• University of Surrey Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Leeds Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
University College London Featured Masters Courses
FindA University Ltd Featured Masters Courses
"translational"×
0 miles

Masters Degrees (Translational)

We have 173 Masters Degrees (Translational)

  • "translational" ×
  • clear all
Showing 1 to 15 of 173
Order by 
This new and innovative course builds upon the integrated nature of the School of Dentistry’s clinical and basic science divisions, and aims to prepare future researchers, from scientific or clinical backgrounds for research careers based in addressing oral health needs. Read more

This new and innovative course builds upon the integrated nature of the School of Dentistry’s clinical and basic science divisions, and aims to prepare future researchers, from scientific or clinical backgrounds for research careers based in addressing oral health needs. You’ll gain a thorough background in oral sciences, the investigative, cutting edge technologies that enable oral scientific discovery and the necessary training in research governance and rigour. All areas of translational research pathways will be addressed, including aspects of commercialisation which will be taught through the Leeds University Business School (LUBS). Disease focused modules provide opportunities for in-depth exploration with research experts in the fields of Cancer, Musculoskeletal and Oral and systemic disease links.

Our teaching staff includes world leading experts with track records in translating research discoveries into novel healthcare products and practices. Student integration within the wider Dental school will be facilitated by undertaking recently updated modules shared with students from other MSc programmes.

Aimed at dental and biosciences graduates, the course will facilitate a career path focussed on oral research and its translation into positive impacts on health.

Course content

The programme will:

  • provide structured individualised learning and training in a research environment of international excellence.
  • be delivered by academics at the forefront of knowledge generation ranging from molecular discovery to translational application
  • engage students in research projects using the latest technologies that generate results with scientific impact and potential for improving patient health
  • equip students for the full process of translational oral research, which will be relevant for a range of biomedical scientific careers, providing the skills and insight to excel in multidisciplinary research.

For more information on typical modules, read Translational Research in Oral Sciences MSc in the course catalogue

Learning and teaching

Teaching will be split between the Dental school on the main campus and the Wellcome Trust Brenner Building (WTBB) at the St James’s University Hospital. The WTBB is a modern purpose built research facility, housing cutting edge facilities in imaging, tissue and microbiological culture and next generation sequencing technologies. On the main campus students can benefit from all the expertise, facilities (such as the Leeds Dental Translational and Clinical Research Unit) and support provided by the Dental school.

Our course emphasises student directed and multidisciplinary learning. Teaching methods include lectures, seminars and workshops, complemented by e-learning and will be delivered by research active scientists and clinicians with additional input from industrial partners and Leeds University Business School (LUBS) academics.

Assessment

Summative assessment will provide you with on-going feedback on your depth of subject knowledge and skills. Assessment methods for formative and summative assessment will include oral and poster presentations, unseen examinations and literature reviews. Exercises to identify research questions formulate research plans and prepare mock applications for funding and ethical/ governance approvals will also contribute to assessment.

Career opportunities

You will gain insight into all stages of translational research, preparing you for a career working across multi-disciplinary teams within research and innovation management. The course aims to enhance your career prospects of securing PhD studentship positions, whether that be in pre-clinical or clinical research.

The innovation management in practice module enables you to learn about the commercial aspects of translational research. It may be that you want to go into the oral healthcare industry, so knowledge of business skills will be a useful transferable skill.

You may want to go into academic teaching positions within your own country; this MSc will provide the knowledge required to teach oral biology at undergraduate level. 



Read less
This M.Sc. program in Translational Oncology will provide high-quality training for basic scientists and clinicians in the theoretical and practical aspects of the causes and treatment of cancer. Read more
This M.Sc. program in Translational Oncology will provide high-quality training for basic scientists and clinicians in the theoretical and practical aspects of the causes and treatment of cancer. A major focus of the programme is the cellular genetic and epigenetic basis of cancer. The course also covers the scientific and clinical challenges pertinent to the management of site specific cancers, and all aspects of cancer treatment from standard therapies to 'individualised' molecular targeted therapies. The focus of the course is research led teaching in the practical aspects of translational cancer research. This innovative M.Sc. program in Translational Oncology is aimed at scientists and doctors in training who wish to:

Develop their research skills
Broaden their expertise in oncology
Develop advanced knowledge in specific areas of scientific, translational and clinical oncology.

The proposed course will offer an opportunity for graduates from a variety of backgrounds to specifically train in translational oncology in advance of undertaking an MD or PhD. Modules are taught using a variety of methods including lectures, tutorials, workshops and laboratory practicals. Lectures are provided by leaders in the field of translational oncology from both scientific and medical backgrounds. The core modules are Cellular and Molecular Oncology, Cancer Epigenetics, Disease Specific Cancers, Radiation / Chemotherapy and Molecular Targeted Therapies, Tumour Immunology, Molecular Pathology and Imaging, Clinical Statsitics and Research Skills. Students can tailor the course to their interests with optional modules in Obesity, metabolism and Cancer, Gemomic Instability, Cancer Drug Development, Tumour Microenvironment, Clinical Pharmacology, and Surgical Oncology and Economics. Students will be required to submit a dissertation based on an emperical research project conducted in one of the many oncology groups located within or affiliated with Trinity College Dublin and the Institute of Molecular Medicine. Opportunities for national and international placements to conduct research projects will also be available in collaborating universities, hospitals and industry.

