• University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Coventry University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Bradford Featured Masters Courses
University of Worcester Featured Masters Courses
Bath Spa University Featured Masters Courses
"translational" AND "neur…×
0 miles

Masters Degrees (Translational Neuroscience)

  • "translational" AND "neuroscience" ×
  • clear all
Showing 1 to 15 of 38
Order by 
Lead academic 2016. Dr Jonathan Wood. Translational Neuroscience looks at how laboratory research relating to brain structure and function informs the development of new therapies for diseases of the nervous system. Read more

About the course

Lead academic 2016: Dr Jonathan Wood

Translational Neuroscience looks at how laboratory research relating to brain structure and function informs the development of new therapies for diseases of the nervous system.

Combining the research strengths from the Faculty of Medicine, Dentistry and Health and the Faculty of Science, leading international basic and clinical scientists will provide an innovative and progressive programme. You’ll study basic neurobiology and molecular biology through to neuroimaging and applied clinical practice.

The MSc will provide you with up-to-date knowledge of advances in the field, research experience with internationally renowned research groups and transferable skills to provide a springboard for your future career.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

Molecular Neuroscience; CNS Structure and Function; Genetics and Modelling of Neurodegenerative Disease; Mechanisms of Neurodegenerative Disease; Applied Neuroimaging; Neurophysiology and Psychiatry. A 20 week Research Project will be undertaken in the Summer Term.

Examples of optional modules

Option one: Literature Review and Critical Analysis of Science; Ethics and Public Awareness of Science.

Option two: Computational Neuroscience: Neurons and Neuronal Codes; Mathematical Modelling and Research Skills.

Teaching and assessment

Lectures, seminars, tutorials, laboratory demonstrations, computer practicals and student-led group work. Assessment is primarily by written assignments and coursework, although there are some written examinations and oral presentations. The research project is assessed by a thesis 
and presentation.

Read less
The programme is a one-year Masters course with both taught and research components. Students selected onto the course will follow the structured MPhil in Basic and Translational Neuroscience research training. Read more
The programme is a one-year Masters course with both taught and research components. Students selected onto the course will follow the structured MPhil in Basic and Translational Neuroscience research training. The aims of this one-year, full-time research training course are as follows:

- to give the student experience of research work;
- to expose them to a variety of laboratory environments and the balance of self sufficiency and team work needed in a researcher;
- to introduce them to the basic skills of experimental design, project management, time management etc. needed in research;
- to familiarise the student with the practicalities of laboratory research, imparting an understanding of the nature of bench research, of record keeping and data handling and of good laboratory practice;
- to introduce them to basic analytical techniques needed to understand and contextualise their research;
- to familiarise them with basic scientific writing and presentation skills.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/blpdmpbtn

Course detail

The additional objectives that are specific to this programme will be:

- to attract students from a wide range of backgrounds into neuroscience by providing a taught module with a basic overview of neuroscience;
- provide students thorough training in neuroscience methods, data analysis and statistics techniques;
- give students the necessary basic but broad understanding of neuroscience to prepare them for future PhD studies;
- provide students with adequate experience in neuroscience research to enable them to make an informed choice of PhD project if they so wish.

Learning Outcomes

Upon successful completion of the Masters course, students drawn from a diverse range of subject backgrounds are all expected to have:

- developed a broad understanding of modern research techniques, and thorough knowledge of the literature, applicable to research in topics related to Neuroscience;
- been exposed to a number of theoretical approaches to brain science and trained in critical thinking in the area;
- acquired specific expertise in neuroscience research methods and statistics;
- demonstrated originality in the application of knowledge, together with a practical understanding of how research and enquiry are used to create and interpret knowledge in the field;
- acquired knowledge of a broad range of interdisciplinary research areas and supervisors to inform their choice of PhD projects if applicable;
- undertaken training in generic and transferable research skills including the critical evaluation of current research and research techniques and methodologies.

Format

The course offers both taught and research components including:

A project rotation in a laboratory of the student’s choice, among the projects offered by Cambridge Neuroscience Principal Investigators. The write up for the project will be formally assessed.

Supervisors will be drawn from Principal Investigators listed on the Cambridge Neuroscience web site: http://www.neuroscience.cam.ac.uk/directory/faculty.php. For projects in external organisations (industry-based), the student would have an additional academic University based supervisor in addition to the industry-based supervisor.

Students will be expected to choose from three out of 5-7 research training modules offered from modules and may be shared by other courses. These modules may vary from year to year.

In addition to the research project and research training modules, the students will receive a total of >20 hours of lectures, seminars and workshops on the five main themes of Cambridge Neuroscience.

Students taking this degree will be members of the University’s Graduate School of Life Sciences (GSLS) who offer a wide variety of Generic Skills Training.

