• University of Surrey Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Northampton Featured Masters Courses
London Metropolitan University Featured Masters Courses
Birmingham City University Featured Masters Courses
EURECOM Featured Masters Courses
Cranfield University Featured Masters Courses
University of Bath Featured Masters Courses
"translational" AND "onco…×
0 miles

Masters Degrees (Translational Oncology)

We have 30 Masters Degrees (Translational Oncology)

  • "translational" AND "oncology" ×
  • clear all
Showing 1 to 15 of 30
Order by 
This M.Sc. program in Translational Oncology will provide high-quality training for basic scientists and clinicians in the theoretical and practical aspects of the causes and treatment of cancer. Read more
This M.Sc. program in Translational Oncology will provide high-quality training for basic scientists and clinicians in the theoretical and practical aspects of the causes and treatment of cancer. A major focus of the programme is the cellular genetic and epigenetic basis of cancer. The course also covers the scientific and clinical challenges pertinent to the management of site specific cancers, and all aspects of cancer treatment from standard therapies to 'individualised' molecular targeted therapies. The focus of the course is research led teaching in the practical aspects of translational cancer research. This innovative M.Sc. program in Translational Oncology is aimed at scientists and doctors in training who wish to:

Develop their research skills
Broaden their expertise in oncology
Develop advanced knowledge in specific areas of scientific, translational and clinical oncology.

The proposed course will offer an opportunity for graduates from a variety of backgrounds to specifically train in translational oncology in advance of undertaking an MD or PhD. Modules are taught using a variety of methods including lectures, tutorials, workshops and laboratory practicals. Lectures are provided by leaders in the field of translational oncology from both scientific and medical backgrounds. The core modules are Cellular and Molecular Oncology, Cancer Epigenetics, Disease Specific Cancers, Radiation / Chemotherapy and Molecular Targeted Therapies, Tumour Immunology, Molecular Pathology and Imaging, Clinical Statsitics and Research Skills. Students can tailor the course to their interests with optional modules in Obesity, metabolism and Cancer, Gemomic Instability, Cancer Drug Development, Tumour Microenvironment, Clinical Pharmacology, and Surgical Oncology and Economics. Students will be required to submit a dissertation based on an emperical research project conducted in one of the many oncology groups located within or affiliated with Trinity College Dublin and the Institute of Molecular Medicine. Opportunities for national and international placements to conduct research projects will also be available in collaborating universities, hospitals and industry.

All applicants should provide two academic or clinical references confirming their eligibility and suitability for the course, before their application can be considered. Applicants should also include a 500 word personal statement addressing why they are interested in the course, their suitability for the programme and how it will impact on their future career development. Applications for admission to the course should be made through the online system no later than July 31st. Late applications will be considered provided places are available.

Read less
Lead academic 2016. Dr Carolyn Staton. Translational oncology is the process by which laboratory research informs the development of new treatments for cancer. Read more

About the course

Lead academic 2016: Dr Carolyn Staton

Translational oncology is the process by which laboratory research informs the development of new treatments for cancer. It’s a rapidly advancing field with massive therapeutic and commercial potential.

Our MSc(Res) is taught by leading research scientists and clinicians. The course offers training in the theory and practice of translational oncology and provides you with transferable skills for your future career. It includes a six-month research project for which you’ll work as part of a team within the oncology research community at Sheffield.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

Cellular and Molecular Basis of Cancer; Cancer Epidemiology; Cancer Diagnosis and Treatment; Tumour Microenvironment; Cancer Technologies and Clinical Research; Literature Review; Research Project.

Teaching and assessment

Teaching is by lectures, seminars, class discussions/workshops, interactive tutorials, practical demonstrations, student-led group work and patient encounters.

Alongside the taught modules students attend the Sheffield Cancer Research seminars which include question and answer sessions with the experts, and a series of professional skills development tutorials.

Assessment is by a combination of written seen exams, oral and poster presentations, case studies and written assignments. The research project is assessed by an oral presentation and a written dissertation.

Read less
Course description. Lead academic. Dr Carolyn Stanton. Translational oncology is the process by which laboratory research informs the development of new treatments for cancer. Read more

Course description

Lead academic: Dr Carolyn Stanton

Translational oncology is the process by which laboratory research informs the development of new treatments for cancer. It’s a rapidly advancing field with massive therapeutic and commercial potential, and recent graduates have gone on to work in academic research science, pharmaceuticals, the biotech industry and the NHS among others.

Our MSc(Res) is taught by leading research scientists and clinicians. The course offers training in the theory and practice of translational oncology and provides you with transferable skills for your future career.

The course is designed so that students progressively achieve more advanced levels of learning and practice by giving a thorough grounding in the subject matter through five taught modules before leading you into the advanced research modules, namely the literature review and the six-month research project, for which you’ll work as part of a team within the oncology research community at Sheffield.

Core modules

  • Cellular and Molecular Basis of Cancer
  • Cancer Epidemiology
  • Cancer Diagnosis and Treatment
  • Tumour Microenvironment
  • Cancer Technologies and Clinical Research
  • Literature Review
  • Research Project

Teaching and assessment

Teaching is by lectures, seminars, class discussions/workshops, interactive tutorials, practical demonstrations, student-led group work and patient encounters.

Alongside the taught modules students attend the Sheffield Cancer Research seminars which include question and answer sessions with the experts, and a series of professional skills development tutorials.

Assessment is by a combination of written seen exams, oral and poster presentations, case studies and written assignments. The research project is assessed by an oral presentation and a written dissertation.



Read less
Designed in close collaboration with an international team of clinicians and research specialists, this focused MSc provides an understanding of the causes and treatment of cancer from 'bench-to-bedside'. Read more

Designed in close collaboration with an international team of clinicians and research specialists, this focused MSc provides an understanding of the causes and treatment of cancer from 'bench-to-bedside'. You study both theory and practice to gain the specialist knowledge and skills required to pursue an academic career in cancer research or move into the more applied fields of cancer treatment, hospital pathology or industry.