All applicants should provide two academic or clinical references confirming their eligibility and suitability for the course, before their application can be considered. Applicants should also include a 500 word personal statement addressing why they are interested in the course, their suitability for the programme and how it will impact on their future career development. Applications for admission to the course should be made through the online system no later than July 31st. Late applications will be considered provided places are available.

Read less
Translational research in medicine is an exciting and rapidly developing interdisciplinary field. It focuses on taking new research findings from the laboratory and other research contexts, and using them to develop effective advances in healthcare as quickly and efficiently as possible. Read more

Translational research in medicine is an exciting and rapidly developing interdisciplinary field. It focuses on taking new research findings from the laboratory and other research contexts, and using them to develop effective advances in healthcare as quickly and efficiently as possible.

Our Translational Medicine modules are ideal for people with a relevant undergraduate degree who want to train for a career in translational research or related fields, for medical students who want to obtain a postgraduate degree during an intercalated year, and for clinicians and other professionals who want to develop their expertise.

The MRes Translational Medicine will help you develop into a confident and self-reliant researcher who is skilled at self-directed learning, laboratory investigation, data analysis and scientific communication.

You will have the opportunity to contribute to a translational research programme, develop an advanced understanding of the fundamentals of genetics and genomics, study the principal stages in the development of novel therapeutics, learn about technologies used in biomedical/translational research, and acquire hands-on data analysis skills.

The programme has been designed with input from the pharmaceutical/biotechnology industry and will equip you with an expert understanding of the relevant bioscience, ‘bench-to-bedside’ development pathways and with the technical knowledge that will prepare you to progress to a PhD-level programme or to participate in research and development of a pharmaceutical/biotechnology setting.



Read less
This research-based course has a taught component that is the same as an MSc. It provides a springboard into a career that involves a working knowledge of scientific research. Read more

This research-based course has a taught component that is the same as an MSc. It provides a springboard into a career that involves a working knowledge of scientific research.

The course is designed for graduates with a BSc in the life sciences or other science disciplines, and for intercalating and fully qualified MBBS or BDS students. It can be taken either as a stand-alone qualification or as an entry route onto a PhD or MD.

What you'll learn

The taught component of the course includes subject-specific content in the area of translational medicine and therapeutics. You have the flexibility to develop your own bespoke course by selecting additional, complementary modules. You will also participate in training in general research principles, and other professional and key skills.

Subject-based modules in translational medicine and therapeutics provide the opportunity to learn about the development and evaluation of new medicines and to develop skills in translational research relating to therapeutics. Teaching and supervision is provided by both university-based academics and experts from the pharmaceutical industry.

Your project

Your research project comprises the major element of the course. This project will involve 24 weeks of research in an area of translational medicine and therapeutics under the supervision of an expert academic researcher in the field.

The course allows you to experience an internationally competitive research area, predominantly in academia but also potentially in industry.

Our MRes courses

Translational Medicine and Therapeutics MRes is closely linked to a suite of MRes courses that you may also be interested in:

Faculty of Medical Sciences Graduate School

Our Medical Sciences Graduate School is dedicated to providing you with information, support and advice throughout your research degree studies. We can help and advise you on a variety of queries relating to your studies, funding or welfare.

Our Research Student Development Programme supports and complements your research whilst developing your professional skills and confidence.

You will make an on-going assessment of your own development and training needs through personal development planning (PDP) in the ePortfolio system. Our organised external events and development programme have been mapped against the Vitae Researcher Development Framework to help you identify how best to meet your training and development needs.



Read less
Translational Cancer Medicine enables you to gain detailed knowledge and understanding of research methods applied to rational drug design, clinical study design, molecular and cell biology, tumour immunology, genetics and cancer imaging. Read more

Translational Cancer Medicine enables you to gain detailed knowledge and understanding of research methods applied to rational drug design, clinical study design, molecular and cell biology, tumour immunology, genetics and cancer imaging. You'll gain practical experience through two six-month laboratory rotations. 

Key benefits

  • A unique research programme that includes the study of advanced imaging methods and tumour immunology.
  • The sponsoring laboratories and departments all have international standing and closely supervise research trainees throughout the study programme.
  • This programme is a competitive course to support PhD applications and continued translational and medical training.  

