• Ulster University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Queen Mary University of London Featured Masters Courses
  • Loughborough University Featured Masters Courses
  • Loughborough University London Featured Masters Courses
  • Arden University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
De Montfort University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Bradford Featured Masters Courses
University of Reading Featured Masters Courses
Northumbria University Featured Masters Courses
"traffic" AND "engineerin…×
0 miles

Masters Degrees (Traffic Engineering)

  • "traffic" AND "engineering" ×
  • clear all
Showing 1 to 15 of 74
Order by 
Civil engineering is key to economic and social stability throughout the world. From roads and bridges to skyscrapers and airports, modern civil engineers plan, design, construct and manage the large-scale public works and amenities that underpin our society. Read more

Why take this course?

Civil engineering is key to economic and social stability throughout the world. From roads and bridges to skyscrapers and airports, modern civil engineers plan, design, construct and manage the large-scale public works and amenities that underpin our society.

This course is a dynamic mix of specialist civil engineering knowledge and essential learning of current technical and practical methods.

What will I experience?

On this course you can:

Create your own designs and models in response to industry-relevant civil engineering demands
Apply your skills to real-life practical problems as part of our partnership schemes with local and global organisations
Venture overseas on a European exchange programme or do a paid work placement in industry

What opportunities might it lead to?

This course will lead you to a recognised professional qualification in civil engineering. It is accredited by the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT) and the Institute of Highway Engineers (IHE).

It fully satisfies the educational base for a Chartered Engineer (CEng) under the UK Standard for Professional Engineering Competence (UK-SPEC). We maintain excellent links with these professional bodies and regularly update and advise you on matters relating to your progress to professional status.

Here are some routes our graduates have pursued:

Civil engineering
Site engineering
Project management

Module Details

Year one

During your first year you will study fundamental engineering principles and be introduced to the key theories upon which civil engineering practice is based.

Core units include:

Construction Management and Practice
Engineering Analysis
Professional Development 1
Soils and Materials 1
Understanding Structures - Analysis and Design
Water and Environmental Engineering

Year two

In year two you will extend your understanding and ability to analyse complex civil engineering systems.

Core units include:

Behaviour of Structures
Design of Structural Elements
Numerical Skills and Economics
Professional Development 2
Soils and Materials 2

Options to choose from include:

Diving and Underwater Engineering A
Diving and Underwater Engineering B
Fieldwork for Civil Engineers
Heritage Property
Introduction to Project Management Principles
Water Infrastructure

Years three and four*

During your final two years you will build on all the knowledge you have acquired enabling you to analyse, design and manage civil engineering systems in an integrated manner. You will develop practical proposals for complex civil engineering problems in a simulated professional organisation. You will also complete a dissertation on a topic of your choice and a design project, which covers the practical application of knowledge and techniques in the identification, design and management of a simulated major construction project.

Year three

Core units include:

Professional Development 3
MEng Individual Research Project
Project Management for Civil Engineers
Design of Bridges
Soils and Materials 3
Year four

Core units are:

Advanced Engineering Science
Environmental Management
Integrated Design Project

*This course is also available as a 5-year sandwich (work placement)

Programme Assessment

You will be taught through a combination of lectures, seminars, tutorials and group work, and be fully supported throughout your degree. We promote many practical teaching methods by way of lab and fieldwork supplying you with proactive, hands-on learning opportunities.

We guarantee sustained feedback to make sure your studies are on track. Providing you with valuable skills and experience, you will be assessed in a variety of ways, including:

Written exams
Web assessments
Essays and reports
Project presentations
A 10,000-word dissertation

Student Destinations

Working in the construction and engineering sector will make an interesting, challenging and rewarding career. There will be a wide range of roles within the construction industry open to you once you have completed your studies.

This course is an appropriate first degree leading to a recognised professional qualification in civil engineering should you wish to continue your studies. What’s more, it also meets the entry requirements for many of the major graduate engineering programmes.

Overall, you will be a versatile graduate who will have the employable skills to secure work in many areas of the job market.

Roles our graduates have taken on include:

Structural engineer
Construction manager
Design engineer
Highway engineer
Envinronmental and drainage engineer
Site engineer
Traffic engineer
Assistant engineer

Read less
You will take eight Assessed Modules plus an Individual Project carried out in the department. Six of the modules cover core Software Engineering methods, practices and tools, and are compulsory. Read more
You will take eight Assessed Modules plus an Individual Project carried out in the department. Six of the modules cover core Software Engineering methods, practices and tools, and are compulsory. For the remaining two modules, you will be able to choose from Natural Language Processing, Topics in Privacy & Security, Evolutionary Computation, Concurrent & Real-Time Programming, and Functional Programming Technology.

Software Engineering has become a crucial discipline in the functioning of the modern world. Information systems, communications, transport, manufacturing and services all require well-engineered and reliable software. The focus of our MSc in Software Engineering is automated and large-scale software engineering, so the course will equip you to deal with the types of systems widely found in industry.

The MSc is a full-time, one-year course for those with some experience or background in Software Engineering. You will learn up-to-date theory and practice in the core areas of Software Engineering, and the main methods and tools used in industry. The course also covers model-driven engineering, service-oriented architectures, software architectures and user-centred design. You will gain a thorough understanding of techniques and practices of software management, including measurement and testing. This in-depth understanding of the role of software in commercial organisations will enable you to develop and maintain large-scale software systems.

You will gain a thorough understanding of techniques and practices of software management, including measurement and testing. These techniques will allow you to understand the role of software in commercial organisations and you will be able to develop and maintain these large scale systems.

Course Aims
When you graduate, you will be able to apply advanced Software Engineering techniques to analyse systems and design solutions, particularly in a commercial context. You will have experience of using state-of-the-art Software Engineering tool suites (e.g., Eclipse and Epsilon). You will also understand the human factors in Software Engineering, and will be able to design systems taking into account the needs of users.

Your individual project gives you the chance to specialise in a specific area of Software Engineering, as you will undertake independent research and apply your results to develop a real solution – an application, tool or technique.

On graduation, you will be equipped to design and maintain large systems in a wide range of industries, or to pursue an academic research career in Software Engineering.

Learning Outcomes
A thorough grounding and practical experience in the use of state-of-the-art techniques for developing software-based systems.
An in-depth understanding of the principles underpinning these techniques, so as to make sound judgements throughout the systems and software engineering life cycle.

Project

Team Project
You are taught a broad range of project management skills, which you will directly apply to a medium-sized software project that is conducted in small student teams.