Continuing

Students wishing to progress to the PhD after completing this MPhil course must apply via the Graduate Admissions Office. They will be required to pass the MPhil degree at a sufficient level to satisfy the Departmental Graduate Education Committee of the Department they are applying to and that they have the skills and ability to achieve the higher degree.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
We are conscious, we sense, we feel and we act because of our brains. The brain coordinates and is affected by bodily functions, and it integrates the information about the outside world conveyed by our senses – it is the most central player in the physiology of the whole body. Read more
We are conscious, we sense, we feel and we act because of our brains. The brain coordinates and is affected by bodily functions, and it integrates the information about the outside world conveyed by our senses – it is the most central player in the physiology of the whole body. Neuroscience is an interdisciplinary field that studies the brain and the entire nervous system at different levels of organisation, from genes and molecules to nerve cells and networks; and beyond. The focus of a neuroscientist’s research may lie in understanding the neurobiological bases of behaviour, analysing the functional roles of a single molecule, or developing new treatments for neurological disorders or sensory deficits.

The Master’s Programme in Neuroscience provides you with the opportunity to gain knowledge and skills in a scientifically vibrant international environment. You will be taught by scientists who will provide you with a wide spectrum of opportunities for practical training and for becoming integrated into the stimulating neuroscience community. When you graduate, you will have mastered the essentials of neuroscience and have deeper knowledge and skills in the subfields of your choice. The Programme prepares you for PhD studies and a research career, or for a career in the private or public sector.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

Training is arranged in modules and consists of lecture courses, hands-on laboratory courses, seminars and book exams. Group work, reports and presentations help you to develop critical thinking and communication skills that are essential for a successful career within Academia and in jobs in the public and private sectors. Compulsory studies provide you with a broad general knowledge of the field, whereas optional studies will offer you freedom to focus on topics of interest to you. You can choose lecture or laboratory courses for example in molecular and cellular neuroscience, developmental neurobiology, sensory biology, regeneration biology, systems neuroscience, electrophysiology, neuroanatomy, brain disorders, etc. You can also expand your knowledge by taking courses from other Master’s Programmes.

Selection of the Major

With optional study modules you can refine your specialisation within the field of neuroscience and broaden your knowledge in other disciplines. Discussing the options with your teachers and study advisors during the first months of your studies will help you to identify the various opportunities and prepare your personal study plan. You can revise your plan, if necessary, as your studies progress.

Programme Structure

You undertake modules amounting to the value of 120 credits (ECTS) according to your personal study plan. The Master’s Degree consists of:
-60 credits of advanced studies, including a research project (Master’s thesis, 30 credits).
-60 credits of other studies chosen from the Programme or from other Programmes (e.g. Genetics and Molecular Biosciences, Translational Medicine, or Psychology).

The curriculum of the Programme enables you to complete 90 credits in 12 months of full-time studying and utilising study opportunities during the summer months, but not including your Master’s thesis research project. However, we recommend that you complete the Programme in 2 years as this will give you more flexibility for your optional studies. You can include career planning or extracurricular activities in your personal study plan.

In order to qualify as a biology teacher, you will need to have 60 credits of pedagogical studies in your degree. This applies only to Finnish or Swedish speaking students.

Career Prospects

Basic research and biomedical research are career paths that offer many opportunities. After completing a Master’s degree in Neuroscience, you will be eligible for Doctoral Programmes at the University of Helsinki (e.g. Doctoral Programme Brain & Mind) or worldwide for other Doctoral Programmes in neuroscience, biosciences or biomedicine.

In addition to Academia, neuroscientists work as specialists in many fields, such as the pharmaceutical industry, education, biotechnology, public policy, science writing and publishing.

A Master’s degree in Neuroscience is a popular choice among Finnish and Swedish speaking students studying towards biology teacher qualification.

Internationalization

Neuroscience research at the University of Helsinki is conducted at the highest international level. The research groups participate in international collaborative networks, which is also reflected in teaching and research training. A large number of international exchange students and degree students pursue their studies in neuroscience, and many international scholars participate in teaching.

As a student here you are encouraged to seek exchange or postgraduate positions in international partner universities and companies.

The Master’s Programme in Neuroscience is part of the Network of European Schools in Neuroscience, NENS, which provides further opportunities for exchange programmes and networking within European universities.

Read less
Over the last decades, improvements in technology have led to a rapid increase in the use of neuroimaging to study human brain function non-invasively in health and disease. Read more
Over the last decades, improvements in technology have led to a rapid increase in the use of neuroimaging to study human brain function non-invasively in health and disease. In particular, functional magnetic resonance imaging (fMRI), electro-encephalography (EEG), magneto-encephalography (MEG) and transcranial magnetic stimulation (TMS) are now routinely used by neuroscientists to study brain-behaviour relationships. Our MSc in Brain Imaging showcases Nottingham’s multi-disciplinary environment and offers a comprehensive programme that will provide you with the theoretical knowledge and practical skills required to conduct high-quality neuroimaging work and neuroscience research. Translational in vivo neuroscience approaches in animal models will also be considered, and interested students will have the opportunity to receive research training in this area.

The MSc in Brain Imaging has a flexible course structure and offers four pathways with core modules alongside a choice of optional modules that permits tailor-made study. The options are:

MSc Brain Imaging (Cognitive Neuroscience)
MSc Brain Imaging (Neuropsychology)
MSc Brain Imaging (Integrative Neuroscience)
MSc Brain Imaging (Developmental Science)

Graduating from the University of Nottingham opens up a wide range of career options. Many of our students use this programme as a preparation for PhD study or other advanced degree positions. Others opt for science-related jobs. Our graduates are highly regarded by employers in private and public sector organisations because of the solid academic foundation and transferable skills they gain during their degree course such as analytical evaluation, data management, statistical analysis as well as presentation and writing skills. In the past, graduates of this programme have taken-up career opportunities in university, hospital and industry settings.