Description

The Translational Cancer Medicine MRes study pathway offers unique opportunities for you to join experienced research teams and work on particular projects from the outset. This course will allow you to develop an in-depth understanding of research methods, and of how theoretical academic studies and skills relate to research projects.

You will explore Fundamentals of Translational Cancer Medicine, providing you with advanced knowledge and skills to conceptualise, design, conduct and critically appraise specialist research. You will gain hands on research experience in two six month lab projects. 

Course format and assessment

Teaching

We use lectures, seminars and group meetings to deliver most of the modules on the course. 

On average teaching consists of:

  • 40 hours of lectures
  • 1.5 – 3 hours per week of Lab/group meetings (depending on projects)
  • supervision/feedback during each lab roation

You will also be expected to undertake a significant amount of independent study.

Typically, 1 credit equates to ten hours of work.

Throughout the year, you will also attend literature reviews and journal clubs that the labs/departments organise, as well as any other internal or external seminars deemed relevant to your projects/assignments.

Assessment

The primary method of assessment for this course is a combination of written essays, a thesis (research report), a presentation/Q&A session regarding the research report and a draft of a scientific paper.

The study time and assessment methods detailed above are typical and give you a good indication of what to expect. However, they are subject to change. 

Extra information

Occupational health clearance will be required for some of the projects.

Career prospects

Future PhD studies. Clinical and non-clinical academic careers in cancer medicine.

Sign up for more information. Email now

Have a question about applying to King’s? Email now



Read less
This programme will provide a world-class education for advanced training in translational research, from preclinical discovery through to first-time-in-man studies in human and clinical trials in healthy volunteers and patients across neurology and neurodegeneration. Read more

This programme will provide a world-class education for advanced training in translational research, from preclinical discovery through to first-time-in-man studies in human and clinical trials in healthy volunteers and patients across neurology and neurodegeneration.

About this degree

The programme combines theoretical and practical teaching on both the breadth of, and complexity in conducting clinical research. Topics include clinical pharmacology, pharmacokinetics, research governance, statistics and the fundamental principle for using the correct enabling technologies within the context of medical research and drug development.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (60 credits), and a dissertation/report (120 credits).

Core modules

  • Research Integrity & Governance (15 credits)
  • Experimental Neurology (30 credits)
  • Research Methods, including Critical Appraisal, and Introduction to Statistics (15 credits)
  • Translational Neurology MRes Research Project (120 credits)

Optional modules

There are no optional modules for this programme.

Dissertation/report

All students undertake a research project which culminates in a dissertation of 15,000 words.

Teaching and learning

The programme will combine lectures, workshops and tutorials. Practicals will focus on the role of surrogate markers and emerging technologies in drug development e.g. preclinical discovery, first-time-in-man studies, and early phase clinical trials in healthy volunteers and patients. Assessment is through short answer unseen examinations, coursework and presentations..

Further information on modules and degree structure is available on the department website: Translational Neurology MRes

Careers

The programme is designed to cater to graduates in medicine and biomedical sciences who wish to gain valuable training in clinical research before embarking on a clinical PhD programme, medical training, or professional work in clinical trials. The successful completion of the MRes may also enhance opportunities for graduates to enter medical school or for MBBS graduates to progress to specialist medical training.

Employability

Whatever your chosen career pathway, the MRes in Translational Neurology will equip graduates to either get a first step on the ladder, change career directions or help them become more experienced with a specific expertise.

Why study this degree at UCL?

The programme is delivered by the UCL Institute of Neurology, a specialist postgraduate institute and a worldwide centre of excellence in clinical research across neurological diseases, including movement disorders (e.g. Parkinson’s disease), multiple sclerosis, neuro-inflammation, epilepsy, stroke, cognitive dysfunction, Alzheimer’s disease and other dementias.

Students will be taught by experts in the field and have the opportunity to network with internationally recognised opinion leaders in neurology and neurodegeneration.



Read less
This programme aims to provide you with a firm foundation in biomedical research methodology, focused on translational cardiovascular medicine, by enhancing your knowledge, understanding, critical awareness and practical research experience in this area. Read more

Programme overview

This programme aims to provide you with a firm foundation in biomedical research methodology, focused on translational cardiovascular medicine, by enhancing your knowledge, understanding, critical awareness and practical research experience in this area. The programme provides a firm theoretical grounding in the scientific principles and clinical applications of translational cardiovascular medicine, as well as intensive training in research methodology, experimental design, statistical analyses, data interpretation and science communication.

The core of the programme is a six-month research project, conducted within one of the University of Bristol's internationally recognised translational cardiovascular medicine research groups. Opportunities will be available in laboratory or clinical-based investigations.

The programme is suitable for clinical and bioscience graduates who wish to develop their research skills within this exciting field. It is also suitable for clinical students interested in pursuing a research-intensive intercalation option after three years of study.

