• University of Surrey Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Ulster University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Leicester Featured Masters Courses
Birmingham City University Featured Masters Courses
Cass Business School Featured Masters Courses
Swansea University Featured Masters Courses
"traffic" AND "engineerin…×
0 miles

Masters Degrees (Traffic Engineering)

We have 74 Masters Degrees (Traffic Engineering)

  • "traffic" AND "engineering" ×
  • clear all
Showing 1 to 15 of 74
Order by 
IN BRIEF. Member of the national Universities Transport Partnership. Emphasis on methodology and practice, guided by the needs of employers. Read more

IN BRIEF:

  • Member of the national Universities Transport Partnership
  • Emphasis on methodology and practice, guided by the needs of employers
  • Accredited by the Joint Board of Moderators (Institution of Structural Engineers, Institution of Civil Engineers, Institution of Highways & Transportation) as fully satisfying requirements for Further Learning for a Chartered Engineer (CEng)
  • Part-time study option
  • International students can apply

COURSE SUMMARY

This course has been running for more than forty years and is recognised as providing a good grounding for students interested in the management, engineering and planning of transport infrastructure. It takes students from a wide range of relevant backgrounds.

The emphasis of the course is on current methodology and practice to improve your employability with engineering and planning departments of local and central governments, passenger transport executives, and transport consultants.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

COURSE DETAILS

Transport engineering modules relate to traffic engineering and transport systems design. Transport planning modules consider policy (such as reducing car dependency), travel demand forecasting and appraisal. If you have a civil engineering background you can elect to take an optional module in transport infrastructure design as an alternative to the extended modelling and appraisal work.

The course is supported by field surveys, seminars and studio work, allowing students to experience a range of relevant computer packages and methodological approaches.

You are also required to produce a dissertation with the close supervision of an expert academic member of staff.

This course may be taken on a full-time or part-time basis. The part-time course enables candidates who would not normally be able to obtain a year’s release from employment to also study in depth and is used by some employers as part of their formal graduate training programme.

TEACHING

The course combines formal lectures and seminars with extensive coursework including transport planning studio work, traffic survey projects, appraisal assignments and statistics tutorials. The teaching panel includes visiting specialists with expert knowledge of specific topics.

You will be exposed to a range of relevant transport software.

Part-time students study the taught modules over two years on a day-release basis (currently Thursdays)

ASSESSMENT

Assessment is by a combination of formal examinations, tutorial and seminar work, course assignment portfolio and a dissertation.  The overall breakdown is:

  • Examination: 50%
  • Coursework: 50%

CAREER PROSPECTS

Graduates from this course work in local authorities, consultancies and transport utilities. Some graduates work on projects overseas. The postgraduate qualification is highly valued by employers.

The MSc award is approved as further learning for those working towards Chartered Engineer status. The  programme team has close contacts with local employers and the Professional Institutions.

FURTHER STUDY

Some of our students go on to study in our Civil Engineering Research Centre.  

Research in this Centre is focused into four main themes, aligned with the core elements of the civil engineering curriculum: Structural Engineering, Transport Engineering, Geotechnical Engineering and Hydraulics. Our aim is to provide leading edge sustainable research that is both fundamental and relevant in today’s changing society and environment that is underpinned by strong links with academics from throughout Europe and with industrial partners, such as Network Rail, GMPTE, Atkins, Veolia and UIC.

http://www.cse.salford.ac.uk/research/engineering-2050/civil-engineering/



Read less
The Master of Engineering Studies in Transportation Engineering is a specialised masters degree programme developed in consultation with the land transport industry professionals and support from the NZ Transport Agency. Read more

The Master of Engineering Studies in Transportation Engineering is a specialised masters degree programme developed in consultation with the land transport industry professionals and support from the NZ Transport Agency.

Industry leaders are directly involved through national and regional liaison committees as well as making contributions to lecture content, assignments and research projects.

Programme outline

Transportation is specifically concerned with transportation engineering - traffic engineering, transport and land use planning, highway engineering, pavement materials and management systems, road safety and crash investigation. This programme is focused on developing a sound understanding of fundamental concepts, techniques and issues.

Research component

The research component for this degree must be undertaken in a relevant area of Transportation Engineering. However, this can include a topic outside the areas covered on the programme. This research will be supervised by an academic staff member and will normally require some mentoring input or assistance from industry.

Career opportunities

This specialisation aims to address the major shortage of suitably trained transportation engineering professionals.

It is anticipated the programme will enable graduates to take leading roles in planning, evaluating, designing, constructing, maintaining, and operating the transport infrastructure.

The programme will also provide valuable background expertise for those wishing to enter into the management of the transport infrastructure or to begin to pursue a career in research and development.



Read less
The Master of Transport and Traffic is a response to the growing need for professionals with broad awareness of the characteristics and significance of transport, including its technological, economic and social impact. Read more

The Master of Transport and Traffic is a response to the growing need for professionals with broad awareness of the characteristics and significance of transport, including its technological, economic and social impact. At the same time, the program outlines the state-of-the-art of transport engineering and planning, as it may be applied to the solution of real problems in the planning, design, management and operation of transport and traffic facilities.

