• Imperial College London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Leeds Featured Masters Courses
University of Birmingham Featured Masters Courses
Coventry University Featured Masters Courses
University of Birmingham Featured Masters Courses
"tissue" AND "repair"×
0 miles

Masters Degrees (Tissue Repair)

  • "tissue" AND "repair" ×
  • clear all
Showing 1 to 15 of 24
Order by 
Human tissue repair after injury and in disease and the development of effective treatments are the focus of all biomedical research. Read more
Human tissue repair after injury and in disease and the development of effective treatments are the focus of all biomedical research. This MSc programme, taught by leading scientists and clinicians, provides an integrated approach to human tissue repair focusing on inflammation, immunotherapy and transplantation science, and preparation for PhD study and a career in biomedicine.

Degree information

The MSc will provide knowledge of the fundamentals of inflammation and immune response in human health and disease, cellular and molecular mechanisms of human tissue repair, the development of therapies designed to repair and restore tissue function, and treatments including immunotherapy, transplantation, tissue constructs and medical devices. Students will obtain additional practical, analytic and transferable skills essential in biomedical research.

Students undertake modules to the value of 180 credits. This programme consists of six core modules (90 credits), two specialisation optional modules (30 credits) and a research project (60 credits).

Core modules
-Principles of Immunology
-Practical Research Skills
-Principles of Inflammation
-Research Methodologies for Human Tissue Repair
-Tissue Repair and Regeneration
-Practical Cell Culture Analysis
-Students choose one of the following specialisation modules depending on the route they wish to follow: Inflammation; Immunotherapy; Transplantation Science:
-Immunological Basis of Disease
-Inflammation and Disease
-Transplantation Science

Optional modules - students choose two optional modules from their chosen specialisation route below:
-Inflammation specialisation
-Biological Molecules as Therapies
-Ethics, Translation & Commercialisation
-Immunological Basis of Disease
-Stem Cell Therapy
-Transplantation
-Immunotherapy specialisation
-Cell & Gene Therapy: Molecular and Clinical Aspects
-Ethics, Translations & Commercialisation
-Immunological Basis of Disease
-Stem Cell Therapy
-Transplantation
-Transplantation Science specialisation
-Applied Biomaterials
-Ethics, Translation & Commercialisation
-Immunological Basis of Disease
-Stem Cell Therapy
-Tissue Engineering

Dissertation/report
Students undertake a research project culminating in a dissertation.

Teaching and learning
The programme is delivered through a combination of seminars, lectures, e-learning, laboratory work and tutorials. Assessment is through examination, presentations, essays, practical reports and dissertation.

Careers

The programme will prepare students for further academic study and to work at the highest levels within the biomedical sciences. It will also provide the foundation for careers in the public healthcare sector and the NHS, in industry and biopharma, government and research councils, biomedical charities and stakeholders, sports medicine, and scientific media and publishing houses.

Employability
Students will gain awareness of the commercial opportunities and diverse funding mechanisms for the development of new ideas, technologies and applications. Our learning methods will prepare students for careers in academic or industrial biomedical sciences, as well as equipping them with transferable skills in presentation, writing, organisation and team work.

Why study this degree at UCL?

UCL offers a world-class research and teaching environment in biomedical sciences.

The UCL Divisions of Medicine and Surgery & Interventional Science jointly offer this MSc within the new Institute of Immunity and Transplantation (IIT) based at the Royal Free Campus, to deliver the only programme with an integrated multidisciplinary approach to learning about human tissue repair, regeneration and therapy.

The programme aims to harness basic, biomedical and clinical expertise and research strengths assembled from across UCL institutes and divisions and UCL partner hospitals, and together with industrial colleagues will provide world-leading cohesive teaching and training in inflammation, immunology, tissue engineering, transplantation, drug discovery and in understanding and treating human disease.

Read less
Human tissue repair after injury and in disease and the development of effective treatments is the focus of all biomedical research. Read more
Human tissue repair after injury and in disease and the development of effective treatments is the focus of all biomedical research. This MRes, taught by leading research scientists and clinicians, offers specialised training and provides a foundation year for a biomedical research career.