The University has an international reputation for medical research and places a strong emphasis on cancer. This MSc is taught by a team of cancer research-focused staff from the School with internal and external expert guest lectures and seminars. We enjoy close collaborative links with NHS clinicians, clinical researchers and oncology staff who also deliver aspects of the programme.

Students are immersed in an excellent research environment and infrastructure, specifically the recently completed £6 million, state-of-the-art, cancer research facility housed in the Allam Building. The University has invested in preclinical optical and radiological imaging and radiotherapy research. Students engage in research in cutting edge facilities employing these and other technologies used for the early diagnosis and treatment of cancer, both on campus and within the Hull Royal Infirmary and Castle Hill Hospital.

Study information

This MSc is delivered by leading academic cancer scientists, research specialists, consultant clinical and medical oncologists, diagnosticians, radiologists, nurses and cancer surgeons, through a combination of lectures, expert seminars, state-of-the-art oncology-based practicals and projects supported by 'problem classes', workshops and tutorials.

Laboratory-based work is an important part of the programme, which includes an extended 12-week oncology research project carried out in the laboratory of an internationally-recognised cancer researcher. This MSc programme is designed to provide a highly supportive environment, in which teamwork, project management and communication skills are as important as technical proficiency.

Core modules:

  • Cellular and Molecular Biology of Cancer
  • Tumour Immunology and Microenvironment
  • Treatment of Cancer
  • Organ specific cancers: Bench-to Bedside
  • Oncology Research Skills
  • Research Project and Dissertation

Optional modules:

  • Clinical Statistics/Ethics in Oncology
  • Cancer and Modifiable Risks

Students are provided with in-depth specialist knowledge and insight into the fundamentals of Translational Oncology, alongside research-led teaching into the practical applications of cancer research. There is a strong emphasis on scientific method and associated skills.

* All modules are subject to availability.

Future prospects

Graduates of the MSc will be highly attractive candidates for competitive PhD programmes with a basis in oncology.

The programme provides a platform for developing transferable skills that are appropriate for employment within industry, basic science laboratories, clinical laboratories, and education and research.

You also learn transferable skills, highly valued by employers in many fields, including team work, critical analysis, IT skills, time management, presentation skills, problem solving, project management and discipline.



Read less
For health care professionals from diverse backgrounds who wish to expand their knowledge of theoretical and practical aspects of oncology, this … Read more

For health care professionals from diverse backgrounds who wish to expand their knowledge of theoretical and practical aspects of oncology, this full-time programme is particularly suitable for medical professionals with an interest in clinical, medical, surgical and translational oncology. Unique to this programme is the exciting opportunity to gain clinical observership status and log your hours observing in a UK based hospital.

We also offer a part-time version of this programme. 

Course details

The aim of this programme is to give you a scientific understanding of the cellular basis of cancer. We then discuss how understanding the molecular pathology of the disease can help in stratifying patients to personalised cancer therapeutic approaches and disease management.

Aiming to allow you to understand the research process, this programme draws on examples from within this renowned research Institute and its associated Clinical Trials Unit. A key part of the Masters programme is the planning, execution and reporting of a piece of independent study leading to submission of a dissertation. 

At all levels we aim to encourage interactive rather than didactic learning and lecturing. Therefore, as well as assembling and learning facts you will also consider some of the philosophical challenges which underlie the treatment of cancer.

You can opt for a Postgraduate Diploma on completion of the core modules and 30 credits of optional modules, or a Masters on successful completion of the taught programme and an independently researched dissertation.

Learning and teaching

As a Birmingham student, you will be joining the academic elite and will have the privilege of learning from world-leading experts, as well as your peers. From the outset you will be encouraged to become an independent and self-motivated learner. We want you to be challenged and will encourage you to think for yourself.

This programme is delivered via one or two 5 day blocks of teaching from Monday to Friday approx 9am-5.30pm. You will participate in a range of teaching styles such as lectures, eLectures (Surgical Oncology sample), small group tutorials, presentations, peer group learning, self-study etc.

You will have access to a comprehensive support system that will assist and encourage you, including personal tutors and welfare tutors who can help with both academic and welfare issues.

Employability

Dr Selvi Radhakrishna, a graduate from the PG Diploma in Clinical Oncology programme here at the University of Birmingham, has written a book that presents the various cultural issues an Indian woman might face when diagnosed with breast cancer. This New Indian Express article tells the story.

Careers Support for Postgraduate Students

Careers Network – We can help you get ahead in the job market and develop your career

We recognise that as a postgraduate student you are likely to have specific requirements when it comes to planning for your next career step. Employers expect postgraduates to have a range of skills that exceed their subject knowledge. Careers Network offers a range of events and support services that are designed for all students, including postgraduates looking to find their niche in the job market. The Careers Network also have subject specific careers consultants and advisers for each College so you can be assured the information you receive will be relevant to your subject area. For more information visit the Careers Network website



Read less
Our MRes Oncology course will enable you to develop the skills and knowledge you need to prepare for a career in cancer research. Read more

Our MRes Oncology course will enable you to develop the skills and knowledge you need to prepare for a career in cancer research.

Cancer is a major cause of mortality and morbidity worldwide. Approximately 300,000 people develop the disease each year in the UK.

Understanding the basis of tumourigenesis and developing new therapies are high priority areas for investment, especially since the economic burden of cancer is increasing. The field of oncology encompasses a wide variety of biological and physical sciences.

You will learn from renowned basic, translational and clinical scientists at the Manchester Cancer Research Centre, the Cancer Research UK (CRUK) Manchester Institute and The Christie NHS Foundation Trust, with a focus on developing practical research skills.

Our course covers the clinical and research aspects of cancer care, and you will have access to an exceptionally wide range of research projects in basic cancer biology, translational areas and clinical cancer care and imaging.

This MRes has both taught and research components and is suitable for those with little or no previous research experience.