Programme structure

This programme is delivered by research scientists and clinicians through lectures, tutorials, seminars, research clubs and practical classes. In addition to four mandatory units relating to research methodology, students choose two units on aspects of cardiovascular science.

Mandatory units

- Introduction to Research Methods in Health Sciences (10 credits)
This unit introduces a variety of research methods used in basic and applied clinical research including: finding and reading relevant research information; presenting research results; basic statistical analysis; data interpretation; ethics.
- Further Research Methods in Health Sciences (20 credits)
This unit aims to develop further knowledge and practical experience in statistical analyses, experimental design and laboratory methods and includes training in the use of a statistical software package and practical experience in several laboratory techniques.
- Research Club in Health Sciences (10 credits)
This unit aims to develop your ability to present, critically evaluate and discuss scientific findings by contributing to journal clubs, attending and summarising research seminars and presenting your own research.
- Research Project in Translational Cardiovascular Medicine (100 credits)
During this unit you will gain extensive experience in scientific/clinical research by conducting an independent project. You will write up your research in the form of a thesis, present and discuss your work in a viva and research symposium.

Plus a choice of two of the following units:

- Coronary Artery Disease I (20 credits)
- Coronary Artery Disease II (20 credits)
- Heart and Valve Disease (20 credits)
- Paediatric Heart Disease (20 credits)
- Aneurysm, Peripheral Vascular Disease and Stroke (20 credits)

Careers

This programme is suitable for those with a bioscience or clinical background who wish to develop their research skills before embarking on a research/clinical career in academia or the pharmaceutical industry. It provides the ideal foundation for further studies leading to a PhD.

Read less
Lead academic 2016. Dr Carolyn Staton. Translational oncology is the process by which laboratory research informs the development of new treatments for cancer. Read more

About the course

Lead academic 2016: Dr Carolyn Staton

Translational oncology is the process by which laboratory research informs the development of new treatments for cancer. It’s a rapidly advancing field with massive therapeutic and commercial potential.

Our MSc(Res) is taught by leading research scientists and clinicians. The course offers training in the theory and practice of translational oncology and provides you with transferable skills for your future career. It includes a six-month research project for which you’ll work as part of a team within the oncology research community at Sheffield.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

Cellular and Molecular Basis of Cancer; Cancer Epidemiology; Cancer Diagnosis and Treatment; Tumour Microenvironment; Cancer Technologies and Clinical Research; Literature Review; Research Project.

Teaching and assessment

Teaching is by lectures, seminars, class discussions/workshops, interactive tutorials, practical demonstrations, student-led group work and patient encounters.

Alongside the taught modules students attend the Sheffield Cancer Research seminars which include question and answer sessions with the experts, and a series of professional skills development tutorials.

Assessment is by a combination of written seen exams, oral and poster presentations, case studies and written assignments. The research project is assessed by an oral presentation and a written dissertation.

Read less
Dementia (including a raft of neurodegenerative diseases such as Alzheimer’s Disease) has recently become the leading cause of death in the UK. Read more

Dementia (including a raft of neurodegenerative diseases such as Alzheimer’s Disease) has recently become the leading cause of death in the UK. Stem cells are a novel and relatively young branch of scientific research that hold the potential for not only therapies but to be able to accurately model these distinctly human diseases.

This unique programme will offer students real-world perspectives from patients, carers, scientists and a range of health care professionals including world-leading experts on the impact of neurological diseases.

This programme offers cutting edge translational neuroscience focused on stem cells, neurodegenerative diseases, regeneration and models (both animal and cell). Furthermore the inclusion of patients and importantly their carers and the real-life impacts of these diseases on individuals will be a common thread running throughout this programme making it truly unique and exceptionally novel.

This programme is designed for medical and/or scientific professionals and aims to introduce students to the fields of neurodegenerative diseases, stem cells, industry and emerging therapeutic opportunities in regenerative / translational neurology. Overall students will gain the knowledge and understanding of the clinical, real-life impact and scientific realities of these fields and thus advance their own learning and be able to carry this forward into their future careers.

Therefore students will be introduced to a range of topics as they progress through the programme from introducing the basic anatomy, structure and development of the central nervous system, a critical understanding of stem cells including sources, locations and roles, an introduction to multiple neurodegenerative diseases (such as Alzheimer’s, Motor Neurone Disease and Parkinson’s disease), from both clinical and patient angles, before being introduced to in vitro and in vivo modelling of these diseases, neuroimaging techniques, stem cells and industry.

Online learning

This part-time, fully online programme will support the need for up-to-date knowledge, skills and theory in a wide variety by the use of not only world leading clinical and scientific experts but also by using the real-life impacts as viewed by patients, the people who care for them and the frontline health professionals. All of this expertise will be presented utilising a range of techniques including: online lectures, practical studies, directed readings and other video and audio resources.

Discussion boards will provide directed assessment tasks while input from expert guest lecturers and tutors offer students opportunity for collaborative critical discourse and debate of current issues.