Degree information

The programme will provide knowledge of the fundamentals of inflammation and the immune response in human health and disease, cellular and molecular mechanisms of human tissue repair, and the development of therapies designed to repair and restore tissue function, treatments including immunotherapy, transplantation, tissue constructs and medical devices. Students will obtain additional practical, analytical and transferable skills essential in biomedical research.

Students undertake modules to the value of 180 credits. This programme consists of five core modules (75 credits), one specialisation optional module (15 credits) and a research project (90 credits).

Core modules
-Principles of Inflammation
-Principles of Immunology
-Tissue Repair and Regeneration
-Research Methodologies for Human Tissue Repair
-Practical Cell Culture Analysis
-Students choose one of the following specialisation modules depending on the route they wish to follow: Inflammation; Immunotherapy; Transplantation Science
-Immunological Basis of Disease
-Inflammation and Disease
-Transplantation Science

Dissertation/report
Students undertake a 6 month research project in a research laboratory.

Teaching and learning
The programme is delivered through a combination of seminars, lectures, e-learning, laboratory work, and practicals. Assessment is through examination, presentations, essays, practical reports and dissertation.

Careers

The programme will prepare students for further academic study and to work at the highest levels within the biomedical sciences. It will also provide the foundation and links for careers engaged in the public healthcare sector and the NHS, in industry and biopharma, government and research councils, biomedical charities and stakeholders, sports medicine, and scientific media and publishing houses.

Employability
Students will gain awareness of the commercial opportunities and diverse funding mechanisms for the development of new ideas, technologies and applications. Our learning methods will prepare students for careers in academic or industrial biomedical sciences, as well as equipping them with transferable skills in presentation, writing, organisation and team work.

Why study this degree at UCL?

UCL offers a world-class research and teaching environment in biomedical sciences.

The UCL Divisions of Medicine and Surgery & Interventional Science jointly offer an MRes within the new Institute of Immunity and Transplantation (IIT) based at the Royal Free Campus, to deliver the only programme with an integrated multidisciplinary approach to learning about human tissue repair, regeneration and therapy.

The programme aims to harness basic, biomedical and clinical expertise and research strengths assembled from across UCL institutes and divisions and UCL partner hospitals, and together with industrial colleagues will provide world-leading cohesive teaching and training in inflammation, immunology, tissue engineering, transplantation, drug discovery and in understanding and treating human disease.

Read less
The MSc in Wound Healing and Tissue Repair is a three-year, inter-disciplinary, part-time, distance learning course. Read more
The MSc in Wound Healing and Tissue Repair is a three-year, inter-disciplinary, part-time, distance learning course.

The course attracts healthcare professionals from fields such as nursing, medicine, pharmacy, podiatry and the pharmaceutical industry, and offers the opportunity to study at a distance alongside an international group of professionals from countries around the world.
It aims to enable you to explore and analyse existing and developing theories and concepts that underpin wound healing and tissue repair so facilitating professional and personal growth, building upon your educational and vocational experience and developing your ability to become a life-long learner.

Students are required to attend a five-day study block in year one and year two, otherwise no further attendance is required.
The on-campus study blocks will consist of: introduction to e-learning on the Internet and using your individual home page; introduction to study skills, library resources and tutorial support; introduction to course work and assignment briefs; lead lectures – introduction to module content and theory; group interactive sessions - via workshop, discussions, case presentation; private and group tutorials; course committee meetings - providing an on-going evaluation of the course.

Between the annual study blocks, students are supported by online personal and group tutorials, and personal tutorials by email or telephone. In addition, there are dedicated distance learning library support staff to help ensure you can access necessary databases and full-text journals. The online information and resources are constantly updated for students to access through a virtual learning environment.