Aims

Our MRes course aims to provide postgraduate level training that will equip you with the specialist knowledge and research skills to pursue a research career in the fields of medical and clinical oncology.

You will gain an understanding of the scientific basis of cancer and its treatments, as well as the skills needed to evaluate the potential efficacy of new treatments.

This course also offers the potential to:

  • gain hands-on research experience;
  • work with world-renowned experts;
  • use state-of-the-art research equipment;
  • publish your work and attend national and international conferences;
  • be taught by speakers at the forefront of national and international cancer research;
  • undertake laboratory or clinical-based research projects at the Christie Hospital site, the largest cancer centre in Europe with some of the UK's leading cancer researchers;
  • enhance your research skills and gain confidence in your research abilities.

Special features

Clinical and research components

This is one of only a handful of MRes Oncology courses in the UK. Unlike many other oncology courses, ours has both clinical and research elements, making it suitable for both medical undergraduates and graduates, as well as biomedical science graduates.

Teaching and learning

Our MRes is structured around a 2:1 split between laboratory/clinical-based research projects and taught elements.

Laboratory and clinical research experience is gained through two research placements, one lasting approximately ten weeks (October to December) and the second lasting approximately 25 weeks (January to August).

You may choose to carry out one project for both placements, which most students do, or separate projects for each placement.

Most research placements are based at the Christie site, either within the hospital, the Manchester Cancer Research Centre or CRUK Manchester Institute premises. Projects are also available on the Central Manchester University Hospitals and University Hospital of South Manchester sites.

A list of available projects will be provided to offer holders in August.

Coursework and assessment

Students are assessed through oral presentations, single best answer exams, written reports and a dissertation.

Course unit details

The course features the following components:

  • Research Methods course unit - 15 credits
  • Clinical Masterclass course unit - 15 credits
  • Lecture Series course unit - 15 credits
  • Tutorial course unit - 15 credits
  • Two research placements (1 x 10 week - 30 credits; 1 x 25 week - 90 credits)

The  Research Methods  course unit covers topics relating to:

  • Critical analysis of scientific/medical research and literature
  • Information management
  • Study design
  • Basic statistical analysis
  • Ethics, fraud, plagiarism and medical and academic misconduct
  • Presentation skills
  • Scientific writing and publishing skills

The  Clinical Masterclass  course unit provides a truly multidisciplinary foundation in the key issues in oncology. Delivery is by lectures and site tours and these classes will offer the student the chance to debate with internationally recognised experts in their field. Areas covered include: 

  • Cancer epidemiology, screening and prevention
  • Diagnosis
  • Chemotherapy
  • Radiotherapy
  • Hormonal therapy
  • Surgery

Following attendance at these classes, you will be able to understand how cancer is diagnosed and the principles of cancer surgery, radiotherapy and chemotherapy.

The  Lecture Series  course unit comprises two intensive one-week courses, one in November and the other in February. The November course covers the biological basis of chemotherapy, pharmacology and cancer biology. The February course covers the biological basis of radiotherapy and translational aspects of cancer research, including biomarkers and new technologies.

The  Tutorial  course unit allows students to choose from a selection of clinical and academic oncology topics. The unit aims to improve ability to interpret and criticise literature as well as improve verbal communication skills in a small group setting. 



Read less
This full-time MSc course is designed to provide graduates with advanced knowledge, understanding and skills in the rapidly advancing field of Cancer Biology and Therapeutics. Read more
This full-time MSc course is designed to provide graduates with advanced knowledge, understanding and skills in the rapidly advancing field of Cancer Biology and Therapeutics.

The course offers advanced teaching in the cellular aspects of cancer biology together with the molecular mechanisms underlying cancer development and progression. It provides in-depth training in cancer therapeutics, encompassing biomarkers and diagnosis, therapeutic targets, drug discovery and clinical trials and chemo/radio therapy, as well as aiming to develop your theoretical and practical research skills. This postgraduate programme offers a balanced combination of theory and practice that would serve as preparation for doctoral research or as a self-contained advanced qualification in its own right.

Graduates from this course should gain a breadth and depth of cancer-focused training that will make them highly attractive candidates to start or continue a career within the healthcare sector and research establishments.

The course offers research skills training and a laboratory-based research project that can provide you with the skills required to develop research hypotheses and critically evaluate translational approaches with respect to the development of contemporary cancer therapeutics.

Distinctive features

• A broad ranging course that covers basic molecular cancer cell biology through to translational research and therapeutics.

• A course developed in collaboration with researchers, academics and clinicians and delivered by leading academic cancer researchers at Cardiff University.

• Key lectures and case study workshops delivered by practising oncologists and cancer surgeons.

• Opportunity to study at Cardiff University, one of the UK’s major teaching and research universities.

• Opportunity to undertake a research project in one of the internationally recognized cancer research groups at Cardiff.

• Close academic support from an experienced personal tutor.
Opportunity to join a vibrant postgraduate community studying at Cardiff.

Structure

This is a full-time course over one academic year. You will study 180 credits: 120 of taught material, followed by a 60 credit project.

Core modules:

Data Handling and Statistics
Cellular and Molecular Biology of Cancer
Translational Oncology and Therapeutics
Academic Research Skills
Research Methodology
Research Project

Teaching

The programme will provide advanced teaching in the cellular aspects of cancer biology together with the molecular mechanisms underlying cancer development and progression. In-depth training will be provided in the area of cancer therapeutics, encompassing biomarkers and diagnosis, therapeutic targets, drug discovery and clinical trials and chemo/radio therapy, in addition to developing the student’s theoretical and practical research skills.

Assessment

Assessment for the course will comprise a combination of exams, written essays, posters, laboratory coursework and case studies.

Career Prospects

Graduates from this course should gain a breadth and depth of cancer-focused training that could make them highly attractive candidates to start or continue a career within the healthcare sector and research establishments.

Potential employment opportunities include PhD student, research technician, medical laboratory science officer, clinical trials co-ordinator, and medical writer.