Programme structure

Within the programme, students can progress from Postgraduate Certificate (60 credits), to Postgraduate Diploma (120credits) and to Master of Science degrees (180 credits) as they successfully complete the required number of credits for each level and can therefore stop at any stage or continue onwards depending on their situation.

Postgraduate Certificate

Composed of 4 core courses to provide the fundamental foundations for the Diploma and MSc but can also be taken as a self-contained PGCert. It will cover fundamental areas including key basic research skills (such as how to critically evaluate scientific manuscripts, as well as a basic understanding of statistics) whilst introducing students to the central nervous system, its basic anatomy and development and stem cells. In parallel students would cover an introduction to neurodegenerative diseases (that would include Alzheimer’s Disease, Parkinson’s Disease and Motor Neurone Disease) before being introduced to in vitro and in vivo modelling of these diseases. Finally students would also learn about neuroimaging and its potential roles for scientific research.

Postgraduate Diploma

Expands on the PGCert courses as well as introducing greater depth to novel areas such as the roles of pharma and industry with respect to stem cells. A proportion of the Diploma credits are elective and students will be assisted in choosing appropriate options from across the broad spectrum available from Edinburgh University that are relevant to their own situation, employment and career goals.

MSc

Students have the opportunity to explore a specialist area from within the broad spectrum of stem cells, regeneration and translational neuroscience in the form of either a dissertation, or, a structured project (the student would themselves have to source this if desired), which would aim to deliver a ‘real world’ project with a direct impact for an employer, organisation or personal goal. A third option available for students is a choice of 60 fully taught credits.

The minimum recommended time for completion of the full Masters programme is three years, and the maximum time for completion is six years. The Certificate and Diploma can be completed on a pro rata basis.

Postgraduate Professional Development (PPD)

Postgraduate Professional Development (PPD) is aimed at working professionals who want to advance their knowledge through a postgraduate-level course(s), without the time or financial commitment of a full Masters, Postgraduate Diploma or Postgraduate Certificate.

You may take a maximum of 50 credits worth of courses over two years through our PPD scheme. These lead to a University of Edinburgh postgraduate award of academic credit. Alternatively, after one year of taking courses you can choose to transfer your credits and continue on to studying towards a higher award on a Masters, Postgraduate Diploma or Postgraduate Certificate programme.

Although PPD courses have various start dates throughout a year you may only start a Masters, Postgraduate Diploma or Postgraduate Certificate programme in the month of September. Any time spent studying PPD will be deducted from the amount of time you will have left to complete a Masters, Postgraduate Diploma or Postgraduate Certificate programme.

Career opportunities

Potential career paths, exits routes and employers are very diverse and depend on the students chosen carer. For students working in a clinical environment this programme would offer them career advancement/specialism within their clinical setting.

For students coming from a scientific background there is the opportunity to improve carer prospects in laboratory research settings or alternatively to help in progressing to a PhD.



Read less
Our Master of Research (MRes) in Translational Medicine will give you the research skills you need to use state-of-the-art biotechnologies to rapidly translate disease research into improved clinical healthcare. Read more

Our Master of Research (MRes) in Translational Medicine will give you the research skills you need to use state-of-the-art biotechnologies to rapidly translate disease research into improved clinical healthcare.

Our understanding of the molecular basis of disease and drug mechanisms has improved dramatically in recent years, yet there is a distinct shortage of individuals able to apply this knowledge into effective clinical benefit. The core aim is to train the next generation of scientists able to 'fast-track' biological and scientific data into advanced therapies and diagnostics tools.

With advances in technology, graduates are faced with heightened expectations to conduct effective bioscience research. Employers demand skillsets with biological, medical, physical and computational characteristics, and our course is designed to provide this breadth of training.

You will learn omics skills and techniques such as genetics, genomics, transcriptomics, proteomics and metabolomics. Our training in metabolomic techniques is novel for a UK course, while our teaching on the integration of different omic platforms and data in a systems medicine strategy is also unique.

The MRes course consists of four taught units - which together make up the PGCert - plus an extended 35-week project that can be undertaken at the University, the Manchester Cancer Research Centre or a teaching hospital in Greater Manchester.

You can choose from a range of projects covering areas such as the use of gene expression profiling, proteomics, metabolomics, stem cell research, tissue culture or pharmacogenetics in the biology of cancer, cardiovascular disease, infectious diseases, stroke or diabetes.

Completing our course will open up a route into PhD research. You may also pursue a career in academia or the pharmaceutical or biotechnology industries, or as a clinical academic.

Special features

Extensive research experience

The 35-week research project for the MRes award offers the chance to conduct ambitious projects in areas such as cancer, cardiovascular disease, inflammation, mental health, infectious diseases, stroke or diabetes, using methods such as stem cell research, proteomics, metabolomics, tissue culture or pharmacogenetics.