The course is aimed at giving the student a thorough understanding of the nature of transport demand and the role of transport in the modern community, a familiarity with the characteristics of modern transport technology, and the ability to appraise and evaluate solutions to transport and traffic problems. To achieve these aims, the development of appropriate analytical skills and practical knowledge is stressed, together with recognition of the role of other disciplines in tackling transport-related issues.

For these reasons, the course will have particular appeal to people with a few years postgraduate experience in transport or traffic who wish to have formal education in this field. Professionals working with road, traffic or public transport authorities, or in local government and people with an interest in transport planning, traffic engineering or research will find the course to be of benefit.

The course was designed with the assistance of the Institute of Transport Studies Advisory Committee. Through this committee, which includes representatives of government departments, local government, research institutions and private firms with an interest in transport, the institute's academic staff are kept abreast of needs and opportunities related to transport and traffic education.

Course structure

The course comprises 72 points structured into two parts:

  1. Part A: Transport and Traffic planning and management and
  2. Part B: Advanced expertise

All students complete Part A. Depending upon prior qualifications, you may receive credit for Part B.

  • Students admitted at Entry level 1 complete 72 points, comprising Part A and B
  • Students admitted at Entry level 2 complete 48 points, comprising Part A

Note: Students eligible for credit for prior studies may elect not to receive the credit and complete one of the higher credit-point options.

Part A: Transport and Traffic planning and management

These studies provide you with in-depth understanding of transport planning theory and practice. You will learn about planning for sustainable transport, the collection and analysis of transport data, the use of advanced analytic and quantitative techniques for demand forecasting, transport economics and policy.

Part B: Advanced expertise

The focus of these studies is advanced knowledge that can contribute to a portfolio of professional development.  Depending on your background and interests you can deepen your knowledge of transport management by selecting from across a range of specialist electives.

Students admitted to the course with an Engineering, science or applied science qualification, will receive credit for Part B, however, should they wish to complete further studies they can elect not to receive the credit and complete technical electives in transport or from across the university, or a combination of the two.



Read less
The Internet Engineering MSc is a broad programme encompassing all the fundamental components of the Internet. Graduates acquire the skills necessary to design, manage and maintain the networks that will build the Future Internet, placing them in a prime position at the forefront of this rapidly changing field. Read more

The Internet Engineering MSc is a broad programme encompassing all the fundamental components of the Internet. Graduates acquire the skills necessary to design, manage and maintain the networks that will build the Future Internet, placing them in a prime position at the forefront of this rapidly changing field.

About this degree

Students develop an understanding of the evolving networks and applications using the internet protocol. Particular attention is given to the convergence of telecommunications and data networks into 'all IP'-carrier grade networks. The programme offers specialisms including fundamental network design, applications and services, and security and network management.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (75 credits), three optional modules (45 credits) and a dissertation (60 credits).

Core modules

  • Introduction to Telecommunications Networks
  • Mobile Communications Systems
  • Software for Network and Services Design
  • Internet of Things
  • Introduction to IP Networks
  • Professional Development Module: Transferable Skills (not credit bearing)

Optional modules

  • Communications System Modelling
  • Network and Services Management
  • Telecommunications Business Environment
  • Optical Transmission and Networks
  • Wireless Communications Principles
  • Internet Multimedia Systems

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of approximately 12,000 words.

Teaching and learning

The programme is delivered through a combination of formal lectures, guest lectures, tutorials, seminars, laboratory and workshop sessions and project work. Assessment is through unseen written examination, coursework, design exercises and the research project.

Further information on modules and degree structure is available on the department website: Internet Engineering MSc

Careers

In the next 15 years, all of the facets of our life will be "online". Our health (bio-sensors, health records), entertainment (games, 3D TV, Virtual Reality), security (children GPS tracking, CCTV) and other social interactions will use fascinating internet applications that are only now being envisaged. Our graduates will be in a prime position at the forefront of this revolution by having in-depth knowledge of all of its components.

Recent graduates have gone on to become graduate engineers, R&D engineers and network services engineers at companies including France Telecom, BT, Huawei, Cisco, Motorola and PwC.

Recent career destinations for this degree

  • Graduate Software Engineer, Accenture
  • Java Developer, Loxbit PA and studying Communication Engineering, University College London (UCL)
  • IT Development Officer, China Unicoms
  • IT Network Development Engineer, BSkyB
  • Software Engineer, Air Watch

Employability

The Internet Engineering MSc programme provides a broad and comprehensive coverage of the technological and scientific foundations of telecommunications networks and services, from the physical layer to the application layer. A strong emphasis is given to mobile and wireless communications and the latest standards in these areas (LTE, WiMAX, IEEE 802 family of standards). Students study both the theoretical foundations of all related technologies and also carry out extensive practical assignments in several related areas.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Electronic & Electrical Engineering is one of the most highly rated electronic engineering research departments in the UK. Our research and teaching ethos is based on understanding the fundamentals and working at the forefront of technology development.

This MSc offers a wide variety of modules that include the physical layer (optical, wireless), the Internet layer (routing, congestion control, traffic engineering), the application layer (codecs, security) and the "business layer" (regulation, business opportunities).

Lectures are delivered by world-class researchers in all these fields with regular lectures from the main industrial leaders in the telecommunications industry.