Individual Project
The course concludes with your individual project. You may choose a topic among the many offered by the academic staff, or you may propose your own topic. Some recent topics were:
-Air Traffic Control application using PostgreSQL
-Automated Development of Graphical Editors built atop Graphiti
-Multi-Agent Reinforcement Learning: Conquest of Mars
-Natural Disaster Planning - A System of Systems Analysis
-Reinforcement Learning for Mobile Cognitive Radio Agents
-Simulation-based Hazard Analysis for Autonomous Robots
-Study of Business Processes in a Complex Enterprise System
-Using heuristics for Monte Carlo Tree Search

Careers

Here at York, we're really proud of the fact that more than 97% of our postgraduate students go on to employment or further study within six months of graduating from York. We think the reason for this is that our courses prepare our students for life in the workplace through our collaboration with industry to ensure that what we are teaching is useful for employers.

Our postgraduate taught courses are specifically designed to meet the needs of industry, and the thorough grounding we provide, alongside the skills you learn from undertaking a Masters degree, will stand you in good stead in the workplace.

Read less
If you are an ambitious engineering graduate – from a civil, mechanical, computing or electronic engineering background – this course is a smart route to a career in the expanding field of transport consultancy and public policy. Read more

If you are an ambitious engineering graduate – from a civil, mechanical, computing or electronic engineering background – this course is a smart route to a career in the expanding field of transport consultancy and public policy.

97% of our graduates find employment in a professional or managerial role, or continue with further studies.*

Learn to develop solutions to engineering problems that fit the broader aims of transport and planning policy, from academics with an international reputation whose research sets industry standards. This includes studying the principles of transport engineering and data collection and analysis. Other options include:

  • Traffic management
  • Road geometry and infrastructure
  • System dynamics
  • Road safety management
  • Public transport planning.

Develop an early understanding of four-stage modelling before gaining hands-on experience of SATURN and other Leeds-built models so that you become fluent in their use in live environments.

Deepen your knowledge of:

  • Engineering design principles
  • Integrated transport networks - road, rail, and aviation
  • Refining models to fit local contexts.

And experience what it is like to be part of a project team working across disciplinary boundaries within the transport sector. Through this, gain insights into how engineering, planning, economics, environmental science and modelling can work together to develop sustainable solutions to global challenges. This industry-inspired approach will enable you to apply your knowledge to real-world issues in the field.

Your colleagues will be among the best and brightest from Latin America to the Far East, from Africa to Europe and the UK. Together you will learn engineering techniques that will help you develop transport networks that are founded on fundamental principles, robust evidence, sustainable and equitable principles, state-of-the-art modelling, accurate data analysis, and an understanding of human psychology.

This course provides you with a clear pathway to the Transport Planning Professional (TPP) qualification and is accredited by the major professional bodies in the transport sector, including Chartered Institute of Logistics and Transport (CILT UK) and Chartered Institution of Highways and Transport (CIHT).

ITS – the global institute teaching the transport leaders of tomorrow.

*Higher Education Statistics Agency (HESA), Destinations of Leavers from Higher Education (DLHE) 2015, http://www.hesa.ac.uk

We have redesigned our suites of courses following close consultation with Industry and academia.

With a strong focus on industry needs, our degrees will prepare you for employment in your chosen field. They will also address the multi-disciplinary nature of transport – enabling you to make effective decisions for clients, employers and society.

And to experience what it’s really like to work in the transport sector, collaborate with a project team of students from our other degrees through our new Transport Integrated Project module.

Research environment

The Institute for Transport Studies (ITS) was established as the UK’s first multi-disciplinary transport department, and we continue to lead the field with our research.

Our reputation allows us to invest in world-class facilities, such as the University of Leeds Driving Simulator – one of the most sophisticated in any university in the world, allowing us to research driver behaviour in controlled lab conditions. We also have access to a variety of specialist software tools including those we’ve developed in-house such as SATURN, PLUTO, DRACULA, MARS and KonSULT.

Other Study Options

This programme is available part time, allowing you to combine study with other commitments. You can work to fund your studies, or gain a new qualification without giving up an existing job. We aim to be flexible in helping you to put together a part-time course structure that meets your academic goals while recognising the constraints on your study time.

You can also study this subject at Postgraduate Diploma level, part time or full time, or at Postgraduate Certificate level with our PGCert in Transport Studies.

Accreditation

This programme is recognised by the major professional bodies in the transport sector. It fulfils the educational requirements for membership of the Chartered Institute of Logistics and Transport (CILT UK) and the Chartered Institution of Highways and Transportation (CIHT) and provides a pathway towards the Transport Planning Professional (TPP) qualification.

It is also accredited as meeting the requirements for technical Further Learning for Chartered Engineer (CEng) status for candidates who have already acquired a CEng accredited BEng (Hons). Please see the Joint Board of Moderators website for further information.

Course structure

Compulsory modules

  • Shaping Future Transport Systems 15 credits
  • Principles of Transport Modelling 15 credits
  • Transport Data Collection and Analysis 15 credits
  • Principles of Transport Engineering 15 credits
  • Transport Dissertation 60 credits
  • Transport Integrated Project 15 credits

Optional modules

  • Public Transport Planning and Management 15 credits
  • System Dynamics: Modelling Policy 15 credits
  • Traffic Management 15 credits
  • Road Geometry and Infrastructure 15 credits
  • Traffic Network Modelling 15 credits
  • Deterioration and Maintenance of Pavements 15 credits

For more information on typical modules, read Transport Planning and Engineering MSc(Eng) Full Time in the course catalogue

For more information on typical modules, read Transport Planning and Engineering MSc(Eng) Part Time in the course catalogue

Learning and teaching

Postgraduate study involves a range of teaching methods, supported by independent learning. In addition to the traditional lecture and seminar formats, you’ll experience a blend of workshops, computer exercises, practical sessions, directed reading, reflective journal, student-led discussions, fieldwork and tutorials.

Assessment

Assessment is equally varied and can include coursework essays, case-study reports, group assignments, posters, presentations and exams.

Career opportunities

Links with industry

ITS has close working relationships with a number of organisations and many employers visit ITS each year to interview our students for graduate schemes and other vacancies. ITS also regularly circulates specific job vacancies to students.

Our students are highly sought after and have a good reputation with transport consultants, and may receive a job offer before or shortly after graduation.