Read less
OVERVIEW. The. Oncology Drug Discovery MSc. course is designed to provide an insight into how existing and future drug targets are identified from biological samples isolated from the cancer clinic. Read more

OVERVIEW

The Oncology Drug Discovery MSc course is designed to provide an insight into how existing and future drug targets are identified from biological samples isolated from the cancer clinic. This will include an industrial viewpoint into what makes an interesting target and how, through an iterative process, this target is validated. In addition, lectures will be provided to discuss how ‘hit’ compounds are identified, in both the academic and industrial setting, using compound screen assays and fragment based screening technologies. We will also provide an insight in computational methods for generating chemical ‘hits’. The module will also cover how these ‘hit’ compounds are prosecuted into tool compounds or Lead Optimisation candidates (LO), both historic and modern, that are used to further validate a potential drug target.

During this second module we will provide an insight into the challenges of moving a compound from an LO candidate to a pre-clinical candidate. How bio-marker companion tests are developed, validated and are used to underpin clinical trials. The lectures will also provide a keen insight into novel formulation strategies currently under development within Queen’s University Belfast. In addition, we will also provide an insight into the development of bio-therapeutics, such as antibodies, that are proving to be a powerful alternative to small molecule based therapeutics.

For further information email  or send us a message on WhatsApp

ONCOLOGY DRUG DISCOVERY HIGHLIGHTS

The strong links between us and the biotech and bio-pharmaceutical sectors provides a stimulating translational environment, while also expanding your career opportunities.

GLOBAL OPPORTUNITIES

INDUSTRY LINKS

  • Research projects will be provided by both academic staff and local biotech companies in ground-breaking research areas with a strong focus on clinical applications.

WORLD CLASS FACILITIES

  • The Oncology Drug Discovery course will be taught and mentored within the Centre for Cancer Research and Cell Biology: a purpose-built institute at the heart of the Health Sciences Campus, boasting state-of-the-art research facilities.

INTERNATIONALLY RENOWNED EXPERTS

  • We have an international reputation in this area, achieved through: high-impact peer review publications significant international research funding, the establishment of successful spin-out companies.

 

COURSE STRUCTURE

Research Project

  • You will undertake a lab based project in a number of different facets of the drug development, such as hit identification, hit compound development and therapeutic antibody development pathway working with both academic and biotech groups.Semester 1

Research Translational: from Concept to Commercialisation (Full Year)

  • This module covers the principles of disease biology and new technological developments that increase our understanding of disease processes. It develops an appreciation of the importance of innovation, business awareness and leadership skills in the translation of discovery science to clinical implementation.

Diagnosis and Treatment of Cancer

  • This module provides a comprehensive overview of the diagnosis and treatment of the common solid and haematological malignancies, including breast, ovarian, genitourinary and gastrointestinal cancers as well as the leukaemias

Cancer Biology

  • This module provides a comprehensive overview of the fundamental principles of carcinogenesis, highlighting how normal control processes are bypassed during tumour formation. The pathogenic mechanisms to be discussed will range from genomic alterations in key gene families, to epigenetic mechanisms of gene control, alterations in kinase activities or protein turnover, or activation of aberrant phenotypes such as invasion and angiogenesis.Semester 2

Target Identification and Development in Drug Discovery

  • This module describe how novel drug targets are identified and validated and identifies how biochemical assays are developed and employed in the drug discovery process. It also evaluates the alternative approaches used in the drug discovery to identify new chemical matter. It describes and defines chemical approaches used in developing ‘hit’ chemical compounds and identifies drug target classes and their drug-like pharmacophores.

Drug optimization, drug delivery and clinical trials

  • This module evaluates the issues associated the drug development process and describes the development, validation and use of bio-markers in the drug discovery process. It discusses the practices employed in clinical trials and defines the processes employed in licensing of new chemical equity and the role it plays in the drug discovery process.

For further information email  or send us a message on WhatsApp



Read less
The MPhil degree offered by the Department of Oncology is a 12 month full time programme and involves minimal formal teaching; students are integrated into the research culture of the Department and the Institute in which they are based. Read more
The MPhil degree offered by the Department of Oncology is a 12 month full time programme and involves minimal formal teaching; students are integrated into the research culture of the Department and the Institute in which they are based.

Each student conducts their MPhil project under the direction of their Principal Supervisor, with additional teaching and guidance provided by a Second Supervisor and often a Practical Supervisor. The role of each Supervisor is:

- Principal Supervisor: takes responsibility for experimental oversight of the student's research project and provides day-to-day supervision.
- Second Supervisor: acts as a mentor to the student and is someone who can who can offer impartial advice. The Second Supervisor is a Group Leader or equivalent who is independent from the student's research group and is appointed by the Principal Supervisor before the student arrives.
- Practical Supervisor: provides day-to-day experimental supervision when the Principal Supervisor is unavailable, i.e. during very busy periods. The Practical Supervisor is a senior member of the student's research team and is appointed by the Principal Supervisor before the student arrives. For those Principal Supervisors who are unable to monitor their students on a daily basis, we would expect that they meet semi-formally with their student at least once a month.

The subject of the research project is determined during the application process and is influenced by the research interests of the student’s Principal Supervisor, i.e. students should apply to study with a Group Leader whose area of research most appeals to them. The Department of Oncology’s research interests focus on the prevention, diagnosis and treatments of cancer. This involves using a wide variety of research methods and techniques, encompassing basic laboratory science, translational research and clinical trials. Our students therefore have the opportunity to choose from an extensive range of cancer related research projects. In addition, being based on the Cambridge Biomedical Research Campus, our students also have access world leading scientists and state-of-the-art equipment.

To broaden their knowledge of their chosen field, students are strongly encouraged to attend relevant seminars, lectures and training courses. The Cambridge Cancer Cluster, of which we are a member department, provides the 'Lectures in Cancer Biology' seminar series, which is specifically designed to equip graduate students with a solid background in all major aspects of cancer biology. Students may also attend undergraduate lectures in their chosen field of research, if their Principal Supervisor considers this to be appropriate. We also require our students to attend their research group’s ‘research in progress/laboratory meetings’, at which they are expected to regularly present their ongoing work.