Distinctive features

• This is a well-established course, first conceived as a postgraduate diploma in 1996 and extended to a Master of Science (MSc) in 1999.
• The course has attracted healthcare professionals from the field of nursing, medicine, pharmacy, podiatry and the pharmaceutical industry, and offers the opportunity to study at a distance alongside an international group of professionals from countries such as Ireland, Holland, Italy, Saudi Arabia, South Africa and New Zealand.
• Hyperlinked reading lists to facilitate easy access to resource material.
• One-to-one and group tutorials are arranged online to encourage both lecturer and peer support and to suit students in different time zones.
• Self-assessment tests from the course material are also linked to discussion board groups in order to facilitate sharing of information and further facilitate peer support.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Tissue Engineering and Regenerative Medicine at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Tissue Engineering and Regenerative Medicine at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Every day we are hearing of ground breaking advances in the field of tissue engineering which offer tremendous potential for the future of regenerative medicine and health care. Staff at Swansea University are active in many aspects of tissue engineering.

Key Features of Tissue Engineering and Regenerative Medicine

We are actively researching many aspects of tissue engineering including the following areas:

- Characterisation and control of the stem cell niche
- Mechanical characterisation of stem cells and tissues
- Production of novel scaffolds for tissue engineering
- Electrospinning of scaffold materials
- Cartilage repair and replacement
- Bone repair and replacement
- The application of nanotechnology to regenerative medicine
- Wound healing engineering
- Reproductive Immunobiology
- Bioreactor design

As an MSc By Research Tissue Engineering and Regenerative Medicine student, you will join one of the teams at Swansea University working in tissue engineering and use state of the art research equipment within the Centre for NanoHealth, a collaborative initiative between the College of Engineering and Swansea University Medical School.

The MSc by Research in Tissue Engineering and Regenerative Medicine typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Aim of Tissue Engineering and Regenerative Medicine programme

The aim of this MSc by Research in Tissue Engineering and Regenerative Medicine is to provide you with a solid grounding within the field of tissue engineering and its application within regenerative medicine.

This will be achieved through a year of research in a relevant area of tissue engineering identified after discussion with Swansea academic staff. Working with two academic supervisors you will undertake a comprehensive literature survey which will enable the formulation of an experimental research programme.

As a student on the MSc by Research Tissue Engineering and Regenerative Medicine course, you will be given the relevant laboratory training to undertake the research program. The research will be written up as a thesis that is examined. You will also be encouraged to present your work in the form of scientific communications such as journals and conference poster presentation.

The MSc by Research in Tissue Engineering and Regenerative Medicine will equip you with a wealth of research experience and knowledge that will benefit your future career in academia or the health care industries.

Recent MSc by Research theses supervised in the area of Tissue Engineering at Swansea University include:

- Quality assurance of human stem cell/primary cell bank
- The development of electrospinning techniques for the production of novel tissue engineering scaffolds.
- The incorporation of pulsed electromagnetic fields into wound dressings.
- The application of pulsed electromagnetic fields for improved wound healing.
- The use of nanoparticles in the control of bacterial biofilms in chronic wounds.
- The control of bacterial adhesion at surfaces relevant to regenerative medicine.
- The production of micro-porous particles for bone repair

Facilities

The £22 million Centre for Nanohealth is a unique facility linking engineering and medicine, and will house a unique micro-nanofabrication clean room embedded within a biological research laboratory and with immediate access to clinical research facilities run by local NHS clinicians.

Links with industry

The academic staff of the Medical Engineering discipline have always had a good relationship with industrial organisations. The industrial input ranges from site visits to seminars delivered by clinical contacts.

The close proximity of Swansea University to two of the largest NHS Trusts in the UK outside of London also offers the opportunity for collaborative research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK
Research Impact ranked 10th in the UK
Research Power (3*/4* Equivalent staff) ranked 10th in the UK

Read less
Tissue engineering is an ever-emerging interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. Read more
Tissue engineering is an ever-emerging interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. The Cardiff Institute of Tissue Engineering & Repair (CITER) MSc in Tissue Engineering aims to provide graduates from life sciences and clinical backgrounds with an advanced knowledge, understanding and skills in the science and practice of tissue engineering; from theoretical science, through to research translation and clinical application. The Programme provides in-depth training in this branch of biomedical science, including stem cell biology, biomaterials and tissue/organ engineering. The MSc offers a balanced combination of theory and practice; and can serve either as preparation for a PhD or as a self-contained advanced qualification in its own right. The MSc in Tissue Engineering is both lecture- and laboratory-based, and includes a number of opportunities to visit relevant clinical settings and local industrial partners. Graduates from this Programme will have a broad spectrum of knowledge and a variety of skills, making them highly attractive both to potential employers and research establishments.