Read less
Commercial products today combine many technologies, and industry is increasingly interdisciplinary. This course is designed to meet this demand, giving you an interdisciplinary knowledge base in modern electronics including power, communications, control and embedded processors. Read more

Commercial products today combine many technologies, and industry is increasingly interdisciplinary. This course is designed to meet this demand, giving you an interdisciplinary knowledge base in modern electronics including power, communications, control and embedded processors.

You’ll develop a broad grasp of a range of interlocking disciplines, combining core modules developing your practical lab skills and industry awareness with a range of optional modules that allow you to focus on topics that suit your interests or career plans. Next-generation silicon technologies, electric drives and generating electric power from renewable sources are among the topics you could study.

This course will appeal to people with a broad interest in electronics and communications, as well as those who are interested in modern communications techniques, radio propagation, cellular mobile systems, control systems, power and drives, and modern system on-chip technology.

Specialist facilities

Our School is an exciting and stimulating environment where you’ll learn from leading researchers in specialist facilities. These include our Keysight Technologies wireless communications lab, as well as labs for embedded systems, power electronics and drives.

Depending on your choice of project, you may have use of our Terahertz photonics lab, ultrasound and bioelectronics labs, class 100 semiconductor cleanroom, traffic generators and analysers, FPGA development tools, sensor network test beds.

The School also contains facilities for electron-beam lithography and ceramic circuit fabrication – and a III-V semiconductor molecular beam epitaxy facility. The Faculty is also home to the £4.3 million EPSRC National Facility for Innovative Robotic Systems, set to make us a world leader in robot design and construction.

Accreditation

This course is accredited by the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.

Course content

Throughout the course you’ll choose from a range of optional modules that allow you to pursue topics across electronic and electrical engineering as they relate to your interests or career plans. You could focus on FPGA design for system-on-chip, wireless communications systems nano-electromechanical systems among many others to gain a broad and deep understanding a range of subjects.

A set of core modules will support your learning. You’ll take part in a range of experiments linked to your subject on our lab module, and you’ll develop your skills in programming. If you have no experience of C programming you’ll take the Programming module, or you can take Software Development if you already have those skills.

To build your understanding of the global electronics industry, you’ll also complete a dissertation. This could take the form of a business, manufacturing or outsourcing plan, a proposal for research funding or an essay on a specific aspect of the industry.

Over the summer months you’ll also work on your research project. This may give you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in computer science and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Electronic and Electrical Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Industry Dissertation 15 credits
  • Mini Projects and Laboratory 15 credits
  • Main Project 45 credits

Optional modules

  • Wireless Communications Systems Design 15 credits
  • Micro- and Nano-Electromechanical Systems 15 credits
  • Power Electronics and Drives 15 credits
  • Electric Power Generation by Renewable Sources 15 credits
  • Electric Drives 15 credits
  • FPGA Design for System-on-Chip 15 credits
  • Control Systems Design 15 credits
  • Embedded Microprocessor System Design 15 credits
  • Medical Electronics and E-Health 15 credits
  • Programming 15 credits
  • Software Development 15 credits

For more information on typical modules, read Electronic and Electrical Engineering MSc(Eng) in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects by students in the School of Electronic and Electrical Engineering have included:

  • Wireless sensor networks, the internet of things and bicycle traffic in the city.
  • Device to Monitor Activity of Ageing People
  • Wind turbine strain gauge system
  • Wind turbine teaching demonstrator
  • Virtual Machines Placement in Core Networks with Renewable Energy
  • Design and Analysis of High-Performance Internet Routers
  • Spatial Modulation for Massive MIMO System
  • Fuel cell for energy storage
  • Low cost design and fabrication of 3D MEMS components
  • Ultrasonic Wind Speed Detection
  • Core Quantum Networks
  • Microwave Low Noise Amplifier

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

Graduates of this course can expect to find jobs where industry needs a breadth of knowledge matched by a depth in certain areas.

You’ll be well equipped to integrate and co-ordinate the strands of a cross-disciplinary project and manage the interfaces between specialities. With these skills, you’ll be in a good position to progress to project management roles in companies working at the cutting edge of modern multi-faceted systems.

General Electric, AECOM, Deep Sea Electronics, Hyperdrive Innovation, Descon Engineering, Broadcom, Pakistan Oilfields Ltd., Wabtec Rail UK and many others are among the organisations where graduates from our School have found employment.



Read less
The huge growth of processing power, now available in small power-efficient packages, has fuelled the digital revolution, which has touched all sectors of the economy. Read more

The huge growth of processing power, now available in small power-efficient packages, has fuelled the digital revolution, which has touched all sectors of the economy. This practically orientated, advanced course in the area of electronics design and applications provides a strong digital technology core backed with applications-led modules.

You’ll study applications as diverse as medical and electronics, e-health, intelligent building design, automotive electronics, retail and commerce to prepare you for a range of careers in industry, where the skills you gain will be in high demand. A substantial element of practical work will give you confidence with software and digital hardware implementations using microcontrollers, FPGA, DSP devices and general system-on-chip methodology.

You’ll be taught by experts informed by their own world-leading research, and you’ll have access to world-class facilities to prepare for a career in a fast-changing industry.

Our School is an exciting and stimulating environment where you’ll learn from leading researchers in specialist facilities . These include our Keysight Technologies wireless communications lab, as well as labs for embedded systems, power electronics and drives, ultrasound and bioelectronics.

There’s also a Terahertz photonics lab, class 100 semiconductor cleanroom, traffic generators and analysers, FPGA development tools, sensor network test beds. We have facilities for electron-beam lithography and ceramic circuit fabrication – and a III-V semiconductor molecular beam epitaxy facility.

Accreditation

This course is accredited by the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.

Course content

The programme is built around a set of core modules that will develop your knowledge and skills areas such as digital signal processing, embedded microprocessor systems and how electronics and communications technology could be used in healthcare. You’ll also take a core lab-based module to give you experience of different circuits, systems, equipment and tools.

Optional modules will give you the chance to develop specialist knowledge. If you don’t have any experience of C programming, you’ll take Programming – otherwise, you can choose to take either this module of Software Development. Then you’ll choose one additional module specialising either in data communications and network security or the principles of digital wireless communications.