Integrated focus on key topics

Our course has a strong and integrated focus on genetics, genomics, proteomics and metabolomics biotechnology and data interpretation, which are strengths within Manchester and are identified as core areas of bioscience growth.

Teaching and learning

Teaching comprises four taught units delivered using a variety of face-to-face, workshop and e-learning approaches and an extended 35-week research project for the MRes award.

Examples of research projects include the following.

  • Statins in translational cerebral ischemia: systematic review and meta-analysis of pre-clinical studies.
  • Parallel gene expression profiling and histological analysis of tumour tissue microarrays.
  • Development of a New Drug For Alzheimer's Disease by Drug Repositioning.
  • Identification of genetic variants predisposing to autoimmune idiopathic inflammatory myopathies.
  • Effects of differentiating agents on breast cancer stem cells and their sensitivity to DNA-damaging therapies.
  • Molecular characterisation of prostate cancer.
  • Inhibitors of IAPP Aggregation and Toxicity. 
  • New Therapies for Type II Diabetes.
  • Identifying novel monotherapy and combination therapies for the treatment of Glioma.
  • Translation of in vitro to in vivo: investigating the utility of in vitro drug transporter assays to predict inductive effects in the clinic.
  • In vivo mechanistic analysis of cancer drug combination therapies.
  • Using silk as a biomaterial for nerve regeneration.
  • The role of the local tissue environment in immune activation following myocardial damage.
  • Identifying genes that drive Breast Cancer to Bone Metastasis
  • High throughput genetic testing in rare disease: applications of personalised medicine.
  • Drug resistance and heterogeneity in CML following treatment with imatinib and following perturbation caused by nanoparticle delivery of miRNAs.
  • Investigation of a panel of drugs to inhibit the pro-tumourgenic actions of macrophages in breast cancer.
  • 3D anatomical reconstruction and molecular mapping of the atrioventricular ring tissues in human embryonic heart and adult rat heart.
  • Identification of the genetic basis of disorders associated with the presence of intracranial calcification.
  • Species variability in metabolism as a translational factor influencing susceptibility to adverse drug reactions in man.

Find out more by visiting the postgraduate teaching and learning page.

Career opportunities

More than 50% of our graduates progress into PhD research at Manchester or other universities such as Cambridge, Imperial College London, Newcastle, Glasgow, Liverpool and Bristol.

Around 15% pursue a career in the pharmaceutical or biotechnology industry in the UK or abroad.

Approximately 25% are intercalating medics who complete their medical education. An estimated 10% pursue an undergraduate medical degree.



Read less
With an emphasis in advanced quantitative methods, the MRes in Global Health. translational research and quantitative skills is designed to develop your multi-disciplinary knowledge and skills relevant to translational research for global health. Read more

With an emphasis in advanced quantitative methods, the MRes in Global Health: translational research and quantitative skills is designed to develop your multi-disciplinary knowledge and skills relevant to translational research for global health.

The degree will give you high-level introductions to key considerations in translational research for global health and to the various contributing methodologies. You will receive core training in statistics, qualitative research methods, foundations of biology and computer programming with R. Options will also be available in subjects such as geospatial data technology, geostatistical and infectious disease models and health economics. The programme is delivered through a mixture of lectures, seminars and practical workshops.

Throughout the year you will have the opportunity to work on a series of thee individual projects, each of about 10,000 words. One project could be undertaken with one of our overseas partners in countries such as Malawi or Ghana.  

Assessment

Coursework including essays and reports, research project reports, practical exercises and an exam



Read less
The Department of Oncology and the Department for Continuing Education’s CPD Centre offer a part-time MSc in Experimental and Translational Therapeutics that brings together some of Oxford's leading clinicians and scientists to deliver an advanced modular programme designed for those in full-time employment, both in the UK and overseas. Read more

The Department of Oncology and the Department for Continuing Education’s CPD Centre offer a part-time MSc in Experimental and Translational Therapeutics that brings together some of Oxford's leading clinicians and scientists to deliver an advanced modular programme designed for those in full-time employment, both in the UK and overseas.

The Programme draws on the world-class research and teaching in experimental therapeutics at Oxford University and offers a unique opportunity to gain an understanding of the principles that underpin clinical research and to translate this into good clinical and research practice.

Visit the website https://www.conted.ox.ac.uk/about/msc-in-experimental-therapeutics

The deadline for applications is Friday 15 June 2018

If your application is completed by this January deadline and you fulfil the eligibility criteria, you will be automatically considered for a graduate scholarship. For details see: http://www.ox.ac.uk/admissions/graduate/fees-and-funding/graduate-scholarships.

Programme details

The MSc in Experimental and Translational Therapeutics is a part-time course consisting of six modules and a research project and dissertation. The programme is normally completed in two to three years. Students are full members of the University of Oxford and are matriculated as members of an Oxford college.