At the end of the course, examination for the MPhil degree involves submission of a written dissertation (of 20,000 words or less), followed by an oral examination based on both the dissertation and a broader knowledge of the chosen area of research.

Course objectives

The structure of the MPhil course is designed to produce graduates with rigorous research and analytical skills, who are exceptionally well-equipped to go onto doctoral research, or employment in industry and the public service.

The MPhil course provides:

- a period of sustained in-depth study of a specific topic;
- an environment that encourages the student’s originality and creativity in their research;
- skills to enable the student to critically examine the background literature relevant to their specific research area;
- the opportunity to develop skills in making and testing hypotheses, in developing new theories, and in planning and conducting experiments;
- the opportunity to expand the student’s knowledge of their research area, including its theoretical foundations and the specific techniques used to study it;
- the opportunity to gain knowledge of the broader field of cancer research;
- an environment in which to develop skills in written work, oral presentation and publishing the results of their research in high-profile scientific journals, through constructive feedback of written work and oral presentations.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/cvocmpmsc

Format

The MPhil course is a full time research course. Most research training provided within the structure of the student’s research group and is overseen by their Principal Supervisor. However, informal opportunities to develop research skills also exist through mentoring by fellow students and members of staff. To enhance their research, students are expected to attend seminars and graduate courses relevant to their area of interest. Students are also encouraged to undertake transferable skills training provided by the Graduate School of Life Sciences. At the end of the course, examination for the MPhil degree involves submission of a written dissertation, followed by an oral examination based on both the dissertation and a broader knowledge of the chosen area of research.

Learning Outcomes

At the end of their MPhil course, students should:

- have a thorough knowledge of the literature and a comprehensive understanding of scientific methods and techniques applicable to their own research;
- be able to demonstrate originality in the application of knowledge, together with a practical understanding of how research and enquiry are used to create and interpret knowledge in their field;
- the ability to critically evaluate current research and research techniques and methodologies;
- demonstrate self-direction and originality in tackling and solving problems;
- be able to act autonomously in the planning and implementation of research; and
- have developed skills in oral presentation, scientific writing and publishing the results of their research.

Assessment

Examination for the MPhil degree involves submission of a written dissertation of not more than 20,000 words in length, excluding figures, tables, footnotes, appendices and bibliography, on a subject approved by the Degree Committee for the Faculties of Clinical Medicine and Veterinary Medicine. This is followed by an oral examination based on both the dissertation and a broader knowledge of the chosen area of research.

Continuing

The MPhil Medical Sciences degree is designed to accommodate the needs of those students who have only one year available to them or, who have only managed to obtain funding for one year, i.e. it is not intended to be a probationary year for a three-year PhD degree. However, it is possible to continue from the MPhil to the PhD in Oncology (Basic Science) course via the following 2 options:

(i) Complete the MPhil then continue to the three-year PhD course:

If the student has time and funding for a further THREE years, after completion of their MPhil they may apply to be admitted to the PhD course as a continuing student. The student would be formally examined for the MPhil and if successful, they would then continue onto the three year PhD course as a probationary PhD student, i.e. the MPhil is not counted as the first year of the PhD degree; or

(ii) Transfer from the MPhil to the PhD course:

If the student has time and funding for only TWO more years, they can apply for permission to change their registration from the MPhil to probationary PhD; note, transfer must be approved before completion of the MPhil. If granted permission to change registration, the student will undergo a formal probationary PhD assessment (submission of a written report and an oral examination) towards the end of their first year and if successful, will then be registered for the PhD, i.e. the first year would count as the first year of the PhD degree.

Please note that continuation from the MPhil to the PhD, or changing registration is not automatic; all cases are judged on their own merits based on a number of factors including: evidence of progress and research potential; a sound research proposal; the availability of a suitable supervisor and of resources required for the research; acceptance by the Head of Department and Degree Committee.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

The Department of Oncology does not have specific funds for MPhil courses. However, applicants are encouraged to apply to University funding competitions: http://www.graduate.study.cam.ac.uk/finance/funding and the Cambridge Cancer Centre: http://www.cambridgecancercentre.org.uk/education-and-training

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
The Department of Oncology and the Department for Continuing Education’s CPD Centre offer a part-time MSc in Experimental and Translational Therapeutics that brings together some of Oxford's leading clinicians and scientists to deliver an advanced modular programme designed for those in full-time employment, both in the UK and overseas. Read more

The Department of Oncology and the Department for Continuing Education’s CPD Centre offer a part-time MSc in Experimental and Translational Therapeutics that brings together some of Oxford's leading clinicians and scientists to deliver an advanced modular programme designed for those in full-time employment, both in the UK and overseas.

The Programme draws on the world-class research and teaching in experimental therapeutics at Oxford University and offers a unique opportunity to gain an understanding of the principles that underpin clinical research and to translate this into good clinical and research practice.

Visit the website https://www.conted.ox.ac.uk/about/msc-in-experimental-therapeutics

The deadline for applications is Friday 15 June 2018

If your application is completed by this January deadline and you fulfil the eligibility criteria, you will be automatically considered for a graduate scholarship. For details see: http://www.ox.ac.uk/admissions/graduate/fees-and-funding/graduate-scholarships.

Programme details

The MSc in Experimental and Translational Therapeutics is a part-time course consisting of six modules and a research project and dissertation. The programme is normally completed in two to three years. Students are full members of the University of Oxford and are matriculated as members of an Oxford college.

The modules in this programme can also be taken as individual short courses. It is possible to transfer credit from up to three previously completed modules into the MSc programme, if the time elapsed between commencement of the accredited module(s) and registration for the MSc is not more than two years.