Accreditation

Accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Electronic & Electrical Engineering

97% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Civil engineering is key to economic and social stability throughout the world. From roads and bridges to skyscrapers and airports, modern civil engineers plan, design, construct and manage the large-scale public works and amenities that underpin our society. Read more

Why take this course?

Civil engineering is key to economic and social stability throughout the world. From roads and bridges to skyscrapers and airports, modern civil engineers plan, design, construct and manage the large-scale public works and amenities that underpin our society.

This course is a dynamic mix of specialist civil engineering knowledge and essential learning of current technical and practical methods.

What will I experience?

On this course you can:

Create your own designs and models in response to industry-relevant civil engineering demands
Apply your skills to real-life practical problems as part of our partnership schemes with local and global organisations
Venture overseas on a European exchange programme or do a paid work placement in industry

What opportunities might it lead to?

This course will lead you to a recognised professional qualification in civil engineering. It is accredited by the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT) and the Institute of Highway Engineers (IHE).

It fully satisfies the educational base for a Chartered Engineer (CEng) under the UK Standard for Professional Engineering Competence (UK-SPEC). We maintain excellent links with these professional bodies and regularly update and advise you on matters relating to your progress to professional status.

Here are some routes our graduates have pursued:

Civil engineering
Site engineering
Project management

Module Details

Year one

During your first year you will study fundamental engineering principles and be introduced to the key theories upon which civil engineering practice is based.

Core units include:

Construction Management and Practice
Engineering Analysis
Professional Development 1
Soils and Materials 1
Understanding Structures - Analysis and Design
Water and Environmental Engineering

Year two

In year two you will extend your understanding and ability to analyse complex civil engineering systems.

Core units include:

Behaviour of Structures
Design of Structural Elements
Numerical Skills and Economics
Professional Development 2
Soils and Materials 2

Options to choose from include:

Diving and Underwater Engineering A
Diving and Underwater Engineering B
Fieldwork for Civil Engineers
Heritage Property
Introduction to Project Management Principles
Water Infrastructure

Years three and four*

During your final two years you will build on all the knowledge you have acquired enabling you to analyse, design and manage civil engineering systems in an integrated manner. You will develop practical proposals for complex civil engineering problems in a simulated professional organisation. You will also complete a dissertation on a topic of your choice and a design project, which covers the practical application of knowledge and techniques in the identification, design and management of a simulated major construction project.

Year three

Core units include:

Professional Development 3
MEng Individual Research Project
Project Management for Civil Engineers
Design of Bridges
Soils and Materials 3
Year four

Core units are:

Advanced Engineering Science
Environmental Management
Integrated Design Project

*This course is also available as a 5-year sandwich (work placement)

Programme Assessment

You will be taught through a combination of lectures, seminars, tutorials and group work, and be fully supported throughout your degree. We promote many practical teaching methods by way of lab and fieldwork supplying you with proactive, hands-on learning opportunities.

We guarantee sustained feedback to make sure your studies are on track. Providing you with valuable skills and experience, you will be assessed in a variety of ways, including:

Written exams
Web assessments
Essays and reports
Project presentations
A 10,000-word dissertation

Student Destinations

Working in the construction and engineering sector will make an interesting, challenging and rewarding career. There will be a wide range of roles within the construction industry open to you once you have completed your studies.

This course is an appropriate first degree leading to a recognised professional qualification in civil engineering should you wish to continue your studies. What’s more, it also meets the entry requirements for many of the major graduate engineering programmes.

Overall, you will be a versatile graduate who will have the employable skills to secure work in many areas of the job market.

Roles our graduates have taken on include:

Structural engineer
Construction manager
Design engineer
Highway engineer
Envinronmental and drainage engineer
Site engineer
Traffic engineer
Assistant engineer

Read less
This course is an excellent route to a wide range of career opportunities. Estimating transport needs, providing systems and infrastructure to meet those needs, and addressing the impacts of transport on society and the environment all require the understanding and skills this course offers. Read more
This course is an excellent route to a wide range of career opportunities. Estimating transport needs, providing systems and infrastructure to meet those needs, and addressing the impacts of transport on society and the environment all require the understanding and skills this course offers. The module content draws on our strong industry links, our research and our local and national project-based work.

MSc Transport Engineering and Planning is run by UWE Bristol's Centre for Transport and Society. All the teaching staff are engaged in research and consultancy, and often advise national and local government.

Key benefits

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

Course detail

Bristol is the home of Isambard Kingdom Brunel, and an exciting place to study transport and engineering. The city has some interesting and complex transport problems of its own, and plans to tackle them include a bus rapid transit network, continuing developments to cycling networks as the country's first Cycling City, and experimental closures of the city centre to motor traffic on Sundays. Our close links with local authorities in the area means we were commissioned to evaluate Bristol's Local Sustainable Transport Fund project.

Why do most Park and Ride schemes cause an increase in traffic? Why do people living in high-density housing make fewer journeys than people in suburbs, yet cause more traffic congestion? Does an increase in traffic inevitably increase collision and injury rates? These are just some of the questions posed by our researchers in the Centre for Transport and Society at UWE Bristol.