Please email for more information or visit the PG prospectus. Given the breadth of training available, the MSc is recommended to students with a background in psychology, neuroscience or a bioscience discipline as well as those with training in physics, engineering, mathematics, or computer sciences.

Upcoming Open Days: Wednesday 29 June and Wednesday 6 July (1.30-3 pm). Please contact us if you have specific questions about the programme. Phone: +44 (0)115 951 5361 or email:

Key facts

• Programme delivered through lectures, practicals and research project resulting in a dissertation
• Core and optional modules according to specific pathways
• Four pathways with applications in Cognitive Neuroscience, Developmental Science, Neuropsychology, and Integrative Neuroscience
• Taught by active and internationally renowned research scientists
• Interdisciplinary approach with specialist lectures and/or project supervision by scientists from: the School of Psychology; Sir Peter Mansfield Magnetic Resonance Centre; Department of Academic Radiology

Read less
The Cognitive Neuroscience MSc at UCL is a research-led, state-of-the-art degree programme on mental processes in the human brain. Read more
The Cognitive Neuroscience MSc at UCL is a research-led, state-of-the-art degree programme on mental processes in the human brain. The programme brings together some of the world's leading researchers in cognitive neuroscience and cognitive neuropsychology.

Degree information

Students learn about the relationship between the mind and the brain in patients and healthy individuals, alongside the ideas, methodology, and current state of knowledge in cognitive neuroscience. They receive case demonstrations of brain-damaged patients, insights into transcranial magnetic and direct current stimulation, and gain experience with functional neuroimaging techniques.

Students undertake modules to the value of 180 credits.

The programme consists of eight core modules (120 credits) and a research dissertation (60 credits). There are no optional modules for this programme.

Core modules
-Communication Skills in Cognitive Neuroscience
-Current Issues in Cognitive Neuroscience I: Fundamental Processes
-Current Issues in Cognitive Neuroscience II: Elaborative and Adaptive Processes
-Current Issues in Cognitive Neuroscience III: Translational Research
-Methods in Cognitive Neuroscience I: Lesion Approaches
-Methods in Cognitive Neuroscience II: Neuroimaging
-Research Methods (Statistics)
-Structure and Function of the Brain

Dissertation/report
All students undertake an empirical research project in the area of cognitive neuroscience, which culminates in a dissertation of 10,000–12,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, problem classes, laboratory classes and student presentations. Depending on the chosen taught modules, it includes case demonstrations of neuropsychological patients, hands-on experience with the analysis of neuroimaging data, critical analyses of published scientific papers, and discussion seminars. Assessment is through examinations, essays, practical exercises, reports and the research dissertation.

Careers

The MRes is a very selective programme that develops key research skills in the field of cognitive neuroscience and serves as a basis for PhD study in an academic setting or a research career in industry or business. The MRes also promotes key skills that prepare students for more general careers in clinical psychology, marketing, teaching, and consultancy.

Top career destinations for this degree:
-Research Analyst, Chinese University of Hong Kong
-Research Assistant, UCL
-Research Worker, King's College London Institute of Psychiatry
-Assistant Psychologist, NHS Great Ormond Street Hospital
-Honorary Assistant Psychologist, The Tavistock and Portman

Employability
Students will have the opportunity to study and conduct cutting-edge research alongside some of the leading researchers in the field of cognitive neuroscience. Students will be immersed in this research environment and will learn directly from experts in the field rather than just text-books.

Why study this degree at UCL?

UCL is among the principal research centres in the world in this area and offers an ideal environment to study cognitive neuroscience.

Our work attracts staff and students from around the world. Together they create an outstanding and vibrant environment, taking advantage of cutting-edge resources such as a behavioural neuroscience laboratory, a centre for brain imaging, and extensive laboratories for research in speech and language, perception, and cognition.

Opportunities for graduate students to work with world-renowned researchers exist in all areas of investigation. The division offers a supportive environment including numerous specialist seminars, workshops, and guest lectures.

Read less
There is increasing international demand for high-quality research training on mental processes in the healthy and diseased human brain. Read more
There is increasing international demand for high-quality research training on mental processes in the healthy and diseased human brain. This MRes brings together some of the world's leading researchers in cognitive neuroscience and cognitive neuropsychology, offering students an ideal environment to prepare for independent research careers in this fast-developing field.

Degree information

Students learn about the relationship between the mind and the brain in patients and healthy individuals, alongside the ideas, methodology, and current state of knowledge in cognitive neuroscience. In addition to specialised, research-oriented training, the programme develops key transferable skills. These include project management, logical thinking, oral and written communication, and independent learning. The MRes has a greater emphasis on the research project than the Cognitive Neuroscience MSc.

Students undertake modules to the value of 180 credits.

The programme consists of two key skills modules (30 credits), two optional modules (one from Group One and one from Group Two to a total value of 30 credits) and a substantial research project (120 credits).