To build your understanding of the global electronics industry, you’ll also complete a dissertation. This could take the form of a business, manufacturing or outsourcing plan, a proposal for research funding or an essay on a specific aspect of the industry.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in computer science and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Embedded Systems Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Industry Dissertation 15 credits
  • Digital Signal Processing for Communications 15 credits
  • Mini Projects and Laboratory 15 credits
  • FPGA Design for System-on-Chip 15 credits
  • Digital Media Engineering 15 credits
  • Embedded Microprocessor System Design 15 credits
  • Medical Electronics and E-Health 15 credits
  • Main Project 45 credits

Optional modules

  • Digital Wireless Communications Principles 15 credits
  • Data Communications and Network Security 15 credits
  • Programming 15 credits
  • Software Development 15 credits

For more information on typical modules, read Embedded Systems Engineering MSc(Eng) in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The research project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

A proportion of projects are formally linked to industry, and may include spending time at the collaborator’s site over the summer.

Career opportunities

Embedded systems are ubiquitous in engineering and graduates are likely to find employment in a wide and diverse range of industries including: communications, automotive, transport, construction, industrial, automation, energy and environmental monitoring

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UK’s leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website



Read less
The Aerospace Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of aeronautical engineering. Read more
The Aerospace Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of aeronautical engineering. Particular prominence is given to Sustainable Aviation, Advanced Materials and Processes, Experimental Methods and Techniques, Computational Fluid Dynamics, Structural Analysis and Simulation, Flight Dynamics and Simulation, and Advanced Aircraft Systems, in particular Unmanned Aerial Vehicles.

An emphasis on applied technical work will strengthen the engineering development skills of students from an academic background. The programme is delivered by a specialist team of academics. Access to state of the art laboratory and computing facilities within the new Engineering and Computing building. Personal tutor support throughout the postgraduate study. Excellent links with a number of industrial organisations enable access to the latest technology and real-world applications.

WHY CHOOSE THIS COURSE?

The work carried out on this course will provide the demonstrable expertise necessary to help secure professional level employment in related industries.

The Aerospace Engineering MSc curriculum consists of eight mandatory core topics and a substantial MSc project. Successful completion of all elements leads to the award of MSc in Aerospace Engineering. Completion of the taught modules without a project leads to the award of a Post Graduate Diploma.

WHAT WILL I LEARN?

The mandatory study topics are as follows:
-Mathematical modelling in Aerospace Engineering
-Unmanned Aerial Vehicle Systems (UAV)
-Experimental Methods and Techniques
-Computational Fluid Dynamics (CFD)
-Advanced Materials and Processes
-Design and analysis of Aerospace structures
-Flight Dynamics and Simulation
-Project Management
-Individual Project

The substantial individual project gives students the opportunity to work on a detailed area of related technology alongside an experienced academic supervisor. Some projects are offered in conjunction with the work of the Faculty’s research centres or industry. Typical project titles include:
-Integration of Advanced Materials into Aircraft Structures
-Sustainable Aircraft Development and Design
-Intelligent Power Generation
-UAV SWARM Systems

You will have access to:
-Unique Flight Simulator Suite (3 flight simulators, 2 UAV ground control systems plus the associated UAV,1 Air Traffic Control unit);
Harrier Jump Jet;
-New bespoke Mercedes-Petronas low speed wind tunnel and associated measurement;
-Faculty workshop (metal/woodwork), Composites Laboratory, Metrology Laboratory, Electrical Laboratory, Communications and Signal Processing Laboratory, Cogent Wireless Intelligent Sensing Laboratory
-Faculty Open Access Computer Facilities

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

The specialist topics studied on the programme will prepare you for work in specialist companies involved with aeronautical engineering. There are also many roles in related industries that rely on the technology. Possible destinations include:
-Design, Development, Operations and Management;
-Projects/Systems/Structural/Avionics Engineers.

Typical student destinations include:
-BAE Systems
-Rolls-Royce
-Airbus
-Dassult

Opportunities also exist to complete a PhD research degree upon completion of the master’s course:
-Research at Coventry University
-Cogent Computing
-Control Theory and Applications Centre
-Distributed Systems and Modelling

Aerospace Engineering MSc has been developed to improve upon the fundamental undergraduate knowledge of aerospace/aeronautical students and help mechanical students learn more about the application of their subject to aircraft. The whole aerospace/aviation industry is committed to a more sustainable and a more efficient future. The techniques, methods and subjects covered in this degree explore the ever changing industrial environment in more detail.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
The Master of Science program in Telecommunications Engineering features an advanced and innovative curriculum with multidisciplinary courses in the areas of Internet services and applications, communication systems, multimedia signal processing, optical and radio technologies, and remote sensing. Read more

Mission and goals

The Master of Science program in Telecommunications Engineering features an advanced and innovative curriculum with multidisciplinary courses in the areas of Internet services and applications, communication systems, multimedia signal processing, optical and radio technologies, and remote sensing.

Students can select four possible tracks (all taught in English):
- Photonics and Radio
- Communication Networks
- Signals
- Internet Engineering (in cooperation with MSc in Computer Science and Engineering)

or define their personalized study program through a large set of available courses.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/telecommunication-engineering/

Professional opportunities

Our graduates are engineers that are expert in the design of communication systems, in organizing and managing communication networks that are part of the big Internet, and in the defining and customizing communication services. Career opportunities are available not only in the traditional sector of Telecommunications (operators and manufacturers) but in many others for which the communication services are crucial (like finance, energy, production, public services, commerce, etc.)

For more information visit the web site: http://commtech.dei.polimi.it/en/

Presentation

See http://www.polinternational.polimi.it/uploads/media/Telecommunication_Engineering_01.pdf
Communication Technologies provide the infrastructures, the services, and the applications to the users of the Information Society around the globe: electronic commerce, real-time multimedia applications, secure banking transactions, remote medical diagnosis, exchange of music and video clips on both fixed and mobile devices, technologies for observing the earth’s surface and interior for land monitoring and oil prospecting. The Master of Science in Telecommunications Engineering aims at producing engineers that are experts in the design of communication systems, in organizing and managing communication networks that are part of the big Internet, and in the defining and customizing communication services. It offers a wide range of specialization opportunities that stimulate the creativity of the students in the areas of networking, signal processing, transmission systems, and radio communications.
The programme is taught in English.

Subjects

Five specializations available:
- Networks
- Communications
- Signals
- Technologies
- Internet Engineering (joint with MS in Computer Systems Eng.)