Programme modules:

- The Structure of Clinical Trials and Experimental Therapeutics

- Drug Development, Pharmacokinetics and Imaging

- Pharmacodynamics, Biomarkers and Personalised Therapy

- Adverse Drug Reactions, Drug Interactions, and Pharmacovigilance

- How to do Research on Therapeutic Interventions: Protocol Preparation

- Biological Therapeutics

Course aims

The aim of the MSc programme is to provide students with the necessary training and practical experience to enable them to understand the principles that underpin clinical research, and to enable them to translate that understanding into good clinical and research practice.

By the end of the MSc programme, students should understand the following core principles:

- Development, marketing and regulations of drugs

- Pharmaceutical factors that affect drug therapy

- Pharmacokinetics, pharmacogenetics and pharmacodynamics

- Adverse drug reactions, drug interactions, and pharmacovigilance

- Designing phase I, II and III clinical trials for a range of novel therapeutic interventions (and imaging agents).

- Application of statistics to medicine

- Laboratory assays used to support trial end-points

- Use of non-invasive imaging in drug development

- Application of analytical techniques

By the end of the programme, students should be equipped to:

- demonstrate a knowledge of the principles, methods and techniques for solving clinical research problems and translate this into good clinical and research practice

- apply skills gained in techniques and practical experience from across the medical and biological sciences

- develop skills in managing research-based work in experimental therapeutics

- carry out an extended research project involving a literature review, problem specification and analysis in experimental therapeutics and write a short dissertation

Guidance from the UK Royal College of Physician's Faculty of Pharmaceutical Medicine

The Faculty have confirmed that if enrolled for Pharmaceutical Medicine Specialty Training (PMST), trainees may be able to use knowledge provided by Experimental Therapeutics modules to cover aspects of a module of the PMST curriculum. Trainees are advised to discuss this with their Educational Supervisor.

Experimental Therapeutics modules may also be used to provide those pursuing the Faculty's Diploma in Pharmaceutical Medicine (DPM) with the necessary knowledge required to cover the Diploma syllabus. Applicants for the DPM exam are advised to read the DPM syllabus and rules and regulations.

Members of the Faculty of Pharmaceutical Medicine who are registered in the Faculty's CPD scheme can count participation in Experimental Therapeutics modules towards their CPD record. Non-members may wish to obtain further advice about CPD credit from their Royal College or Faculty.

Assessment methods

To complete the MSc, students need to:

Attend the six modules and complete an assessed written assignment for each module.

Complete a dissertation on a topic chosen in consultation with a supervisor and the Course Director.

Dissertation:

The dissertation is founded on a research project that builds on material studied in the taught modules. The dissertation should normally not exceed 15,000 words.

The project will normally be supervised by an academic supervisor from the University of Oxford, and an employer-based mentor.

The following are topics of dissertations completed by previous students on the course:

- The outcomes of non-surgical management of tubal pregnancy; a 6 month study of the South East London population

- Analysis of the predictive and prognostic factors of outcome in a cohort of patients prospectively treated with perioperative chemotherapy for adenocarcinoma of the stomach or of the gastroesophageal junction

- Evolution of mineral and bone disorder in early Chronic Kidney Disease (CKD): the role of FGF23 and vitamin D

- Survey of patients' knowledge and perception of the adverse drug reporting scheme (yellow cards) in primary care

- The predictive role of ERCC1 status in oxaliplatin based Neoadjuvant for metastatic colorectal cancer (CRC) to the liver

- Endothelial Pathophysiology in Dengue - Dextran studies during acute infection

- Literature review of the use of thalidomide in cancer

- An investigation into the phenotypical and functional characteristics of mesenchymal stem cells for clinical application

- Identification of genetic variants that cause capecitabine and bevacizumab toxicity

- Bridging the evidence gap in geriatric medicines via modelling and simulations

Teaching methods

The class-based modules will include a period of preparatory study, a week of intensive face-to-face lectures and tutorials, followed by a period for assignment work. Attendance at modules will be a requirement for study. Some non-classroom activities will be provided at laboratory facilities elsewhere in the University. The course will include taught material on research skills. A virtual learning environment (VLE) will provide between-module support.

The taught modules will include group work, discussions, guest lectures, and interaction and feedback with tutors and lecturers. Practical work aims to develop the students' knowledge and understanding of the subject.

Find out how to apply here - http://www.ox.ac.uk/admissions/graduate/applying-to-oxford



Read less
About the course. Lead academic. Dr Jonathan Wood. Translational Neuroscience looks at how laboratory research relating to brain structure and function informs the development of new therapies for diseases of the nervous system. Read more

About the course

Lead academic: Dr Jonathan Wood

Translational Neuroscience looks at how laboratory research relating to brain structure and function informs the development of new therapies for diseases of the nervous system.

Combining the research strengths from the Faculty of Medicine, Dentistry and Health and the Faculty of Science, leading international basic and clinical scientists will provide an innovative and progressive programme. You’ll study basic neurobiology and molecular biology through to neuroimaging and applied clinical practice.

The MSc will provide you with up-to-date knowledge of advances in the field, research experience with internationally renowned research groups and transferable skills to provide a springboard for your future career.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

  • Molecular Neuroscience
  • CNS Structure and Function
  • Pathology & Modelling of Neurodegenerative Disease
  • Literature Review and Critical Analysis of Science
  • Ethics and Public Awareness of Science
  • Mechanisms of Neurodegenerative Disease
  • Applied Neuroimaging
  • Neurophysiology and Psychiatry.

A 20-week Research Project will be undertaken in the summer term.

Teaching and assessment

Lectures, seminars, tutorials, laboratory demonstrations, computer practicals and student-led group work.

Assessment is primarily by written assignments and coursework, although there are some written examinations and oral presentations. The research project is assessed by a thesis and presentation.



Read less
About the course. Lead academic. Dr Julie Simpson. This course combines taught modules on the fundamental aspects of the major nervous system diseases, with the development of practical laboratory skills encompassing histopathology, molecular pathology and microscopy. Read more

About the course

Lead academic: Dr Julie Simpson

This course combines taught modules on the fundamental aspects of the major nervous system diseases, with the development of practical laboratory skills encompassing histopathology, molecular pathology and microscopy.