Core modules
-Key Skills Module: Generic Research Skills – Statistics
-Key Skills Module: Communication Skills in Cognitive Neuroscience

Optional modules - students choose one optional module from group one* and one module from group two**
-Structure and Function of the Brain*
-Methods in Cognitive Neuroscience I: Lesion Approaches*
-Methods in Cognitive Neuroscience II: Neuroimaging – Designing and Analysing fMRI Experiments*
-Current Issues in Cognitive Neuroscience I: Fundamental Processes**
-Current Issues in Cognitive Neuroscience II: Elaborative and Adaptive Processes**
-Current Issues in Cognitive Neuroscience III: Translational Research**

Dissertation/report
All students undertake an empirical research project in the area of cognitive neuroscience, which culminates in a dissertation of 15,000–17,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, problem classes, laboratory classes and student presentations. Depending on the chosen optional modules, it includes case demonstrations of neuropsychological patients, hands-on experience with the analysis of neuroimaging data, critical analyses of published scientific papers, and discussion seminars. Assessment is through examinations, essays, practical exercises, reports and the research dissertation.

Careers

The MRes is a very selective programme that develops key research skills in the field of cognitive neuroscience and serves as a basis for PhD study in an academic setting or a research career in industry or business. The MRes also promotes key skills that prepare students for more general careers in clinical psychology, marketing, teaching, and consultancy.

Top career destinations for this degree:
-Proofreader, Akademie věd České republiky (The Czech Academy of Sciences)
-DPhil in Psychiatry, University of Oxford
-PhD in Psychology, Cardiff University (Prifysgol Caerdydd)
-PhD in Psychology, University of Cambridge

Employability
Students have the opportunity to study and conduct cutting-edge research alongside some of the leading researchers in the field of cognitive neuroscience. Students will be immersed in this research environment and will learn directly from experts in the field rather than just text-books.

Why study this degree at UCL?

The UCL Institute of Cognitive Neuroscience (ICN) is among the principal research centres in the world in this area and offers an ideal environment to study the subject.

Our work attracts staff and students from around the world. Together they create an outstanding and vibrant environment, taking advantage of cutting-edge resources such as a behavioural neuroscience laboratory, a centre for brain imaging, and extensive laboratories for research in speech and language, perception, and cognition.

Opportunities for graduate students to work with world-renowned researchers exist in all areas of investigation. The division offers a supportive environment including numerous specialist seminars, workshops, and guest lectures.

Read less
Upon graduation from the Master’s Programme in Translational Medicine (TRANSMED) you can be expected to. -Be fluent in medical sciences and clinical practice from the point of view of a researcher. Read more
Upon graduation from the Master’s Programme in Translational Medicine (TRANSMED) you can be expected to:
-Be fluent in medical sciences and clinical practice from the point of view of a researcher.
-Be familiar with up-to-date translational research methodologies.
-Be adept at scientific reasoning and critical analysis of scientific literature.
-Acknowledge the regulatory and ethical aspects of biomedical and clinical research.
-Have mastered scientific and medical terminologies.
-Have excellent communication and interpersonal skills, enabling you to find employment in an international and interdisciplinary professional setting.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The TRANSMED studies are built upon three core educational themes:
Development of Research Skills
These include an introduction to current methodologies, which are further developed during a training period in a research group; research ethics: principles of clinical investigation; and writing of research or grant proposals.

Studies in Human Disease
These range from normal human physiology and anatomy, and basic biomedical courses, to more specialised studies covering various topics pertinent to the specialist option. You supplement these studies with clinical rounds, during which you have an opportunity to study selected patient cases in hospital wards, under the supervision of a clinician mentor.

Development of Communication Skills
These are promoted throughout the curriculum, through utilisation of interactive approaches and discussions, problem-based learning and oral presentations. The multidisciplinary TRANSMED community encompasses a wide range of educational backgrounds and provides ample opportunities for direct interactions with medical students, science and clinical teachers to enable you to practice and adopt interdisciplinary communication skills. At the end of the course of study, your communication skills will be evaluated in the final exam, during which you will orally present your research plan to expert examiners.

Selection of the Majors

The major of the programme is Translational medicine. During your first study year you can choose any of the five available specialisation options. These options and their specific goals are:
Neuroscience and Psychobiology
-To acquire knowledge on research methodology and state-of-the-art information in systems and cognitive neuroscience, as well as in clinical neuropsychology.
-To learn to produce new scientific information in the fields of psychobiology of human life, health, and stress, and to transfer the results between basic research and clinical settings.

Cancer
-To acquire basic knowledge of the principles of neoplastic growth, cancer progression and dissemination.
-To acquire basic understanding of the interplay between different cell types during neoplastic growth.
-To acquire knowledge of major research methodologies and disease models in cancer biology.

Regenerative Medicine
-To understand the principles of developmental and stem cell biology and regenerative pharmacology as the basis of regenerative therapies.
-To be familiar with the major technologies applied in regenerative medicine, including tissue engineering, cell and organ transplantation and transplantation immunology.
-To understand the ethical principles of clinical translation of basic research and application of regenerative medicine therapies.

Metabolic Disorders
-To be able to understand the basic metabolic pathways.
-To understand the pathophysiology of metabolic disorders such as diabetes mellitus, insulin resistance, metabolic syndrome and obesity.
-To be able to use genetic knowledge as a basis for prediction, diagnosis and treatment of metabolic disorders.