Distinctive features

Distinctive features of this course include:

The first course of its kind in the UK, created in response to demand in the field of tissue engineering for interdisciplinary teaching.
Excellent clinical, academic and research facilities.
High probability of further research study and careers in tissue engineering and repair, relevant to the CITER MSc remit.
Opportunity to study at Cardiff University, one of the UK’s major teaching and research universities.
Opportunity to join a vibrant postgraduate community.

Read less
Tissue engineering is an ever-emerging interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. Read more
Tissue engineering is an ever-emerging interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. The Cardiff Institute of Tissue Engineering & Repair (CITER) MSc in Tissue Engineering aims to provide graduates from life sciences and clinical backgrounds with an advanced knowledge, understanding and skills in the science and practice of tissue engineering; from theoretical science, through to research translation and clinical application. The Programme provides in-depth training in this branch of biomedical science, including stem cell biology, biomaterials and tissue/organ engineering. The MSc offers a balanced combination of theory and practice; and can serve either as preparation for a PhD or as a self-contained advanced qualification in its own right. The MSc in Tissue Engineering is both lecture- and laboratory-based, and includes a number of opportunities to visit relevant clinical settings and local industrial partners. Graduates from this Programme will have a broad spectrum of knowledge and a variety of skills, making them highly attractive both to potential employers and research establishments.

Distinctive features

Distinctive features of this course include:

The first course of its kind in the UK, created in response to demand in the field of tissue engineering for interdisciplinary teaching.
Excellent clinical, academic and research facilities.
High probability of further research study and careers in tissue engineering and repair, relevant to the CITER MSc remit.
Opportunity to study at Cardiff University, one of the UK’s major teaching and research universities.
Opportunity to join a vibrant postgraduate community.

Read less
The Masters of Research in Tissue Engineering for Regenerative Medicine (TERM) is a collaborative degree course that brings together interdisciplinary expertise from the Faculties of Medical and Human Sciences, Life Sciences, and Engineering and Physical Sciences. Read more
The Masters of Research in Tissue Engineering for Regenerative Medicine (TERM) is a collaborative degree course that brings together interdisciplinary expertise from the Faculties of Medical and Human Sciences, Life Sciences, and Engineering and Physical Sciences.

This course provides:
- postgraduate-level training to equip students from biological, engineering and/or medical-related backgrounds with the specialist knowledge and research skills to pursue a career in the field of tissue engineering/regenerative medicine;
- a primary focus on strategies to repair, replace and ultimately regenerate various tissues and organs to solve major clinical problems;
- a comprehensive insight into topical issues including stem cells, polymer technology, surface fabrication and gene delivery;
- training for students to identify major clinical needs and formulate novel therapeutic solutions.

Tissue engineering/regenerative medicine as a discipline shows enormous potential for future health and, economically, there is a national demand for specific interdisciplinary training in this area.

The University of Manchester has a vast research network in this field comprising international experts from multiple disciplines, and so is extremely well-placed to deliver a truly unique masters course of exceptional quality.

This programme has both taught and research components and is suitable for those with little or no previous research experience.

Read less
This Master's degree in Cell and Gene Therapy provides an in-depth education in this cutting-edge and rapidly developing field. Read more
This Master's degree in Cell and Gene Therapy provides an in-depth education in this cutting-edge and rapidly developing field. It is delivered by scientists and clinicians researching, developing and testing new treatments for genetically inherited and acquired diseases using gene delivery technology, stem cell manipulation and DNA repair techniques.

