structure and offers four pathways with core modules alongside a choice of optional modules that permits tailor-made study. The options are:

MSc Brain Imaging (Cognitive Neuroscience)
MSc Brain Imaging (Neuropsychology)
MSc Brain Imaging (Integrative Neuroscience)
MSc Brain Imaging (Developmental Science)

Graduating from the University of Nottingham opens up a wide range of career options. Many of our students use this programme as a preparation for PhD study or other advanced degree positions. Others opt for science-related jobs. Our graduates are highly regarded by employers in private and public sector organisations because of the solid academic foundation and transferable skills they gain during their degree course such as analytical evaluation, data management, statistical analysis as well as presentation and writing skills. In the past, graduates of this programme have taken-up career opportunities in university, hospital and industry settings.

Please email for more information or visit the PG prospectus. Given the breadth of training available, the MSc is recommended to students with a background in psychology, neuroscience or a bioscience discipline as well as those with training in physics, engineering, mathematics, or computer sciences.

Upcoming Open Days: Wednesday 29 June and Wednesday 6 July (1.30-3 pm). Please contact us if you have specific questions about the programme. Phone: +44 (0)115 951 5361 or email:

Key facts

• Programme delivered through lectures, practicals and research project resulting in a dissertation
• Core and optional modules according to specific pathways
• Four pathways with applications in Cognitive Neuroscience, Developmental Science, Neuropsychology, and Integrative Neuroscience
• Taught by active and internationally renowned research scientists
• Interdisciplinary approach with specialist lectures and/or project supervision by scientists from: the School of Psychology; Sir Peter Mansfield Magnetic Resonance Centre; Department of Academic Radiology

Read less

Show 10 15 30 per page



Cookie Policy    X