Cross-Disciplinary Translational Medicine
-To achieve a broad understanding of topics and methods in the field of Translational medicine.

Programme Structure

The scope of the programme is 120 credits (ECTS) and can be completed within two academic years (60 ECTS / year).

The Master of Science in Translational medicine degree includes 60 ECTS of advanced and 60 ECTS of other studies. Both of these include both obligatory and optional studies.

The majority of the advanced studies are related to the chosen specialist option and include:
-Master’s thesis (30 ECTS)
-Placement in a research group for learning advanced methods in your selected field of study
-Methodological and human health and disease-related courses
-Clinical rounds in Helsinki University Central Hospital (HUCH) clinics
-Final examination in your field of specialisation

The other studies include e.g.
-Article analysis, scientific writing and presentation
-Biomedicine and introductory courses in research methods
-Career planning and orientation
-Individual study coaching and personal study plans
-Research ethics

You can select the optional courses based on your personal interests, or to support your chosen specialisation option. You can also include courses from other suitable Master’s programmes at the University of Helsinki, such as:
-Life Science Informatics
-Genetics and molecular biosciences
-Neuroscience
-Human Nutrition and Food Behaviour

You can also include studies in other universities under the flexible study right-agreement (JOO).

Career Prospects

The Master of Science in Translational medicine degree provides excellent opportunities to apply for and attend postgraduate studies. Currently, 50% of TRANSMED graduates are continuing their studies in doctoral programmes, either at the University of Helsinki or abroad.

TRANSMED graduates are also highly valued in the private sector. Around 35% of graduates have been employed directly by bioindustry, pharma or other health sector enterprises either in Finland or abroad. Titles include product manager, product specialist, personalised health care manager etc. All such enterprises usually recruit both at the graduate (MSc) and postgraduate (PhD) levels.

The health and health technology sectors represent a rapidly emerging field, and one of the areas with a growing importance as the population ages and the costs of new therapies steadily increase. Thus, the demand for well-trained specialists in the field of translational medicine is likely to increase in the near future, providing excellent career prospects globally.

Internationalization

The Translational Medicine major is only available in this international programme, making the programme attractive to both Finnish and international students. Indeed, opportunities for personal interaction with students from different cultures are an integral feature of the studies. During your studies, you can also volunteer to act as a tutor for the incoming international students.

The international research community in The Academic Medical Centre Helsinki actively participates in teaching in TRANSMED. You complete the research group practice for your Master’s thesis in multicultural research groups.

It is also possible to complete your Master’s thesis work or research group placement abroad, or to include coursework done at a foreign university.

Research Focus

The specialisation options of the programme – Neuroscience and psychobiology, Cancer, Regenerative medicine, Metabolic disorders, and Cross-disciplinary translational medicine – are closely aligned with the research focus areas of the Faculty of Medicine: malignancy, inflammation, metabolism, degenerative processes as well as psychiatric disorders and their mechanisms. You therefore have an opportunity to learn from, and be supervised by, the leading experts and professors in their fields.

Read less
Dementia (including a raft of neurodegenerative diseases such as Alzheimer’s Disease) has recently become the leading cause of death in the UK. Read more
Dementia (including a raft of neurodegenerative diseases such as Alzheimer’s Disease) has recently become the leading cause of death in the UK. Stem cells are a novel and relatively young branch of scientific research that hold the potential for not only therapies but to be able to accurately model these distinctly human diseases.

This unique programme will offer students real-world perspectives from patients, carers, scientists and a range of health care professionals including world-leading experts on the impact of neurological diseases. The programme offers cutting edge translational neuroscience focused on stem cells, neurodegenerative diseases, regeneration and models (both animal and cell). Furthermore the inclusion of patients and importantly their carers and the real-life impacts of these diseases on individuals will be a common thread running throughout this programme making it truly unique and exceptionally novel.

This programme is designed for medical and/or scientific professionals and aims to introduce students to the fields of neurodegenerative diseases, stem cells, industry and emerging therapeutic opportunities in regenerative / translational neurology. Overall students will gain the knowledge and understanding of the clinical, real-life impact and scientific realities of these fields and thus advance their own learning and be able to carry this forward into their future careers.

Therefore students will be introduced to a range of topics as they progress through the programme from introducing the basic anatomy, structure and development of the central nervous system, a critical understanding of stem cells including sources, locations and roles, an introduction to multiple neurodegenerative diseases (such as Alzheimer’s, Motor Neurone Disease and Parkinson’s disease), from both clinical and patient angles, before being introduced to in vitro and in vivo modelling of these diseases, neuroimaging techniques, stem cells and industry.

Within the programme, students can progress from Postgraduate Certificate (60 credits), to Postgraduate Diploma (120credits) and to Master of Science degrees (180 credits) as they successfully complete the required number of credits for each level and can therefore stop at any stage or continue onwards depending on their situation.

Postgraduate Certificate

Composed of 4 core courses to provide the fundamental foundations for the Diploma and MSc but can also be taken as a self-contained PGCert. It will cover fundamental areas including key basic research skills (such as how to critically evaluate scientific manuscripts, as well as a basic understanding of statistics) whilst introducing students to the central nervous system, its basic anatomy and development and stem cells. In parallel students would cover an introduction to neurodegenerative diseases (that would include Alzheimer’s Disease, Parkinson’s Disease and Motor Neurone Disease) before being introduced to in vitro and in vivo modelling of these diseases. Finally students would also learn about neuroimaging and its potential roles for scientific research.