Degree information

The degree covers all aspects of the subject, including basic biomedical science, molecular basis of disease, current and developing technologies and clinical applications. Students also receive vocational training in research methodology and statistics, how to perform a research project and complete a practical laboratory-based project.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a research dissertation (60 credits). A Postgraduate Diploma (120 credits, full-time nine months or flexible up to five years) is offered. A Postgraduate Certificate (60 credits, full-time 12 weeks, part-time nine months, or up to two years flexible) is offered.

Core modules
-Molecular Aspects of Cell and Gene Therapy
-Clinical Applications of Cell and Gene Therapy
-Research Methodology and Statistics
-Stem Cell and Tissue Repair

Research Methodology and Statistics is not a core module for the PG Certificate. Students of the PG Certificate can choose an optional module.

Optional modules
-Foundations of Biomedical Sciences
-Applied Genomics
-HIV Frontiers from Research to Clinics
-Molecular and Genetic Basis of Paediatric Disease
-Understanding Research and Critical Appraisal: Biomedicine
-Laboratory Methods in Biomedical Science
-Research Methodology and Statistics

Dissertation/report
All MSc students undertake an independent research project which culminates in a dissertation.

Teaching and learning
Teaching includes lectures, seminars, problem classes and tutorials. Assessment varies depending on the module, but includes written coursework, multiple-choice questions, written examinations, a practical analysis examination and the dissertation.

Careers

The majority of our graduates have gone on to secure PhD places. Please see our programme website to read testimonials from past students which include their destinations following graduation.

Employability
This novel programme aims to equip students for careers in research, education, medicine and business in academic, clinical and industrial settings. Examples of potential careers could include academic research and/or lecturing in a university or other higher education setting, conducting clinical trials as part of a team of clinicians, scientists and allied health professionals, monitoring and analysing the results of clinical trials as part of a clinical trials unit, developing new therapies or intellectual property in the pharmaceutical industry or other business ventures.

Why study this degree at UCL?

The Institute of Child Health (ICH), and its clinical partner Great Ormond Street Hospital (GOSH), is the largest centre in Europe devoted to clinical, basic research and post-graduate education in children's health, including haematopoietic stem cell transplantation (HSCT) and gene therapy.

The UCL School of Life & Medical Sciences (SLMS) has the largest concentration of clinicians and researchers active in cell and gene therapy research in Europe. This is reflected by the many groups conducting high-quality research and clinical trials in the field including researchers at the Institute of Child Health, the Division of Infection and Immunity, the Institute of Ophthalmology, the Institute for Women's Health, the Institute of Genetics and the Cancer Institute.

Read less
This comprehensive programme is intended for professionals specialising in paediatrics and child health and is based at the Institute of Child Health, which sits in a unique position in UK paediatrics because of its strong links to Great Ormond Street Hospital for Children and UCL. Read more
This comprehensive programme is intended for professionals specialising in paediatrics and child health and is based at the Institute of Child Health, which sits in a unique position in UK paediatrics because of its strong links to Great Ormond Street Hospital for Children and UCL.

Degree information

Students on this pathway gain an understanding of the principles of evidence-based paediatrics, and of the impact of molecular genetics on diagnosis and management of the child and family. They will build an awareness of current and future developments in paediatric medicine and child health and gain the skills necessary to critically appraise practice and policy, and undertake independent research if the full MSc is taken.

Students undertake modules to the value of 180 credits. The programme consists of four core modules (60 credits), four optional modules (60 credits) and a dissertation/report (60 credits). A Postgraduate Diploma (120 credits, full-time 9 months, flexible 2-5 years) is offered. The programme consists of four core modules (60 credits) and four optional modules (60 credits). A Postgraduate Certificate (60 credits, part-time 1 year, flexible 1-2) is offered. The programme consists of four core modules (60 credits).