This course draws on the latest research and practice, and attracts students from a wide range of countries, and from employers around the region. We welcome applicants from all over the world.

Modules

The course modules cover the following topics:

• Transport Infrastructure Engineering
• Traffic Engineering
• Transport Economics and Appraisal
• Travel Demand Analysis
• Transport Policy and Finance
• Changing Travel Behaviour
• Sustainable Transport Management and Operations

You will also study:

• Introduction to Geographical Information Systems
• Dissertation - including research training and the potential for a work placement

Format

We use a variety of teaching methods, including lectures, seminars, workshops, fieldwork and laboratory work, debates and discussion, teamwork, presentations and external visits. Teaching staff are mainly active researchers in the Centre for Transport and Society, but, where appropriate, we include contribution from UWE Bristol experts working and teaching in other related fields.

We also have guest lectures from professional practitioners, who give you valuable insights into the latest developments in practice.

Transport engineers must be numerate. If you lack confidence in this area, we can provide help for the mathematical content of the course.

Placements

A feature of this course is the potential for a work placement. This gives you the chance to gain valuable experience in practice and gain a competitive edge over graduates from other courses. If you choose to, we will help you find a suitable placement with an employer based in the area, for a few weeks in the summer after the end of teaching and assessment. The placement (which may be unpaid) will involve a project designed to address an employer's genuine needs. Your experience and findings will contribute to your project-based dissertation.

Assessment

Assessment is mainly through coursework, presentations, and exams.

Careers / Further study

Opportunities in transport engineering and planning are growing. UWE Bristol's transport graduates have an excellent reputation in the marketplace, and several have since secured senior positions around the region and further afield.

Every year, employers ask the programme leader to circulate details of vacancies with them. Several of our students have been hired as a direct result by employers such as Arup, Halcrow, ITP, WSP, Matrix, Parsons Brinkerhoff and Bristol City Council.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
This MSc has been developed in response to the rapid growth and demand in the highways and transportation industry, both in the UK and overseas. Read more
This MSc has been developed in response to the rapid growth and demand in the highways and transportation industry, both in the UK and overseas.

The course will form the basis for ‘Further Learning’ for those graduates with a civil engineering degree (or equivalent) seeking professional qualification as a Chartered Engineer. It provides topical and industry-focused postgraduate education to enhance career opportunities in highways and transportation engineering.

Accreditation for this course is being sought from the Joint Board of Moderators (JBM) for the 2016 intake.

The course has been designed for full time or part time study by the use of ‘one-week blocks’ of teaching.

WHAT WILL I LEARN?

This course comprises of nine topics in total, (listed below)
-Safety engineering
-Geometric and pavement design
-Bridge engineering
-Traffic engineering
-Earthwork engineering
-Transportation planning
-Global Professional Development
-Integrated Project
-Technical project

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

Highways and transportation engineering is designed for graduates seeking careers in the highways and transportation sectors, and in the wider civil engineering industry. The vocational nature of this programme aims to provide a sound basis for enhancing a wide range of skills and career opportunities in the construction industry

GLOBAL LEADERS PROGRAMME

Centre for Global Engagement logoTo prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
This well respected and industry credited course offers the gateway to a successful career in the transport professions. Developments in transport shape the world we live in and influence communities’ economic and social wellbeing. Read more
This well respected and industry credited course offers the gateway to a successful career in the transport professions

Developments in transport shape the world we live in and influence communities’ economic and social wellbeing. Transporting people and goods provides a serious challenge for politicians, transport planners and engineering specialists.

During your studies you will examine the major transport issues facing society and learn the main techniques applied in analysing and resolving transport problems.

See the website http://www.napier.ac.uk/en/Courses/MSc-Transport-Planning-and-Engineering-Postgraduate-FullTime

Part-time options

Part-time study is flexible. Normally students will take three years to complete the programme if they undertake one module per week but the length of the course can be reduced to two years, if two modules are taken each week. Many part-time students undertake projects in their place of work. http://www.napier.ac.uk/courses/msc-transport-planning-and-engineering-postgraduate-parttime

Distance Learning: Identical in duration and content to a part-time course, this option replaces campus attendance with specially developed printed and online learning materials. You can study at your own pace, in your own time. http://www.napier.ac.uk/courses/msc-transport-planning-and-engineering-postgraduate-distance-learning-part-time

What you'll learn

You will gain an understanding of transport systems through studying issues such as transport modelling and appraisal techniques from a theoretical and practical perspective. You will also learn how to develop effective transport strategies to address a range of different scenarios.

Your studies will also benefit from our excellent links with industry and the transport research community, allowing you to gain a good understanding of the profession from industry-relevant teaching, guest lecturers and by engaging with transport practitioners and researchers.

Part-time and distance learning options allow those working in the industry to expand their professional capabilities and meet the educational requirements for chartership.

Modules

• Public transport
• Transport policy
• Development planning and transport assessment
• Traffic engineering control
• Transport and traffic models
• Transport research methods
• Transport economics and appraisal
• Traffic management
• MSc project

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

This industry accredited qualification offers good career prospects, especially as there is an increasing demand for transport planning graduates in the UK.

On completing the course, you will go on to a career in one of the major transport consultancies, a local authority or a government agency.