You’ll be trained to use tissue samples in neuroscience research aimed at understanding the pathophysiology of nervous system diseases and you’ll discover how laboratory breakthroughs have been translated into clinical benefits.

The course will be taught by scientists and consultant neuropathologists who are experts in their fields. You’ll get the opportunity to carry out neuroanatomy dissection and you’ll work with leading research groups during the research project.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

  • Neuro-anatomy
  • Basic Principles of Pathology and Histopathology
  • Molecular Neuroscience
  • Ethics and Public Awareness of Science
  • Pathology and Modelling of Neurodegenerative Disease
  • Neuroin ammation, Neuro-Oncology and Neurovascular Disease
  • Literature Review and Critical Analysis of Science
  • Research Project

Teaching and assessment

The taught component of the MSc is delivered through practical laboratory classes and demonstrations, lectures, seminars and tutorials.

Assessment is primarily through written assignments and coursework, along with practical laboratory assessments, spotter exams, presentations and debates. The research project is assessed by a thesis and oral presentation.



Read less
OVERVIEW. The MSc in Cancer Medicine will provide students with new knowledge of how precision medicine can improve and shape future healthcare. Read more

OVERVIEW

The MSc in Cancer Medicine will provide students with new knowledge of how precision medicine can improve and shape future healthcare. Students will gain hands-on experience of molecular techniques and the equipment/devices used in a modern molecular laboratory; the course will provide training in laboratory and research skills that are applicable across multiple scientific disciplines in a supportive learning environment. Students will be able to evaluate how novel therapeutic approaches can be used to stratify patients into treatment groups for better clinical management (stratified / precision medicine). They will observe the delivery of precision medicine through tours of the Northern Ireland Cancer Centre.

There are optional modules in the second semester allowing students to explore.the fundamental principles of Carcinogenesis and the translational approaches (including cutting edge technologies) which allow cancer scientists and clinicians to advance our understanding and treatment of cancers. The Precision Cancer Medicine stream provides a comprehensive overview of the current understanding of the Hallmarks of Cancer from the role of genetic/epigenetic alterations, cell cycle control and metastases/angiogenesis to the development of applications to help diagnose cancers earlier, improve treatments, rationally design clinical trials and reduce chemotherapy drug resistance.

The Radiation Oncology stream will develop skills in understanding the biological principles of radiotherapy and its clinical applications in the treatment of cancer. This will include the physical and chemical basis of radiation interactions and the biological consequences of radiation exposures. Clinical aspects of Radiation Oncology will be covered including principle of advanced radiotherapy delivery, cancer imaging techniques and biomarker discovery.

Importantly, both streams show how our improved understanding of the molecular processes driving cancer growth and spread can be ‘translated’ through research-intensive MSc projects to improve the treatment and survival of cancer patients.

For further information email  or send us a message on WhatsApp

CANCER MEDICINE HIGHLIGHTS

The strong links between us and the biotech and biopharmaceutical sectors provides a stimulating translational environment, while also expanding your career opportunities.

GLOBAL OPPORTUNITIES

INDUSTRY LINKS

  • The strong links between us and the biotech and biopharmaceutical sectors provides a stimulating translational environment, while also expanding your career opportunities.

WORLD CLASS FACILITIES

  • The Programme will be taught in the Centre for Cancer Research & Cell Biology a purpose-built institute at the heart of the Health Sciences Campus, boasting state-of-the-art research facilities

INTERNATIONALLY RENOWNED EXPERTS

  • We have an international reputation in this area, achieved through; high-impact peer review publications; significant international research funding and the establishment of successful spin-out companies.

COURSE STRUCTURE

Semester 1

Research Translational: from Concept to Commercialisation (Full Year)

  • This module covers the principles of disease biology and new technological developments that increase our understanding of disease processes. It develops an appreciation of the importance of innovation, business awareness and leadership skills in the translation of discovery science to clinical implementation.

Diagnosis and Treatment (Semester 1)

  • This module provides a comprehensive overview of the diagnosis and treatment of the common solid and haematological malignancies, including breast, ovarian, genitourinary and gastrointestinal cancers as well as the leukaemias. An overview of the common diagnostic pathways in clinical practice will be provided, and this will including gaining an understanding of imaging modalities and histopathological techniques in routine use. 

Cancer Biology (Semester 1)

  • This module provides a comprehensive overview of the fundamental principles of carcinogenesis highlighting how normal control processes are bypassed during tumour formation. The pathogenic mechanisms to be discussed will range from genomic alterations in key gene families, to epigenetic mechanisms of gene control, alterations in kinase activities or protein turnover, or activation of aberrant phenotypes such as invasion and angiogenesis.Semester 2

Students will make a selection from the following modules:

  • Precision Cancer Stream
  • Cancer Genetics & Genomics
  • Translational Cancer Medicine

OR

  • Radiation Oncology and Medical Physics (ROMP)
  • Biology of Radiotherapy

Clinical Radiation

Building on the biological basis of radiotherapy, this module will develop knowledge and skills in understanding clinical radiotherapy and medical imaging. Through the delivery of a multidisciplinary taught programme, students will cover clinical tumour and normal tissue biology, radiological imaging and the design of radiotherapy treatment plans. This will develop the clinical rationale for radiotherapy in the treatment of cancer and highlight emerging treatment combinations and techniques for biomarker discovery in radiation oncology.Biology and Imaging

Research Project

You will undertake a project in the Centre for Cancer Research and Cell Biology.

Dissertation

This module comprises the write-up contribution to the overall research element of the programme, with the Research Project (SCM 8067). The Dissertation will represent the student’s personal studies in the literature, a description of their experimental execution of their project, data presentation, analysis and interpretation, followed by critical discussion and conclusions.