The mandatory courses include:
- Traffic theory
- Network design
- Digital communications,
- Digital signal processing,
- Operations Research

The optional specializing courses include:
- Wireless Networks,
- Multimedia Internet,
- Internet of Things,
- Audio and video signals
- Wireless systems,
- Antennas and propagation,
- Network security and cryptography
- Radar and localization systems,

For more information please visit: http://commtech.dei.polimi.it

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/telecommunication-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/telecommunication-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Renewable energy and cutting carbon emissions now top the global environmental agenda. This programme addresses the fundamentals of renewable energy and shows how solar, wind and other such energy sources can be efficiently integrated into practical power systems. Read more

Renewable energy and cutting carbon emissions now top the global environmental agenda. This programme addresses the fundamentals of renewable energy and shows how solar, wind and other such energy sources can be efficiently integrated into practical power systems.

You’ll study core power engineering topics such as power electronic converters, machines and control alongside modules specific to renewable energy sources, on topics like power system modelling, analysis and power converters.

At the same time, you’ll study a unique set of modules on the efficient generation of electricity from solar and wind power, as well as integrating renewable generators into micro-grids, with stability analysis and active power management. Power electronics design is covered in depth, including conventional and emerging converter topologies and advances in semiconductor power devices.

You’ll be prepared to meet the renewable energy challenges of the 21st century in a wide range of careers.

School of Electronic and Electrical Engineering

Our School is an exciting and stimulating environment where you’ll learn from leading researchers in specialist facilities. These include our Keysight Technologies wireless communications lab, as well as labs for embedded systems, power electronics and drives.

Depending on your choice of research project, you may also have access to our labs in ultrasound and bioelectronics or our Terahertz photonics lab, class 100 semiconductor cleanroom, traffic generators and analysers, FPGA development tools, sensor network test beds. We have facilities for electron-beam lithography and ceramic circuit fabrication – and a III-V semiconductor molecular beam epitaxy facility.

Accreditation

This course is accredited by the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.

Course content

Core modules that run throughout the year will allow you to take part in different lab-based projects and explore different forms of renewable energy as well as how they can be integrated into electricity systems. You’ll also consider how renewable source-powered generations can be integrated into the grid and analysis and design of control systems.

To build your understanding of the global electronics industry, you’ll also complete a dissertation. This could take the form of a business, manufacturing or outsourcing plan, a proposal for research funding or an essay on a specific aspect of the industry.

You’ll complete your studies with three optional modules, selecting one from each of three pairs that cover different topics. If you have no experience of c-programming you’ll take a module that develops those skills, or another focusing on software development. You’ll choose between Power Electronics and Drives and Electric Drives and take another module from Energy Management and Conservation and Energy in Buildings.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in power electronics, power engineering and control and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Electrical Engineering and Renewable Energy Systems module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Industry Dissertation 15 credits
  • Mini Projects and Laboratory 15 credits
  • Grid-Connected Microgeneration Systems 15 credits
  • Micro-grid Laboratory 15 credits
  • Electric Power Generation by Renewable Sources 15 credits
  • Control Systems Design 15 credits
  • Main Project 45 credits

Optional modules

  • Energy Management and Conservation 15 credits
  • Micro- and Nano-Electromechanical Systems 15 credits
  • Power Electronics and Drives 15 credits
  • Electric Drives 15 credits
  • Programming 15 credits
  • Software Development 15 credits

For more information on typical modules, read Electrical Engineering and Renewable Energy Systems MSc(Eng) in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings. Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The research project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects by students on this programme have included:

  • Power Flow Control of a Distribution Network using FACTS Devices
  • Module Integrated Converters for Photovoltaic Energy Systems
  • Modelling and Control of Parallel Connected Inverters
  • Power Regulation in the Power System using an Energy Storage Device
  • Application of Current Source Converters to Power Flow Control in a Power System
  • Control of a Renewable Energy System based Microgrid having an Energy Storage System as Backup
  • Control of a Grid Connected Wind Energy System under Abnormal Operating Conditions
  • DC-AC Inverter for grid-side connection of an induction generator
  • Modelling and control of a DC motor simulating a wind turbine

Career opportunities

Renewable energy and efficient power conversion systems are of immense importance worldwide and graduates of this course can expect to find jobs in a wide variety of industries including the electronics, automotive, transport, construction, industrial automation, power utility, energy, oil and environmental sectors.

You’ll be well-placed to develop practical solutions to the problem of integrating renewable energy systems into established electricity distribution networks. You should be able to contribute to strategic planning, systems implementation and operation of sustainable power generation systems.

This programme is also excellent preparation for PhD study. 



Read less
Our Transport and Operations Research Group is a leading centre of transport technology in Europe. We conduct world leading research that has commercial impact. Read more
Our Transport and Operations Research Group is a leading centre of transport technology in Europe. We conduct world leading research that has commercial impact. You will be able to develop your work into ground breaking research through working with our experts.

By pursuing research in the School of Civil Engineering and Geosciences you will join an extremely successful research group focussing on transport and civil engineering. Our mission is to foster, promote and conduct research of international quality. This means that we attract high quality graduates and researchers and train them to international standards.

Research into transport and civil engineering is conducted by our Transport Operations Research Group (TORG), one of the leading centres of transport technology in Europe. We are central to key research in areas such as road user charging and smartcards, developing both the policy ideas and the underlying technologies.

We are currently running a world-leading trial in electric vehicles and public charging infrastructure in the north east of England. This research is informing policy, international standards development and its impact on energy demand and environmental emissions. We have also developed a low-cost wireless sensing technology, Motes, which is being used to monitor traffic pollution, help develop strategies to manage traffic demand and reduce emissions. This world-leading technology is being used commercially by several local authorities and it is being assessed for deployment in a number of high profile international cities.

Our main research areas are:
-Land use and network models
-Passenger transport and policy
-Transport and the environment
-Infrastructure design and telematics

We supervise MPhil and PhD students in the following areas:
-Freight and traffic loading
-Public transport management and operations
-Traffic management and control
-Road traffic safety and accident analysis
-Transport emissions and the environment
-Transport telematics and image processing
-Intelligent transport systems (ITS)
-Travel behaviour
-Highway design and engineering
-Operating speed models
-Environmental impact and monitoring of transport activities

Delivery

During term time, TORG has weekly seminars where staff, current PhD students and invited speakers make presentations. The current research themes deal with:
-Transport telematics
-Public transport
-Transport and the environment
-Pollution and congestion
-Road-user charging and infrastructure

You have the opportunity to attend and make presentations at conferences, including the Universities' Transport Study Group Annual Conference.

Placements

We have extensive UK and international contacts so that research can be carried out in collaboration with industry and government agencies. Research projects are supervised by staff with a wide range of industrial and academic experience.