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
Our MSc Transportation Planning and Engineering (Infrastructure) course focuses on the design, engineering and operation of land transport systems, with modules looking in detail at road and railway systems. . Read more

Our MSc Transportation Planning and Engineering (Infrastructure) course focuses on the design, engineering and operation of land transport systems, with modules looking in detail at road and railway systems. 

This MSc is appropriate for students interested in a career in the transport industry. The infrastructure pathway is differentiated through the compulsory study of highway and traffic engineering, and railway engineering and operations.

Whilst this pathway is very suitable for engineers; graduates from other disciplines - science, mathematics, planning and geography – would be welcome on this course.

Introducing your degree

Whether you are interested in starting a career in the transport industry, or an experienced transport professional keen to enhance your skills, our MSc in Transportation Planning and Engineering (Infrastructure) is the masters course for you. Covering everything from the fundamentals of modelling and economics through to the application of software and planning tools using real life examples from around the world, it is the perfect way to improve your capabilities and employability in the transport sector.

Overview

The one year full-time course starts in September each year and includes two semesters of taught modules and a summer period devoted to your individual project, from which you produce a Dissertation. Lectures take place on Tuesdays and Thursdays each week – allowing the course to be undertaken on a part-time basis over 2 years, with attendance on one day each week. The course includes a 2 day residential field trip which in the past has featured behind-the-scenes site visits, museum trips, and a 'transport challenge' competition.

Career Opportunities

  • Transport engineering (rail infrastructure companies, local highways departments),
  • Transport planning,
  • Transport management,
  • Transport consultancy.


Read less
If you're already a successful networking professional who wants to advance your career to the next level, this unique one-year master's programme is designed for you. Read more

If you're already a successful networking professional who wants to advance your career to the next level, this unique one-year master's programme is designed for you. The only programme of its kind in the world, GCU's MSc Advanced Internetwork Engineering will prepare you for the Cisco Certified Internetwork Expert (CCIE) exam.

The programme offers a structured, supported path so you can develop expert-level network engineering skills and achieve CCIE certification. With this elite credential, you'll be a competitive candidate for senior-level and leadership roles in network engineering.

We partnered with Internetwork Expert Inc. (INE), the leaders in CCIE preparation, to develop this programme. Students learn with INE's CCIE Routing and Switching Workbook and remote rack management systems, the global gold-standard in CCIE prep materials.

Lectures and labs bring together theory and practice, integrating hands-on demonstrations and experiential learning using live equipment. With GCU's career-focused atmosphere and supportive environment, you'll have an ideal opportunity to build valuable skills.

  • Develop your ability to complete increasingly complex networking challenges
  • Master the workings of networking technologies at an expert level
  • Practise taking on the large-scale, full-day scenarios you'll encounter in the CCIE lab exam

With its focus on real-world relevance and skills you can use in your career today, this programme supports GCU's broader mission of producing graduates who are both successful and socially driven. We encourage graduates to harness their abilities to make real change and support the common good. We hope you'll find new ways to excel in your field - and new ways to make a positive impact in your workplace and your community.

What you will study

Learn the workings and behaviour of technologies at an expert level. Discover the methods of verifying their correct operation and begin troubleshooting with confidence. With the help of this unique syllabus, you can begin to predict the behaviour of technologies and develop an expert knowledge of the interactions between them.

Layer 2 Technologies

The theoretical knowledge and practical skills needed to determine appropriate design choices for layer 2 network solutions, implement them and verify their operation. This module covers both campus (LAN) and wide area network technologies.

Layer 3 Technologies 1

Thetheoretical knowledge and practical skills needed to determine appropriate design choices for layer 3 network solutions, implement them and verify their operation. This module covers IPv4 addressing issues, interior routing protocols e.g. static, RIP, EIGRP, OSPF, ODR; Layer 3 design issues e.g. address summarization and filtering.

Layer 3 Technologies 2

The theoretical knowledge and practical skills needed to determine appropriate design choices for layer 3 network solutions, implement them and verify their operation. This module focuses on exterior routing (BGP); IPv6 routing and large scale Layer 3 design issues e.g. address aggregation, filtering and traffic engineering through the implementation of routing policies in a multi Autonomous System environment.

Multicast and WAN Technologies

IP multicast technologies including multicast addressing, IP multicast routing using PIM (sparse mode, dense mode, static and dynamic RP assignments etc),the relationship between unicast and multicast routing, the importance of RPF checks, Any cast RP, Source Specific Multicast. The provision of multicast services to end hosts (IGMP v1/2/3). WAN technologies are covered with a focus on PPP.

VPN and Security Technologies

The knowledge/skills needed to design and implement virtual private network solutions, either for the purpose of solving routing issues, security issues or both. This module covers tunnelling technologies designed to enhance connectivity e.g. MPLS, GRE, 6 to 4 and security (IPSec). Methods of securing infrastructure devices and data networks are also examined.

Infrastructure Services

A wide range of system management techniques (e.g. SNMP, remote management, logging, event monitoring), network services, and performance optimization (quality of service) technologies which depend upon a solid core network for their operation.