Core modules
-Evidence-based Child Health
-Research Methodology and Statistics

Students must also choose at least two further core modules from the following:
-Molecular Biology of Normal Development and Birth Defects
-Molecular and Clinical Aspects of Childhood Cancers
-Clinical Genomics, Genetics and Rare Diseases

Please note: those modules not taken as core will still be available as options

Optional modules - students must take at least two modules from those available across the other pathways of the Paediatrics and Child Health MSc, with the following modules particularly recommended for students in this area:
-Stem Cells and Tissue Repair
-Molecular Aspects of Cell and Gene Therapy
-Clinical Applications of Cell and Gene Therapy
-Applied Genomics

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 10,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials and research project supervision. Assessment is through a combination of multiple choice questions and short answer questions, essays, posters, presentations, reflective portfolios, critical appraisal of the literature and, for the full MSc, a dissertation and oral presentation.

Careers

The programme provides an ideal foundation for further doctoral research in this field and/or a career in research and evidence-based practice in paediatrics.

Employability
The first cohort of students on the Paediatrics and Child Health: Molecular and Genomic Paediatrics MSc will graduate in 2016, therefore no information on graduate destinations is currently available.

Why study this degree at UCL?

The Institute of Child Health pursues an integrated, multidisciplinary approach to enhance understanding, diagnosis, therapy and prevention of childhood diseases. Our research and our educational portfolio covers a broad range of paediatric issues, from molecular genetics to population health sciences, and our structure facilitates interdisciplinary work and follows flexibility for the development of new areas of investigation.

Our close relationship with the Great Ormond Street Hospital for Children means that much of our research and teaching is combined.

Students benefit from excellent facilities in both laboratory and non-laboratory subjects.

Read less
This module aims to develop student knowledge and understanding of pathophysiology and pharmacology of acute and long term conditions. Read more
This module aims to develop student knowledge and understanding of pathophysiology and pharmacology of acute and long term conditions. This will enable students to gain a greater understanding of underlying disease processes and their pharmacological treatment.

We will examine key pathological processes (cell injury, cell death, cell adaptations, acute and chronic inflammation, tissue repair, hypersensitivity reactions, and neoplasia) and how these underlie specific conditions. current pharmacological interventions will be examined including the use of monoclonal antibodies.

Why Bradford?

At the Faculty of Health Studies, University of Bradford, you can choose to study for individual modules, a named award or build module credits through the SSPRD Framework for Flexible Learning to achieve an award relevant to your professional needs.

The Framework for Flexible Learning in Health and Social Care is a Faculty-wide academic structure for Specialist Skills and Post-Registration Development. It offers students increased flexibility and choice in the modules and courses that can be undertaken and it is also responsive to employer needs. The flexibility also allows you to move from one award to another if your career changes or you take time out from regular studying. Shared teaching and research expertise from across the Faculty is offered through interdisciplinary teaching across our core research modules.

The Faculty of Health Studies is regionally, nationally and internationally recognised for its teaching and research, and works with a number of healthcare partners to ensure clinical excellence.

Modules

This module is provided as part of this interdisciplinary Framework within the Faculty of Health Studies. The Framework enables students to create an individualised programme of study that will meet either their needs and/or the employers’ needs for a changing diverse workforce within a modern organisation.

The modules and academic awards are presented in areas representing employment practice or work based or clinical disciplines.

Whilst some students can build their own academic awards by choosing their own menu of module options, other students will opt for a named academic award. The Framework also provides the option for students to move from their chosen named award to another award if their job or personal circumstances change and they need to alter the focus of their studies. The majority of named awards also offer students, the option of choosing at least one module, sometimes more, from across the Faculty module catalogue enabling them to shape their award more specifically to their needs.

Career support and prospects

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Read less
Regenerative Medicine. MSc ( 1 year Full-time ). Overview. Regenerative medicine is an interdisciplinary field, which aims to repair diseased or damaged tissues using biological or cell-based technologies. Read more
Regenerative Medicine
MSc ( 1 year Full-time )

Overview

Regenerative medicine is an interdisciplinary field, which aims to repair diseased or damaged tissues using biological or cell-based technologies. It is a rapidly growing area of biomedical research that encompasses stem cell biology, tissue engineering, drug delivery, and nanotechnology. This MSc course provides advanced, multi-disciplinary training in the scientific principles and clinical applications of regenerative medicine, and is delivered jointly by Barts and The London School of Medicine and Dentistry and the School of Engineering and Materials Science.