Read less
This Course is unique in Ireland for its breadth across a range of infrastructure disciplines such as water, waste, structures, highways, road safety, project management and sustainability, with strong emphases on design. Read more
This Course is unique in Ireland for its breadth across a range of infrastructure disciplines such as water, waste, structures, highways, road safety, project management and sustainability, with strong emphases on design. The knowledge and understanding covers key areas of civil and infrastructure engineering and meets the needs of graduates seeking chartered status. It has significant input from the expertise of a blend of current practitioners and research-led academics, with inter-disciplinary teaching in design and sustainability modules; all of this is integrated and delivered within the principles and practice of sustainable development.

Visit the website: http://msc-infrastructure-engineering-ft-j

Course detail

- Description -

This technical master's programme focuses on design, this is grounded in technical modules covering waste, water, structural design, utilities, road safety and highways, and supported by project management and sustainable development; Dissertation brings research-led studies and unique knowledge with industrial linkages. Sustainable Development is the key driver in design, delivery and assessment of curricula and material; also, content is set in the context of scholarly activity in which academic research is blended with professional knowledge and experience to provide a rich learning environment. Input from professionals as guest lecturers, mentors and advisors enhances the educational experience.

- Course purpose -

It is designed to provide:

(1) development of infrastructure engineering in the context of global sustainability and local drivers, by studying relevant theoretical concepts and making critical reflection on application;

(2) access to inter-disciplinary teaching and professional strengths of the Faculty's staff;

(3) innovation in teaching, learning and assessment, relating to current professional practice;

(4) leaders of infrastructure engineering for the future; and (5) opportunities for graduates and professionals to enhance their knowledge and skills through the application of appropriate methods.

- Teaching and learning assessment -

Teaching divided between lectures, tutorials, seminars, site visits and laboratory work according to the specific module and module assessment methods.

Assessment: combination of assignments and examination.

Career options

Graduate employment may be found in public or private sectors in built environment disciplines, especially in the careers of civil engineering, transportation, public health or environmental engineering, dealing with many key activities such as utilities, construction, design, infrastructure, sustainability, environmental and traffic impacts and waste management. Skills developed will include rational thinking, integrative studies and recent knowledge of current issues such as legislative structures, sustainability challenges, design practices, research-led knowledge. Recent graduates have found professional employment in the UK Water Sector, Australian engineering industries, Scottish Local Authorities, Irish County Councils, major consulting engineers and in Research posts.

How to apply: https://www.ulster.ac.uk/apply/how-to-apply#pg

Why Choose Ulster University ?

1. Over 92% of our graduates are in work or further study six months after graduation.
2. We are a top UK university for providing courses with a period of work placement.
3. Our teaching and the learning experience we deliver are rated at the highest level by the Quality Assurance Agency.
4. We recruit international students from more than 100 different countries.
5. More than 4,000 students from over 50 countries have successfully completed eLearning courses at Ulster University.

Flexible payment

To help spread the cost of your studies, tuition fees can be paid back in monthly instalments while you learn. If you study for a one-year, full-time master’s, you can pay your fees up-front, in one lump sum, or in either five or ten equal monthly payments. If you study for a master’s on a part-time basis (e.g. over three years), you can pay each year’s fees up-front or in five or ten equal monthly payments each year. This flexibility allows you to spread the payment of your fees over each academic year. Find out more by visiting https://www.ulster.ac.uk/apply/fees-and-finance/postgraduate

Scholarships

A comprehensive range of financial scholarships, awards and prizes are available to undergraduate, postgraduate and research students. Scholarships recognise the many ways in which our students are outstanding in their subject. Individuals may be able to apply directly or may automatically be nominated for awards. Visit the website: https://www.ulster.ac.uk/apply/fees-and-finance/scholarships

English Language Tuition

CELT offers courses and consultations in English language and study skills to Ulster University students of all subjects, levels and nationalities. Students and researchers for whom English is an additional language can access free CELT support throughout the academic year: https://www.ulster.ac.uk/international/english-language-support

Read less
Instrumentation and control engineers are highly sought after in a range of industries, including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure. Read more
Instrumentation and control engineers are highly sought after in a range of industries, including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.

Course details

This programme will help you develop your knowledge and skills in instrumentation, electronics and control engineering, and it will help you develop the ability to synthesise information from a variety of sources and make effective decisions on complex instrumentation and control engineering problems.

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

Examples of past MSc research projects:
-Effects of particle size on gas-solid flow measurement using dynamic electrostatic meters
-An investigation of self-turning and predictive control with MATLAB
-Modelling and control of hot air blow rig PT326
-Wireless controlled car with data acquisition
-BCD to 6-3-1-1 code converter design using VHDL
-Comparative evaluation of turning techniques for MPC
-Digital traffic signal controller design
-Proteus control board test site
-Design of temperature measurement system
-Control system design for stepping motor.

Core modules
-Digital Control and Implementation
-Hydrocarbon Production Engineering
-Identification and Model Predictive Control
-Project Management and Enterprise
-Research and Study Skills
-Robust Control Systems
-Signal Conditioning and Data Processing

MSc only
-Major Project

Modules offered may vary.

Teaching

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems.

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Employability

An instrumentation and control engineer may be involved in designing, developing, installing, managing and maintaining equipment which is used to monitor and control engineering systems, machinery and processes. Graduates can expect to be employed in a wide range of sectors, including industries involved with oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.

Read less
The programme provides a preparation particularly focused on issues of design, operation and maintenance of aircraft and their on-board systems. Read more

Mission and goals

The programme provides a preparation particularly focused on issues of design, operation and maintenance of aircraft and their on-board systems. The objective is to prepare highly culturally and professionally qualified technicians able to carry out and manage activities related to research and design in the fields of aerodynamics, materials, lightweight structures, aircraft systems and aerospace propulsion in national and international contexts, both in autonomy or in cooperation.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

Career opportunities

The graduate finds employment in aeronautical and space industries; in public and private bodies for experimentation in the aerospace field; in aircraft fleet management and maintenance companies; in air-traffic control agencies; in the airforce; in industries producing machinery and equipment in which aerodynamics and lightweight structures play a significant role.
Aeronautical engineers are particularly sought after in related fields. In fact, they may be involved in the design of terrestrial or nautical vehicles or large buildings or bridges or even in the design of power plants. Graduates are also in demand in the lightweight constructions industry, in the motor industry in the areas of monitoring the mechanical behaviour of structures subject to stress.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Aeronautical_Engineering.pdf
This programme aims at providing the students with specific skills in design, operation and maintenance of aircrafts and their on-board systems. The objective is to prepare culturally and professionally highly qualified technicians able to carry out and manage activities related to research and design in the fields of aerodynamics, materials, lightweight structures, aircraft systems and aerospace propulsion. Graduates can find employment in national and international contexts in aeronautical and space industries, public and private bodies for experimentation in the aerospace field, aircraft fleet management and maintenance companies, air-traffic control agencies, or in the air force. The track in Rotary wing is taught in English, while the other tracks are partially available in English.