Integrating Network Technologies

Draws scenarios from the other technology modules, accordingly you will develop the ability to integrate and troubleshoot progressively more complex internetworks as the year progresses. Students undertake activities which help them develop the kind of customer facing skills and commercial awareness needed for a high level career in the networking industry.

Research and Project Methods

Background knowledge and skills that, in combination with the technical skills acquired in other taught modules will enable you to carry out a successful MSc Dissertation. By the end of the module you will have produced a viable proposal for a dissertation project.

MSc Project

A vehicle for extending the knowledge and understanding of the student and the technical community in a chosen specialist area. It serves, through its length, complexity and rigour, as a suitable vehicle for extending a range of personal, interpersonal and communication skills.

Assessment methods

Taught modules are assessed on a mix of coursework and practical class tests. Practical networking skills form a significant part of the assessment. Modules also include formal examinations where appropriate.

Graduate prospects

Graduates of GCU's MSc Advanced Internetwork Engineering programme develop the technical, commercial and presentation skills needed for a successful senior-level career in the networking industry. You'll find opportunities in network engineering, network consultancy design and network operations centres.

http://www.gcu.ac.uk/aie



Read less
Summary. This course is unique in Ireland for its breadth across a range of infrastructure disciplines such as water, waste, structures, highways, road safety, project management and sustainability, with strong emphases on design. Read more

Summary

This course is unique in Ireland for its breadth across a range of infrastructure disciplines such as water, waste, structures, highways, road safety, project management and sustainability, with strong emphases on design. The knowledge and understanding covers key areas of civil and infrastructure engineering and meets the needs of graduates seeking chartered status. It has significant input from the expertise of a blend of current practitioners and research-led academics, with inter-disciplinary teaching in design and sustainability modules; all of this is integrated and delivered within the principles and practice of sustainable development.

About

This technical masters programme focuses on Technical subjects in a framework of Design and Sustainability, and this approach is grounded in technical modules covering waste, water, structural design, utilities, road safety and highways, supported by project management and sustainable development; a large Dissertation brings research-led studies and unique knowledge with substantial industrial linkages. Sustainable Development is the key driver in the design, delivery and assessment of all curricula and material; also, all content is set in the context of scholarly activity in which academic research is blended with professional knowledge and experience to provide a rich learning environment. Input from leading professionals as guest lecturers, mentors and advisors enhances the delivery and educational experience. Therefore the course offers a linked postgraduate course which is intellectually coherent, academically challenging, progressive in nature (with appropriate exit points) and has vocational relevance to the disciplines of civil and infrastructure engineering, as well as being linked to transport, construction, waste management and water engineering. It is designed to provide: (1) development of infrastructure engineering in the context of global sustainability and local strategic drivers, by studying relevant theoretical concepts and making critical reflection on their application;& (2) access to multi and interdisciplinary teaching and professional strengths of the Faculty staff;& (3) innovation in teaching, learning and assessment strategies, thereby relating to current professional practice; (4) leaders of infrastructure engineering for the future; and;(5) opportunities for graduates and professionals within the broad construction and built environment industry to enhance their knowledge and skills through the application of appropriate methods and techniques.

Attendance

Attendance is full-time for one year over 3 Semesters, commencing normally in September, but it is also possible to commence in January.

Attendance for the part-time Postgraduate Diploma is over 3 years, requiring attendance in 2 semesters of Years 1 and 2, and attendance in Year 3 as agreed with the Dissertation supervisor

Semester 1 - Compulsory: Project Management Practice; Integrated Design Studies; Optional – two from: Utilities and Water Engineering, Road Safety Engineering or Highway Asset Management; total of 4 x 15 credit modules.

Semester 2 - Compulsory: Sustainable Development; Infrastructure Design Studies; Optional – two from Structural Design for Infrastructure, Waste Systems or Road Safety Engineering; total of 4 x 15 credit modules.

Semester 3 – Compulsory: Dissertation - 1 x 60 credit module. Study will normally involve a weekly 12 hours of lectures, tutorials, site visits, design studio work, with independent study of 20+ hours.

Professional recognition

Institute of Highway Engineers (IHE) 

Accredited by the Institute of Highway Engineers (IHE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

Institution of Structural Engineers (IStructE) 

Accredited by the Institution of Structural Engineers (IStructE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

Chartered Institute of Highways and Transportation (CIHT) 

Accredited by the Chartered Institution of Highways and Transportation (CIHT) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

Institution of Civil Engineers (ICE) 

Accredited by the Institution of Civil Engineers (ICE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

Career options

Graduate employment may be found in public or private sectors in built environment disciplines, especially in the careers of civil engineering, transportation, public health or environmental engineering, dealing with many key activities such as utilities, construction, design, infrastructure, sustainability, environmental and traffic impacts and waste management. Skills developed will include rational thinking, integrative studies and recent knowledge of current issues such as legislative structures, sustainability challenges, design practices, research-led knowledge. Recent graduates have found professional employment in the UK Water Sector, Australian engineering industries, Scottish Local Authorities, Irish County Councils, major consulting engineers and in Research posts.



Read less
Instrumentation and control engineers are highly sought after in a range of industries including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure. Read more

Instrumentation and control engineers are highly sought after in a range of industries including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.