The modules in this programme can also be taken as individual short courses. It is possible to transfer credit from up to three previously completed modules into the MSc programme, if the time elapsed between commencement of the accredited module(s) and registration for the MSc is not more than two years.

Programme modules:

- The Structure of Clinical Trials and Experimental Therapeutics

- Drug Development, Pharmacokinetics and Imaging

- Pharmacodynamics, Biomarkers and Personalised Therapy

- Adverse Drug Reactions, Drug Interactions, and Pharmacovigilance

- How to do Research on Therapeutic Interventions: Protocol Preparation

- Biological Therapeutics

Course aims

The aim of the MSc programme is to provide students with the necessary training and practical experience to enable them to understand the principles that underpin clinical research, and to enable them to translate that understanding into good clinical and research practice.

By the end of the MSc programme, students should understand the following core principles:

- Development, marketing and regulations of drugs

- Pharmaceutical factors that affect drug therapy

- Pharmacokinetics, pharmacogenetics and pharmacodynamics

- Adverse drug reactions, drug interactions, and pharmacovigilance

- Designing phase I, II and III clinical trials for a range of novel therapeutic interventions (and imaging agents).

- Application of statistics to medicine

- Laboratory assays used to support trial end-points

- Use of non-invasive imaging in drug development

- Application of analytical techniques

By the end of the programme, students should be equipped to:

- demonstrate a knowledge of the principles, methods and techniques for solving clinical research problems and translate this into good clinical and research practice

- apply skills gained in techniques and practical experience from across the medical and biological sciences

- develop skills in managing research-based work in experimental therapeutics

- carry out an extended research project involving a literature review, problem specification and analysis in experimental therapeutics and write a short dissertation

Guidance from the UK Royal College of Physician's Faculty of Pharmaceutical Medicine

The Faculty have confirmed that if enrolled for Pharmaceutical Medicine Specialty Training (PMST), trainees may be able to use knowledge provided by Experimental Therapeutics modules to cover aspects of a module of the PMST curriculum. Trainees are advised to discuss this with their Educational Supervisor.

Experimental Therapeutics modules may also be used to provide those pursuing the Faculty's Diploma in Pharmaceutical Medicine (DPM) with the necessary knowledge required to cover the Diploma syllabus. Applicants for the DPM exam are advised to read the DPM syllabus and rules and regulations.

Members of the Faculty of Pharmaceutical Medicine who are registered in the Faculty's CPD scheme can count participation in Experimental Therapeutics modules towards their CPD record. Non-members may wish to obtain further advice about CPD credit from their Royal College or Faculty.

Assessment methods

To complete the MSc, students need to:

Attend the six modules and complete an assessed written assignment for each module.

Complete a dissertation on a topic chosen in consultation with a supervisor and the Course Director.

Dissertation:

The dissertation is founded on a research project that builds on material studied in the taught modules. The dissertation should normally not exceed 15,000 words.

The project will normally be supervised by an academic supervisor from the University of Oxford, and an employer-based mentor.

The following are topics of dissertations completed by previous students on the course:

- The outcomes of non-surgical management of tubal pregnancy; a 6 month study of the South East London population

- Analysis of the predictive and prognostic factors of outcome in a cohort of patients prospectively treated with perioperative chemotherapy for adenocarcinoma of the stomach or of the gastroesophageal junction

- Evolution of mineral and bone disorder in early Chronic Kidney Disease (CKD): the role of FGF23 and vitamin D

- Survey of patients' knowledge and perception of the adverse drug reporting scheme (yellow cards) in primary care

- The predictive role of ERCC1 status in oxaliplatin based Neoadjuvant for metastatic colorectal cancer (CRC) to the liver

- Endothelial Pathophysiology in Dengue - Dextran studies during acute infection

- Literature review of the use of thalidomide in cancer

- An investigation into the phenotypical and functional characteristics of mesenchymal stem cells for clinical application

- Identification of genetic variants that cause capecitabine and bevacizumab toxicity

- Bridging the evidence gap in geriatric medicines via modelling and simulations

Teaching methods

The class-based modules will include a period of preparatory study, a week of intensive face-to-face lectures and tutorials, followed by a period for assignment work. Attendance at modules will be a requirement for study. Some non-classroom activities will be provided at laboratory facilities elsewhere in the University. The course will include taught material on research skills. A virtual learning environment (VLE) will provide between-module support.

The taught modules will include group work, discussions, guest lectures, and interaction and feedback with tutors and lecturers. Practical work aims to develop the students' knowledge and understanding of the subject.

Find out how to apply here - http://www.ox.ac.uk/admissions/graduate/applying-to-oxford



Read less
About the course. Lead academic. Dr Jonathan Wood. Translational Neuroscience looks at how laboratory research relating to brain structure and function informs the development of new therapies for diseases of the nervous system. Read more

About the course

Lead academic: Dr Jonathan Wood

Translational Neuroscience looks at how laboratory research relating to brain structure and function informs the development of new therapies for diseases of the nervous system.