Postgraduate Diploma

Expands on the PGCert courses as well as introducing greater depth to novel areas such as the roles of pharma and industry with respect to stem cells. A proportion of the Diploma credits are elective and students will be assisted in choosing appropriate options from across the broad spectrum available from Edinburgh University that are relevant to their own situation, employment and career goals.

MSc

Students have the opportunity to explore a specialist area from within the broad spectrum of stem cells, regeneration and translational neuroscience in the form of either a dissertation, or, a structured project (the student would themselves have to source this if desired), which would aim to deliver a ‘real world’ project with a direct impact for an employer, organisation or personal goal. A third option available for students is a choice of 60 fully taught credits.

The minimum recommended time for completion of the full Masters programme is three years, and the maximum time for completion is six years. The Certificate and Diploma can be completed on a pro rata basis.

Postgraduate Professional Development (PPD)

Postgraduate Professional Development from The College of Medicine and Veterinary Medicine is aimed at working professionals who want to advance their knowledge through a postgraduate-level course, without the time- or financial-commitment of a full Masters, Diploma or Certificate.

We offer short, focussed credit-bearing courses which provide very specific training on particular subjects and can lead to a University of Edinburgh Postgraduate Award. The courses are offered through an interactive online distance learning medium enabling participants to study in their own time. You may take a maximum of 50 credits worth of courses through our Postgraduate Professional Development (PPD) scheme. These credits will be recognised in their own right as a postgraduate-level award, or may be put towards gaining a higher award, such as a Postgraduate Certificate, Postgraduate Diploma or MSc.

Online learning

This part-time, fully online programme will support the need for up-to-date knowledge, skills and theory in a wide variety by the use of not only world leading clinical and scientific experts but also by using the real-life impacts as viewed by patients, the people who care for them and the frontline health professionals. All of this expertise will be presented utilising a range of techniques including: online lectures, practical studies, directed readings and other video and audio resources.

Discussion boards will provide directed assessment tasks while input from expert guest lecturers and tutors offer students opportunity for collaborative critical discourse and debate of current issues.

Career opportunities

Potential career paths, exits routes and employers are very diverse and depend on the students chosen carer. For students working in a clinical environment this programme would offer them career advancement/specialism within their clinical setting.

For students coming from a scientific background there is the opportunity to improve carer prospects in laboratory research settings or alternatively to help in progressing to a PhD.

Read less
This unique two-year international programme is offered in collaboration with Yale University. There is a focus on developmental psychopathology drawing on multidisciplinary perspectives, with a specific emphasis on neuroscience. Read more
This unique two-year international programme is offered in collaboration with Yale University. There is a focus on developmental psychopathology drawing on multidisciplinary perspectives, with a specific emphasis on neuroscience. Students spend year one in London, primarily based at the Anna Freud National Centre for Children and Families and year two at Yale.

Degree information

The programme provides students with an excellent foundation in developmental psychopathology and neuroscience, with a focus on:
-The emergence of childhood clinical disorders (e.g. autism, depression and PTSD)
-Multiple theoretical frameworks of disorder
-Research practice, including science communication
-The translational issues around research and psychological treatments
-This two-year MRes has a total value of 330 credits. 135 credits of taught modules are taken in the first year and in the second year, the research portfolio, comprising an oral presentation, proposal, dissertation and research poster, comprises a total of 195 credits.

Year One core modules
-An Introduction to Psychoanalytic Theory
-The Clinical Theory of Psychoanalysis
-Research Methods I: Research Skills
-Research Methods II: Introduction to Statistical Analysis
-Research Methods III: Evaluating Research Literature (formative)
-Introduction to Neuroscience Methods
-Affective Neuroscience
-Multiple Perspectives on Development and Psychopathology I
-Multiple Perspectives on Development and Psychopathology II

Year Two core modules
-Series of formative workshops (e.g. fMRI; EEG; Advanced research design; Integrating cross-disciplinary models)
-Research Portfolio (see below)

Dissertation/research project
The research portfolio comprises a project presentation – made up of an oral presentation, slides and a written proposal, a written dissertation and a research poster. All students undertake a research project supervised by a faculty member while at Yale, completing a dissertation of 15,000–17,000 words.

Teaching and learning
The programme comprises lectures, research classes, tutorials, small-group seminars, and computer-based practical classes. Assessment is predominantly through essays, statistical assignments, a piece of science communication and unseen examinations. In the second year assessment will be based on the research portfolio - comprising an oral presentation, written research proposal, the dissertation and a poster. Further information on modules and degree structure is available on the department website.

Careers

Typically our students are interested in pursuing a research or clinical career. Of students who graduated within the last two years, 23% are now enrolled on PhD programmes; 38% are employed as research associates, 23% are undertaking further training and the remaining 16% are undertaking clinical work.

Employability
The two-year structure allows students to not only develop in-depth theoretical knowledge and research skills but also provides the opportunity to undertake a substantial piece of research under the mentorship of a leading Yale academic and their research lab. A grounding in quantitative analysis and fMRI/EEG skills combined with a focus on clinical disorders during childhood make students particularly attractive as prospective PhD candidates and doctoral Clinical Psychology applicants. Students are encouraged to publish their research where possible.