For further information email  or send us a message on WhatsApp



Read less
The course combines an introduction to the theory behind and technologies currently used in drug discovery, pharmacokinetics, role of biomarkers and surrogate endpoints, preclinical safety assessment, first-time-in-human studies, clinical investigation paradigms, research governance and medical statistics. Read more
The course combines an introduction to the theory behind and technologies currently used in drug discovery, pharmacokinetics, role of biomarkers and surrogate endpoints, preclinical safety assessment, first-time-in-human studies, clinical investigation paradigms, research governance and medical statistics.

Suitable for all medical disciplines, but of particular interest to Cardiovascular/Respiratory, Neuroscience, Oncology, and Metabolic medicine, the programme is highly suitable for graduates in medicine who wish to pursue a career as clinical academics and for medical professionals in industry.

Read less
Our MRes Experimental Cancer Medicine master's course will give nurses, doctors and clinical researchers the skills needed to work in early phase clinical studies. Read more

Our MRes Experimental Cancer Medicine master's course will give nurses, doctors and clinical researchers the skills needed to work in early phase clinical studies.

You will learn how to master experimental cancer through a combination of traditional teaching and hands-on learning, spending a year as a member of the Experimental Cancer Medicine Team at The Christie while also taking four structured taught units.

The taught units will see you learn the details of designing and delivering Phase 1 clinical studies, understanding the pre-clinical data required before a clinical programme can commence, and how to optimise early clinical studies to provide evidence for progressing a promising drug into Phase II/III clinical testing.

Alongside the taught elements, you will be allocated to one or more clinical trials that are being conducted by The Christie experimental cancer medicine team. You will have a named trainer and be exposed to tasks required in the setup, delivery, interpretation and audit of a clinical study.

Nursing and physician students will be expected to participate in patient care, including new and follow-on patient clinics, treatment and care-giving episodes with patients.

For clinical trials coordinators, no direct patient contact is envisaged and duties will involve clinical trial setup, protocol amendments, database setup, data entry, costing and billing for clinical research.

You will be able to choose two aspects of your direct clinical trial research experience to write up for your two research projects in a dissertation format. This will give you the skills and knowledge required to critically report medical, scientific and clinically related sciences for peer review.

Aims

The primary purpose of the MRes in Experimental Cancer Medicine is to provide you with the opportunity to work within a premier UK Phase 1 cancer clinical trials unit and, through a mix of taught and experiential learning, master the discipline of Experimental Cancer Medicine.

Special features

Extensive practical experience

You will spend most of your time gaining hands-on experience within The Christie's Experimental Cancer Medicine Team.

Additional course information

Meet the course team

Dr Natalie Cook is a Senior Clinical Lecturer in Experimental Cancer Medicine at the University and Honorary Consultant in Medical Oncology at The Christie. She completed a PhD at Cambridge, investigating translational therapeutics and biomarker assay design in pancreatic cancer.

Professor Hughes is Chair of Experimental Cancer Medicine at the University and Strategic Director of the Experimental Cancer Medicine team at The Christie. He is a member of the research strategy group for Manchester Cancer Research Centre. He serves on the Biomarker evaluation review panel for CRUK grant applications.

Professor Hughes was previously Global Vice-President for early clinical development at AstraZeneca, overseeing around 100 Phase 0/1/2 clinical studies. He was previously Global Vice-President for early phase clinical oncology, having been involved in over 200 early phase clinical studies.

Dr Matthew Krebs is a Clinical Senior Lecturer in Experimental Cancer Medicine at the University and Honorary Consultant in Medical Oncology at The Christie.

He has a PhD in circulating biomarkers and postdoctoral experience in single cell and ctDNA molecular profiling. He is Principal Investigator on a portfolio of phase 1 clinical trials and has research interests in clinical development of novel drugs for lung cancer and integration of biomarkers with experimental drug development.

Teaching and learning

Our course is structured around a 2:1 split between clinical-based research projects and taught elements respectively.

Taught course units will predominantly use lectures and workshops.

For the research projects, teaching and learning will take place through one-to-one mentoring from a member of the Experimental Cancer Medicine team.

The clinical and academic experience of contributors to this course will provide you with an exceptional teaching and learning experience.

Coursework and assessment

You will be assessed through oral presentations, single best answer exams, written reports and dissertation.

For each research project, you will write a dissertation of 10,000 to 15,000 words. Examples of suitable practical projects include the following.

Research proposal

  • Compilation of a research proposal to research council/charity
  • Writing a protocol and trial costings for sponsor
  • Research and write a successful expression of interest selected by grant funder for full development

Publication-based/dissertation by publication

  • Writing a clinical study report
  • Authoring a peer-review journal review/original article

Service development/professional report/ report based dissertation

  • Public health report/outbreak report/health needs assessment/health impact assessment
  • Proposal for service development/organisational change
  • Audit/evaluate service delivery/policy
  • Implement recommended change from audit report

Adapted systematic review (qualitative data)

  • Compiling the platform of scientific evidence for a new drug indication from literature
  • Review of alternative research methodologies from literature

Full systematic review that includes data collection (quantitative data)

  • Referral patterns for Phase 1 patients

Qualitative or quantitative empirical research

  • Design, conduct, analyse and report an experiment

Qualitative secondary data analysis/analysis of existing quantitative data

  • Compilation, mining and analysis of existing clinical data sets

Quantitative secondary data analysis/analysis of existing qualitative data/theoretical study/narrative review

  • Policy analysis or discourse analysis/content analysis
  • A critical review of policy using framework analysis

Facilities

Teaching will take place within The Christie NHS Foundation Trust , Withington.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

This course is relevant to physician, nursing and clinical research students who are considering a career in Phase 1 clinical studies.

The course provides a theoretical and experiential learning experience and offers a foundation for roles within other experimental cancer medicine centres within the UK and EU, as well as careers in academia, the pharmaceutical industry, clinical trials management and medicine.

The MRes is ideal for high-calibre graduates and professionals wishing to undertake directly channelled research training in the clinical and medical oncology field.



Read less

Show 10 15 30 per page



Cookie Policy    X