Course details

There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Instrumentation and Control Engineering - one-year full time
  • MSc Instrumentation and Control Engineering - two-years part time
  • MSc Instrumentation and Control Engineering (with Advanced Practice) – two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience.

The MSc Instrumentation and Control Engineering (with Advanced Practice) offers you the chance to enhance your qualification by completing an internship, research or study abroad experience in addition to the content of the one-year MSc. This programme helps you develop your knowledge and skills in instrumentation, electronics and control engineering. And you develop your ability to synthesise information from a variety of sources and make effective decisions on complex instrumentation and control engineering problems.

What you study

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

Examples of past MSc research projects:

  • effects of particle size on gas-solid flow measurement using dynamic electrostatic meters
  • an investigation of self-turning and predictive control with MATLAB
  • modelling and control of hot air blow rig PT326
  • wireless controlled car with data acquisition
  • BCD to 6-3-1-1 code converter design using VHDL
  • comparative evaluation of turning techniques for MPC
  • digital traffic signal controller design
  • proteus control board test site
  • design of temperature measurement system
  • control system design for stepping motor.

Course structure

Core modules

  • Data Acquisition and Signal Processing Techniques
  • Digital Control and Implementation
  • Hydrocarbon Production Engineering
  • Identification and Model Predictive Control
  • Project Management and Enterprise
  • Research and Study Skills
  • Research Project (Advanced Practice)
  • Robust Control Systems
  • Signal Conditioning and Data Processing

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Teaching

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

In addition to the taught sessions, you undertake a substantive MSc research project and the Advanced Practice module. This module enables you to experience and develop employability or research attributes and experiential learning opportunities in either an external workplace, internal research environment or by studying abroad. You also critically engage with either external stakeholders or internal academic staff, and reflect on your own personal development through your Advanced Practice experience.

How you are assessed

Assessment varies from module to module. It may include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Your Advanced Practice module is assessed by an individual written reflective report (3,000 words) together with a study or workplace log, where appropriate, and through a poster presentation.

Employability

An instrumentation and control engineer may be involved in designing, developing, installing, managing and maintaining equipment which is used to monitor and control engineering systems, machinery and processes. As a graduate you can expect to be employed in a range of sectors including industries involved with oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.



Read less
The Aerospace Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of aeronautical engineering. Read more
The Aerospace Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of aeronautical engineering. Particular prominence is given to Sustainable Aviation, Advanced Materials and Processes, Experimental Methods and Techniques, Computational Fluid Dynamics, Structural Analysis and Simulation, Flight Dynamics and Simulation, and Advanced Aircraft Systems, in particular Unmanned Aerial Vehicles.

An emphasis on applied technical work will strengthen the engineering development skills of students from an academic background. The programme is delivered by a specialist team of academics. Access to state of the art laboratory and computing facilities within the new Engineering and Computing building. Personal tutor support throughout the postgraduate study. Excellent links with a number of industrial organisations enable access to the latest technology and real-world applications.

WHY CHOOSE THIS COURSE?

The work carried out on this course will provide the demonstrable expertise necessary to help secure professional level employment in related industries.

The Aerospace Engineering MSc curriculum consists of eight mandatory core topics and a substantial MSc project. Successful completion of all elements leads to the award of MSc in Aerospace Engineering. Completion of the taught modules without a project leads to the award of a Post Graduate Diploma.

WHAT WILL I LEARN?

The mandatory study topics are as follows:
-Mathematical modelling in Aerospace Engineering
-Unmanned Aerial Vehicle Systems (UAV)
-Experimental Methods and Techniques
-Computational Fluid Dynamics (CFD)
-Advanced Materials and Processes
-Design and analysis of Aerospace structures
-Flight Dynamics and Simulation
-Project Management
-Individual Project

The substantial individual project gives students the opportunity to work on a detailed area of related technology alongside an experienced academic supervisor. Some projects are offered in conjunction with the work of the Faculty’s research centres or industry. Typical project titles include:
-Integration of Advanced Materials into Aircraft Structures
-Sustainable Aircraft Development and Design
-Intelligent Power Generation
-UAV SWARM Systems

You will have access to:
-Unique Flight Simulator Suite (3 flight simulators, 2 UAV ground control systems plus the associated UAV,1 Air Traffic Control unit);
Harrier Jump Jet;
-New bespoke Mercedes-Petronas low speed wind tunnel and associated measurement;
-Faculty workshop (metal/woodwork), Composites Laboratory, Metrology Laboratory, Electrical Laboratory, Communications and Signal Processing Laboratory, Cogent Wireless Intelligent Sensing Laboratory
-Faculty Open Access Computer Facilities

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

The specialist topics studied on the programme will prepare you for work in specialist companies involved with aeronautical engineering. There are also many roles in related industries that rely on the technology. Possible destinations include:
-Design, Development, Operations and Management;
-Projects/Systems/Structural/Avionics Engineers.