Some students seek voluntary clinically relevant experience across both years, which is particularly helpful for those considering applications to Clinical Psychology doctoral programmes.

Why study this degree at UCL?

Students acquire excellent research skills in statistical analysis and a grounding in neuroimaging methods, including fMRI and EEG, and expertise in critical evaluation of research.

The programme is based at the Anna Freud National Centre for Children and Families in London, a world-renowned centre for research, training and clinical practice in the field of child mental health.

UCL Psychology & Language Sciences undertakes world-leading research and teaching in mind, behaviour, and language. The division has excellent links with other universities including Yale, providing unique research and networking opportunities for postgraduate students.

Our work attracts staff and students from around the world. Together they create an outstanding and vibrant environment, taking advantage of cutting-edge resources, including state-of-the art neuroimaging equipment. The division offers an extremely supportive environment with opportunities to attend numerous specialist seminars, workshops, and guest lectures.

Read less
This programme will provide a world-class education for advanced training in translational research, from preclinical discovery through to first-time-in-man studies in human and clinical trials in healthy volunteers and patients across neurology and neurodegeneration. Read more
This programme will provide a world-class education for advanced training in translational research, from preclinical discovery through to first-time-in-man studies in human and clinical trials in healthy volunteers and patients across neurology and neurodegeneration.

Degree information

The programme combines theoretical and practical teaching on both the breadth of, and complexity in conducting clinical research. Topics include clinical pharmacology, pharmacokinetics, research governance, medical statistics and the fundamental principle for using the correct enabling technologies within the context of medical research and drug development.

Students undertake modules to the value of 180 credits. The programme consists of four core modules (60 credits), and a dissertation/report (120 credits). There are no optional modules for this programme.

Core modules
-Cellular & Molecular Mechanisms of Disease (15 credits)
-Experimental Neurology (30 credits)
-Research Skills & Statistics (15 credits)
-MRes Translational Neurology Research Project (120 credits)

Dissertation/report
Students will have the opportunity to work with internationally recognised researchers from the UCL Institute of Neurology, and the Leonard Wolfson Experimental Neurology Centre as they undertake their research projects, which culminates in a dissertation of 15,000 words.

Teaching and learning
The programme will combine lectures, workshops and tutorials. Practicals will focus on the role of surrogate markers and emerging technologies in drug development e.g. pre-clinical discovery, first time in man studies, and early phase clinical trials in healthy volunteers and patients. Assessment is through short answer unseen exams, coursework, simulated grant applications and written clinical abstract as well as a small component with a short answer exam.

Careers

The programme is designed to cater to graduates in medicine and biomedical sciences who wish to gain valuable training in clinical research before embarking on a clinical PhD programme, medical training, or professional work in clinical trials. The successful completion of the MRes should also enhance opportunities for graduates to enter medical school or for MBBS graduates to progress to specialist medical training.

Employability
Whatever your chosen career pathway, the MRes in Translational Neurology will equip graduates to either get a first step on the ladder, change career directions or help to become more experienced with a specific expertise in your chosen career.

Why study this degree at UCL?

The programme is delivered by the UCL Institute of Neurology, a specialist postgraduate institute and a worldwide centre of excellence in clinical research across neurological diseases, including movement disorders (e.g. Parkinson’s disease), multiple sclerosis, neuro-inflammation, epilepsy, stroke, cognitive dysfunction, Alzheimer’s Disease and other dementias.

Students will be taught by experts in the field and have the opportunity to network with internationally recognised opinion leaders in neurology and neurodegeneration.

By the end of the programme students will gain a thorough understanding of the challenges involved in setting up research projects, and learn how to design, implement, analyse and report clinical studies. Undertaking an extended piece of primary research in a clinical trials setting is particularly attractive to students wishing to pursue doctoral or clinical research. The focus on translational neurology, from within the specialist research setting of the Leonard Wolfson Experimental Neurology Centre, is also of note.

Read less
The Department of Neuroscience consists of ~100 graduate students and their supervisors located in labs throughout the University of Calgary. Read more
The Department of Neuroscience consists of ~100 graduate students and their supervisors located in labs throughout the University of Calgary. We are governed by the Faculty of Graduate Studies and work collaboratively with the Hotchkiss Brain Institute, as well as the Faculties of Medicine, Science, Kinesiology and Engineering to provide research intensive PhD's and MSc's in neuroscience.

The Hotchkiss Brain Institute was established at the University of Calgary in 2004, and ever since brings together nearly 100 neuroscientists and clinician scientists from across the University of Calgary. Faculty encompass all CIHR pillars, including experts in population health, clinical investigators, translational scientists and basic science researchers. Graduate students benefit daily from this rich milieu and contribute directly to it through trainee-led initiatives sponsored through the HBI Trainee organization (HBITO). In close partnership with HBI and the HBITO, we have established a world class, forward-looking, research intensive training program in collaborative, team-based neuroscience research.