Combining the research strengths from the Faculty of Medicine, Dentistry and Health and the Faculty of Science, leading international basic and clinical scientists will provide an innovative and progressive programme. You’ll study basic neurobiology and molecular biology through to neuroimaging and applied clinical practice.

The MSc will provide you with up-to-date knowledge of advances in the field, research experience with internationally renowned research groups and transferable skills to provide a springboard for your future career.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

  • Molecular Neuroscience
  • CNS Structure and Function
  • Pathology & Modelling of Neurodegenerative Disease
  • Literature Review and Critical Analysis of Science
  • Ethics and Public Awareness of Science
  • Mechanisms of Neurodegenerative Disease
  • Applied Neuroimaging
  • Neurophysiology and Psychiatry.

A 20-week Research Project will be undertaken in the summer term.

Teaching and assessment

Lectures, seminars, tutorials, laboratory demonstrations, computer practicals and student-led group work.

Assessment is primarily by written assignments and coursework, although there are some written examinations and oral presentations. The research project is assessed by a thesis and presentation.



Read less
This Masters in Translational Medicine is the first year of a British Heart Foundation 4-Year PhD studentship. it is not offered as an individual programme of study. Read more
This Masters in Translational Medicine is the first year of a British Heart Foundation 4-Year PhD studentship: it is not offered as an individual programme of study.

Why this programme

◾The programme will provide you with the skills needed to assess critically recent advances in biology relevant to human disease.
◾It covers the areas of cardiovascular medicine, inflammation and immunology, neuroscience, mathematics, bioinformatics and cell biology, and advances in fundamental biomedical science relevant to integrative mammalian biology.
◾You will be taught the administrative procedures and ethical and project planning requirements for applying for statutory licenses (personal and project) for animal work as well as ethical aspects of gene and cell therapy.
◾The University is one of the few centres in the UK offering BHF 4-Year PhD studentships. Successful applicants accepted into the programme will be fully funded. For more information, see: BHF 4 year PhD programme.

Programme structure

The programme is part of a 4-year PhD with the first year being an MRes. The MRes is made up of three individual 12-week research placements after an intense two-week induction. Each project will be based on different themes with three different supervisors. Years 2-4 make up the PhD portion of the programme.

Induction

You will be required to attend an in-depth introductory programme, which will provide training in research ethics, statistics, project design, literature review and laboratory safety techniques.

Placements

The induction is followed by three individual research placements. These are at the core of this programme, providing three separate projects to allow you to define your areas of interest for your PhD studies. Each placement is a 12-week project and this will be with three different principal supervisors. You will be encouraged to choose placements beyond your undergraduate subject experience to maximise your exposure to new techniques and science. Supervisors are drawn from a wide range of academic disciplines, such as medicine, biomedical and life sciences, mathematics, electronics and electrical engineering, and veterinary medicine.

Career prospects

You will be taught the practical laboratory skills needed to pursue a career in basic translational medicine and applied science through research projects. After successfully completing year 1, you will be awarded an MRes, and progress to a PhD. The programme produces fully trained scientists ready for progression to academic or industrial careers.

Read less
Goal of the pro­gramme. Upon graduation, the student is expected. To have mastered medical sciences and the needs of clinical practice from the point of view of a researcher. Read more

Goal of the pro­gramme

Upon graduation, the student is expected

  • To have mastered medical sciences and the needs of clinical practice from the point of view of a researcher
  • To be familiar with up-to-date translational research methodologies
  • To be adept at scientific reasoning and the critical analysis of scientific literature
  • To acknowledge the regulatory and ethical aspects of biomedical and clinical research
  • To have mastered scientific and medical terminologies
  • To have excellent communication skills

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The TRANSMED studies are built upon three themes:

Development of research skills

The curriculum includes courses in statistics and the R programming language, bioinformatics, research ethics, and principles of clinical investigation. You will also practice the writing of research proposals and develop your skills in research methodologies during a training period in a research group. 

Studies in human disease

The courses range from normal human physiology and anatomy, and basic biomedical courses, to more advanced studies covering topics pertinent to the specialist option. You supplement these studies with clinical rounds, during which you have the opportunity to study selected patient cases in hospital wards, under the supervision of a clinician mentor.

Development of communication skills

Communication skills are promoted through interactive approaches and discussions, groupwork, team-based learning and oral presentations. In TRANSMED you will have opportunities for direct interactions with medical students, scientists and clinical teachers to enable you to practice and adopt interdisciplinary communication skills. At the end of the course of study, your communication skills will be evaluated in a Research Proposal Exam, during which you will orally present and defend your research plan to expert examiners.



Read less

Show 10 15 30 per page



Cookie Policy    X