Subjects

Specializations available:
- Aerodynamics
- Flight mechanics and systems
- Propulsion
- Structures
- Rotary-wing aircraft

Mandatory courses are:
- Aerodynamics
- Flight Dynamics
- Aerospace Structures
- Dynamics and control of aerospace structures

Other courses:
- Fundamentals of Aeroelasticity
- Nonlinear analysis of aerospace structures
- Fundamentals of Thermochemical propulsion
- Management of aerospace projects
- Gasdynamics
- Aircraft instrumentation & integrated systems
- Aircraft Design
- Heat transfer and thermal analysis
- Numerical modeling of differential problems
- Rotorcraft design
- Aircraft engines
- Airport and air traffic management
- Aerospace materials
- Communication skills
- Thesis

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The world is awash with data and much more is on the way, creating a tidal wave of Big Data. Data Engineers develop the infrastructure to store, manage, analyse this wave of data, to bridge the gap between Data and Computer Science. Read more
The world is awash with data and much more is on the way, creating a tidal wave of Big Data. Data Engineers develop the infrastructure to store, manage, analyse this wave of data, to bridge the gap between Data and Computer Science. This unique course will give you the skills you’ll need to succeed as a Data Engineer.

Why study Data Engineering at Dundee?

The role of “Data Scientist” has been described as the “sexiest job of the 21st Century. However, there is a emerging a new role, that of Data Engineer as more companies are realising they need employees with specific skills to handle the amount of data that is being generated and the coming tidal wave from the Internet of Things.

This MSc has been created with industry input to prepare its students with the skills to handle this wave of data and to be at the forefront of its exploitation. Students on the sister programmes (“Data Science” and “Business Intelligence”) have gone on to work for some of the biggest companies in the industry and we are confident that graduates from this MSc will have the same success.

The School of Computing at the University of Dundee has been successfully offering related MSc programmes such as Business Intelligence and Data Science since 2010. These innovative programmes attract around 40 students per year, drawn from across Europe and Overseas.

What's so good about Data Engineering at Dundee?

Our facilities:
You will have 24-hour access to our award winning and purpose-built Queen Mother Building. It has an unusual mixture of lab space and breakout areas, with a range of conventional and special equipment for you to use. It's also easy to work on your own laptop as there is wireless access throughout the building. Our close ties to industry allows us access to facilities such as Windows Azure and Teradata, and university and industry standard software such as Tableau for you to evaluate and use.

Special features

The University of Dundee has close ties with the Big Data industry, including Teradata, Datastax and Microsoft. We have worked with SAS, Outplay, Tag, GFI Max, BrightSolid and BIPB, and our students have enjoyed guest lectures from Big Data users such as O2, Sainsbury’s, M&S and IBM.

You will be able to work with a range of leading researchers and tutors, including top vision and imaging researchers and BI experts. Our honorary staff include legal experts, entrepreneurs and renowned industry experts such as John Richards of the newly formed IBM Watson Group.

How you will be taught

The course will be taught by staff of the School of Computing. Depending on the modules you take this will include Andy Cobley, Professor Mark Whitehorn, and Professor Stephen McKenna.

What you will study

The course will be taught in 20 credit modules with a 60 credit dissertation. Students will require to complete 180 credits for the award of the MSc (including 60 credits for the dissertation). Students completing 120 credits (without the dissertation) will be eligible for a Postgraduate Diploma.

Course content

Each module on the course is designed to give the student the skills and understanding they need to succeed in the Data Engineering/ Science field. Content on the course includes (but is not limited to):

CAP theorem
Lamda Architecture
Cassandra, Neo4j and other nosql databases
The Storm distributed real time computation system
Hadoop, HDFS, MapReduce, and other Hadoop/SQL technologies
Spark and Shark frameworks
Data Engineering languages such as Python, erlang, R, Matlab
Vision systems, which are becoming increasingly important in data engineering for extracting features from large quantities of images such as from traffic, medical and industrial
RDBMS systems which will continue to play an important role in data handing and storage. You will be expected to research the history of RDMBS and delve in to the internals of modern systems
OLAP cubes and Business Intelligence systems, which can be the best and quickest way to extract information from data stores
Goals of machine learning and data mining
Clustering: K-means, mixture models, hierarchical
Dimensionality reduction and visualisation
Inference: Bayes, MCMC
Perceptrons, logistic regression, neural networks
Max-margin methods (SVMs)
Mining association rules
Bayesian networks

How you will be assessed

The course is assessed through a combination of examinations, coursework, presentations and interviews. Each module is different: for instance the Big data module has 40% coursework, consisting of Erlang programming and a presentation on nosql databases, along with an examination worth 60%.

Careers

Our experience suggests that graduates of this course will have most impact in the following areas:

Cloud and web based industries that handle large volumes of fast moving data that need to be stored, analysed and maintained. Examples include the publishing industry (paper, TV and internet), messaging services, data aggregators and advertising services

Internet of Things. A large amount of data is being generated by devices (robotic assembly lines, home power management, sensors etc.) all of which needs to be stored and analysed.

Health. The NHS (and others) are starting to store and analyse patient data on an unprecedented scale. The healthcare industry is also combining data sources from a large number of databases to improve patient well-being and health outcomes

Games industry. The games industry records an extraordinary amount of data about its customers' play activities, all of which needs to be stored and analysed. This course will equip students with the knowledge and skill to engage with the industry.

Read less
The intercollegiate Transport with Sustainable Development MSc, offered in conjunction with Imperial College London, brings together the transport research and training capabilities of the civil engineering departments of the two universities. Read more
The intercollegiate Transport with Sustainable Development MSc, offered in conjunction with Imperial College London, brings together the transport research and training capabilities of the civil engineering departments of the two universities. Students benefit from the multi-disciplinary expertise of both departments and their 45 years' experience as leaders in this field.