Read less
Lead academic 2016. Dr Carolyn Staton. Translational oncology is the process by which laboratory research informs the development of new treatments for cancer. Read more

About the course

Lead academic 2016: Dr Carolyn Staton

Translational oncology is the process by which laboratory research informs the development of new treatments for cancer. It’s a rapidly advancing field with massive therapeutic and commercial potential.

Our MSc(Res) is taught by leading research scientists and clinicians. The course offers training in the theory and practice of translational oncology and provides you with transferable skills for your future career. It includes a six-month research project for which you’ll work as part of a team within the oncology research community at Sheffield.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

Cellular and Molecular Basis of Cancer; Cancer Epidemiology; Cancer Diagnosis and Treatment; Tumour Microenvironment; Cancer Technologies and Clinical Research; Literature Review; Research Project.

Teaching and assessment

Teaching is by lectures, seminars, class discussions/workshops, interactive tutorials, practical demonstrations, student-led group work and patient encounters.

Alongside the taught modules students attend the Sheffield Cancer Research seminars which include question and answer sessions with the experts, and a series of professional skills development tutorials.

Assessment is by a combination of written seen exams, oral and poster presentations, case studies and written assignments. The research project is assessed by an oral presentation and a written dissertation.

Read less
Lead academic 2016. Dr Mark Fenwick. The course provides training in reproductive and developmental medicine for scientists, clinicians and others, for instance ethical advisers or lawyers looking to specialise. Read more

About the course

Lead academic 2016: Dr Mark Fenwick

The course provides training in reproductive and developmental medicine for scientists, clinicians and others, for instance ethical advisers or lawyers looking to specialise. It’s a good platform for a research career or a career in clinical laboratory training for IVF or embryology.

Through the taught modules you’ll develop a solid understanding of reproductive science relevant to clinical applications. We cover the breadth of processes from gonadal development and production of gametes through to pregnancy and parturition. Each module is taught by leading scientists and clinicians in that field.

You’ll also have the opportunity to learn about the ethical issues and international laws regulating reproductive medicine. Finally, you’ll undertake a research project to develop a depth of knowledge in a specialist topic.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

Research Skills in Reproductive Medicine; Gonads to Gametes: fundamentals of reproduction; Fertilisation, Implantation and Embryology; Fetal Development, Pregnancy and Parturition; Reproductive Technology and Infertility; Law, Ethics and Policy in Reproductive Medicine.

Read less
Lead academic 2016. Professor Ilaria Bellantuono. This unique one-year programme is run by the Centre for Integrated research into Musculoskeletal Ageing (CIMA) and funded by Medical Research Council and Arthritis Research UK. Read more

About the course

Lead academic 2016: Professor Ilaria Bellantuono

This unique one-year programme is run by the Centre for Integrated research into Musculoskeletal Ageing (CIMA) and funded by Medical Research Council and Arthritis Research UK. CIMA is a collaboration between the University of Sheffield, the University of Liverpool and the University of Newcastle.

The course provides multidisciplinary research training on the musculoskeletal system as a whole in the context of ageing. The training has a strong focus on employability. Topics range from basic science to clinical aspects, from in vitro to in vivo models, and from the latest advances in the assessment of the musculoskeletal system to lifestyle interventions.

Although you’ll be based at Sheffield, the course involves exchange visits to the other universities.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

Principles of Human Nutrition: relevance to ageing; Biology of Ageing; Biology and Assessment of Skeletal Health; Muscle in the Integrated Musculoskeletal System; Research Project.

Teaching and assessment

The taught element is online and may be taken remotely at home (live interactions will take place between 9–5pm UK time). This includes live lectures, wikis and blogs, and tutor support.

The research project involves hands-on laboratory work. It includes placements with all three universities.

You’ll also have the chance to take part in seminars, workshops and networking events delivered by industrial partners. You’ll be assessed through exams, coursework, a mock grant proposal and a research project dissertation.

Read less
Lead academic 2016. Dr Julie Simpson. This course combines taught modules on the fundamental aspects of the major nervous system diseases, with the development of practical laboratory skills encompassing histopathology, molecular pathology and microscopy. Read more

About the course

Lead academic 2016: Dr Julie Simpson

This course combines taught modules on the fundamental aspects of the major nervous system diseases, with the development of practical laboratory skills encompassing histopathology, molecular pathology and microscopy.

You’ll be trained to use tissue samples in neuroscience research aimed at understanding the pathophysiology of nervous system diseases and you’ll discover how laboratory breakthroughs have been translated into clinical benefits.

The course will be taught by scientists and consultant neuropathologists who are experts in their fields. You’ll get the opportunity to carry out neuroanatomy dissection and you’ll work with leading research groups during the research project.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

Neuro-anatomy; Basic Principles of Pathology and Histopathology; Molecular Neuroscience; Ethics and Public Awareness of Science; Pathology and Modelling of Neurodegenerative Disease; Neuroinflammation, Neuro-Oncology and Neurovascular Disease; Literature Review and Critical Analysis of Science; Research Project.

Teaching and assessment

The taught component of the MSc is delivered through practical laboratory classes and demonstrations, lectures, seminars and tutorials. Assessment is primarily through written assignments and coursework, along with practical laboratory assessments, spotter exams, presentations and debates. The research project is assessed by a thesis and oral presentation.

Read less

Show 10 15 30 per page



Cookie Policy    X