Typical student destinations include:
-BAE Systems
-Rolls-Royce
-Airbus
-Dassult

Opportunities also exist to complete a PhD research degree upon completion of the master’s course:
-Research at Coventry University
-Cogent Computing
-Control Theory and Applications Centre
-Distributed Systems and Modelling

Aerospace Engineering MSc has been developed to improve upon the fundamental undergraduate knowledge of aerospace/aeronautical students and help mechanical students learn more about the application of their subject to aircraft. The whole aerospace/aviation industry is committed to a more sustainable and a more efficient future. The techniques, methods and subjects covered in this degree explore the ever changing industrial environment in more detail.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
The Master of Science program in Telecommunications Engineering features an advanced and innovative curriculum with multidisciplinary courses in the areas of Internet services and applications, communication systems, multimedia signal processing, optical and radio technologies, and remote sensing. Read more

Mission and goals

The Master of Science program in Telecommunications Engineering features an advanced and innovative curriculum with multidisciplinary courses in the areas of Internet services and applications, communication systems, multimedia signal processing, optical and radio technologies, and remote sensing.

Students can select four possible tracks (all taught in English):
- Photonics and Radio
- Communication Networks
- Signals
- Internet Engineering (in cooperation with MSc in Computer Science and Engineering)

or define their personalized study program through a large set of available courses.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/telecommunication-engineering/

Professional opportunities

Our graduates are engineers that are expert in the design of communication systems, in organizing and managing communication networks that are part of the big Internet, and in the defining and customizing communication services. Career opportunities are available not only in the traditional sector of Telecommunications (operators and manufacturers) but in many others for which the communication services are crucial (like finance, energy, production, public services, commerce, etc.)

For more information visit the web site: http://commtech.dei.polimi.it/en/

Presentation

See http://www.polinternational.polimi.it/uploads/media/Telecommunication_Engineering_01.pdf
Communication Technologies provide the infrastructures, the services, and the applications to the users of the Information Society around the globe: electronic commerce, real-time multimedia applications, secure banking transactions, remote medical diagnosis, exchange of music and video clips on both fixed and mobile devices, technologies for observing the earth’s surface and interior for land monitoring and oil prospecting. The Master of Science in Telecommunications Engineering aims at producing engineers that are experts in the design of communication systems, in organizing and managing communication networks that are part of the big Internet, and in the defining and customizing communication services. It offers a wide range of specialization opportunities that stimulate the creativity of the students in the areas of networking, signal processing, transmission systems, and radio communications.
The programme is taught in English.

Subjects

Five specializations available:
- Networks
- Communications
- Signals
- Technologies
- Internet Engineering (joint with MS in Computer Systems Eng.)

The mandatory courses include:
- Traffic theory
- Network design
- Digital communications,
- Digital signal processing,
- Operations Research

The optional specializing courses include:
- Wireless Networks,
- Multimedia Internet,
- Internet of Things,
- Audio and video signals
- Wireless systems,
- Antennas and propagation,
- Network security and cryptography
- Radar and localization systems,

For more information please visit: http://commtech.dei.polimi.it

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/telecommunication-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/telecommunication-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This course is designed in collaboration with transport industry partners to equip you to meet the needs of the rail and road industries. Read more

This course is designed in collaboration with transport industry partners to equip you to meet the needs of the rail and road industries. There is an increased demand for advancements in electrical, electronic, control and communication systems for transport, with a particular focus on themes like higher efficiency and sustainability, safety and driving assistance, position and traffic control for smart transport planning. 

Modern electrical, electronic, control and communication systems for intelligent transport require today engineers with a combination of skills and solutions from cross-disciplinary abilities spanning electrical, electronic, control and communications. In this context, the overall aim of this Conversion Masters is to provide you with an enriching learning experience, and to enhance your knowledge and skill-base in the area of modern road vehicle and rail transport systems design.

This conversion course is intended both for engineers in current practice and for fresh honours graduates to facilitate their professional development, mobility and employability.

This course aims to enhance your knowledge and skills in the area of intelligent and efficient transport systems design. You will develop advanced practical skills that will help you determine system requirements, select and deploy suitable design processes and use the latest specialist tool chains to test and/or prototype a device or algorithm. The programme will help you acquire the cross-disciplinary skills and abilities that today are vital to be able to implement effective solutions for modern electrical, electronic and communication systems applied to intelligent transport. The broad range of disciplines covered by the course will enable you to enter a career that requires a cross-disciplinary approach with a practical skillset. 

The subject areas covered within the course offer you an excellent launch pad which will enable you to enter into this ever expanding, fast growing and dominant area within the electrical engineering sector, and particularly in the area of intelligent and efficient transport systems. Furthermore, the course will provide the foundations required to re-focus existing knowledge and enter the world of multi-disciplined jobs.

Course structure

Core Modules

Career path

The course provides the foundations required to re-focus existing knowledge and enter the world of multi-disciplined jobs. Graduates can expect to find employment, for example, as Electrical systems design engineers; Control systems engineers, Transport systems engineers; Plant control engineers; Electronic systems design engineer; Communication systems design engineers; Sensor systems engineers; Computer systems engineer. Examples of typical industries of employment can be: Transport; Automobile; Aviation; Electrical systems; Electronic systems; Assembly line manufacturers; Robotics and home help; Toy; Communication systems; Logistics and distribution; Consumer industry; Life-style industry; Security and surveillance; Petro-chemical.



Read less

Show 10 15 30 per page



Cookie Policy    X