See the website http://www.ucl.ac.uk/prospective-students/graduate/taught/degrees/transport-sustainable-development-msc

Key Information

- Application dates
All applicants:
Open: 5 October 2015
Close: 29 July 2016
Fees note: Fees set by Imperial College London

English Language Requirements

If your education has not been conducted in the English language, you will be expected to demonstrate evidence of an adequate level of English proficiency.
The English language level for this programme is: Set by Imperial College London
Further information can be found on http://www.ucl.ac.uk/prospective-students/graduate/life/international/english-requirements .

International students

Country-specific information, including details of when UCL representatives are visiting your part of the world, can be obtained from http://www.ucl.ac.uk/prospective-students/international .

Degree Information

Students gain the skills necessary to incorporate the concepts of sustainable development in all stages of an engineering project's development, together with a systematic understanding of the causes, motivations and means of personal travel and goods movement, and techniques for analysing transport problems and evaluating projects, plans and policies.

Students undertake modules to the value of 90 ECTS Credits.

- Core Modules
Transport and its Context
Quantitative Methods
Transport Economics
Transport Demand and its Modelling
The Concept of Sustainable Development
Sustainable Development and Engineering Innovation
Applying the Principles of Sustainable Development

- Options
Options may include the following:
Highway Engineering
Road Traffic Theory and its Application
Public Transport
Transport Safety and Risk Management
Quantitative Techniques for Transport Engineering and Planning
Advanced Transport Modelling
Understanding and Modelling Travel Behaviour
Transport and the Environment
Intelligent Transport Systems
Design of Accessible Transport Systems
Freight Transport
Air Traffic Management
Ports and Maritime Transport
Urban Street Planning and Design
Roads and Underground Infrastructure: Design, Construction and Maintenance

- Dissertation/report
All students undertake an independent research project which culminates in a special project of 12,000 words.

Teaching and Learning

The programme is delivered through a combination of lectures, seminars, computer-based work and coursework. Assessment is through unseen written examinations, coursework, an individual literature review, presentations and the dissertation focussing on the final project.

Further information on modules and degree structure available on the department web site Transport with Sustainable Development MSc http://www.cege.ucl.ac.uk/teaching/Pages/Postgraduate/Transport.aspx

Funding

This programme offers a number of bursaries, including awards from the Engineering and Physical Sciences Research Council, the Rees Jeffreys Road Fund and the Brian Large Fund.
For further information please visit: www3.imperial.ac.uk/cts/teaching.
Scholarships relevant to this department are displayed (where available) below. For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website http://www.ucl.ac.uk/prospective-students/scholarships .

- Brown Family Bursary - NOW CLOSED FOR 2015/16 ENTRY
Value: £15,000 (1 year)
Eligibility: UK students
Criteria: Based on both academic merit and financial need

- Commonwealth Shared Scholarship Scheme (CSSS)
Value: Full fees, flights, stipend, and other allowances (1 year)
Eligibility: Overseas students
Criteria: Based on both academic merit and financial need

- SPDC Niger Delta Postgraduate Scholarship - NOW CLOSED FOR 2015/16 ENTRY
Value: Tuition fees, plus stipend, flights and allowances. (1 year)
Eligibility: Overseas students
Criteria: Based on academic merit

More scholarships are listed on the Scholarships and Funding website http://www.ucl.ac.uk/prospective-students/scholarships

Careers

Transport graduates find employment with transport operators, consultancies, local and central governments in various countries, and in supranational organisations. Many graduates are employed by companies involved in the manufacture of instrumentation, and in companies specialising in software and other services for the engineering industry.

- Employability
Successful completion of this MSc meets the academic requirements for corporate membership of the Chartered Institute of Logistics and Transport. The programme is accredited by the Chartered Institution of Highways and Transportation. The programme is also accredited by the Institution of Civil Engineers as meeting the regulations of the Engineering Council's scheme for enabling graduates without an accredited Bachelor's degree in Civil Engineering to be considered for corporate membership and registration.

Why study this degree at UCL?

The Centre for Transport Studies is an energetic and exciting environment. Students benefit from engaging with the teaching staff who are actively involved in internationally leading research, and advising local, national and international transport agencies.

Both universities are located in the centre of one of the world's most exciting cities, near to relevant professional institutions and transport agencies. London provides a living laboratory in which students can observe many of the problems that they are studying, analyse the success or failure of current approaches to design, and operate and manage them.

Student / staff ratios › 95 staff including 43 postdocs › 200 taught students › 170 research students

Application and next steps

- Applications
Students are advised to apply as early as possible due to competition for places. Those applying for scholarship funding (particularly overseas applicants) should take note of application deadlines.

- Who can apply?
The Transport with Sustainable Development pathway is suitable for students who wish to direct their career towards issues of transport development and redevelopment, especially in the provision of infrastructure, and its renovation and renewal.

For more information see the Applications page http://www3.imperial.ac.uk/cts/teaching .

Read less
Degree. Master of Science (two years) with a major in Transportation Systems Engineering. Read more
Degree: Master of Science (two years) with a major in Transportation Systems Engineering

The Intelligent transport system master's programme focuses on the integration of telecommunications and information technology into vehicles and physical road infrastructure in order to achieve increased efficiency, safety and mobility while decreasing environmental impact.

The programme gives students the engineering and managerial skills required for the design, planning, analysis and management of transport systems. The focus lies on road transportation systems and public transport and the understanding of traffic congestion, air pollution and road accident prevention.

The ITS programme gives students the skills to understand and control transport systems through the use of optimisation and simulation tools and application of telecommunications and geographical information systems. Study areas also include traffic modelling and traffic simulation, as well as road safety issues and management skills. To prepare the students for management positions, language and oral and written communication courses are integrated in the programme.

During the course of the programme students will be able to specialise in areas such as traffic safety management, mobile and wireless telecommunications or mathematical modelling of traffic systems. The programme ends with a six month long degree project.

ITS students at Linköping University will be at the frontline of Swedish ITS research as Linköping University is the coordinating university of the Swedish National Postgraduate School of ITS. The university is also a member of ITS-EduNet, the network for Training and Education on Intelligent Transport Systems.

The Intelligent transport systems master's programme is designed to prepare students for a career as a traffic engineer or traffic planner in public or private organisations, or as a developer of products and services related to the transport sector. Students are also well prepared for a research career or for continuing their studies towards a PhD degree.

Welcome to the Institute of Technology at Linköping University!

Read less

Show 10 15 30 per page



Cookie Policy    X