Taught modules will develop a strong scientific foundation in the biology of stem cells and regeneration and the fundamental principles of biomaterials, tissue engineering and cellular reprogramming. Through an intensive 12-week research project, students will then gain hands on experience applying these concepts to problems in human health and the development of novel regenerative technologies.

Upon completion of the MSc in Regenerative Medicine, students will be well placed for further training at the PhD level or professional careers in the biotechnology and pharmaceutical industries.

Structure
The MSc in Regenerative Medicine is a one year, full-time programme. Students are required to complete 180 credits comprising taught and research modules.


Taught Modules (15 credits each)

o Cellular and Molecular Basis of Regeneration
o Stem Cell and Developmental Biology
o Advanced Tissue Engineering and Regenerative Medicine
o Research Skills and Methodology
o Biomaterials in Regenerative Medicine
o Tissue-specific Stem Cells
o Induced Pluripotent Stem Cells and Genome Engineering
o Ethics and Regulatory Affairs

Research Project in Regenerative Medicine (60 credits)
During the final 12 weeks of the course, students will work full time on their laboratory-based research projects. Students will select research projects from a wide range of topics in regenerative medicine. Examples include research on the cellular and molecular aspects of tissue regeneration, disease pathogenesis, development of stem cell therapies, design of novel nano-biotechnologies, or engineering biomaterials and tissue scaffolds.


Entry requirements
As a multi-disciplinary course, the MSc is appropriate for a wide range of students. Graduates with degrees in biological sciences or medicine will gain an in-depth understanding of the cellular and molecular aspects of regenerative medicine as well as an introduction to the interdisciplinary fields of biomaterials and tissue engineering. Similarly, students with a physical sciences background will have the opportunity to broaden their experiences and acquire new skills in the biological sciences.
Admission to the course is selective, and based upon academic credentials, research experience, and motivation. At a minimum, students must have an undergraduate degree equivalent to UK second-class honours from a recognised academic institution. Applicants are required to submit a statement of purpose and letter of recommendation with their application.
Applications are accepted all year round, but there are limited places to ensure high-quality training, so please apply early to avoid disappointment.

Read less
The Biomedical Materials research degrees cover an exciting area of research in the School focusing both on fundamental understanding of interactions between man-made materials and biological tissues and the development of useful applications. Read more
The Biomedical Materials research degrees cover an exciting area of research in the School focusing both on fundamental understanding of interactions between man-made materials and biological tissues and the development of useful applications. We have close links with the world’s leading pharmaceutical and medical device companies and the clinical applications of our research impact many areas of medicine.

The subject
The subject of biomedical materials covers those materials that are used in the context of biology and medicine, usually to evaluate, treat, augment or replace any tissue, organ or function of the body. In surgery, a biomaterial may be a synthetic material used to replace part of a living system or to function in intimate contact with living tissue.

A new area in biomaterials involves the exploration of nanotechnology for drug delivery, biological sensing or tissue regeneration. Examples of these bionanomaterials are small particles that may be used for the delivery of drug molecules to target sites within the body or to detect diseased areas.

Biomaterials are produced using chemical, physical, mechanical processes and they often employ or mimic biological phenomena in order for them to interact with their biological surroundings in defined ways..

Application of research
The clinical applications of our research impact many areas of medicine, including drug delivery, cancer, wound healing, stem cell technology, repair and regeneration of nerve, tendon, cartilage, bone, intevertebral disc, skin, ligament and cornea.

Industry collaboration
We have strong ties with industry, including ongoing collaboration with Smith & Nephew, Johnson & Johnson, and Versamatrix A/S (Denmark), developing novel biomaterial based strategies for wound healing, bone repair, control of inflammation and drug delivery.

Read less
The Biomedical Materials research degrees cover an exciting area of research in the School focusing both on fundamental understanding of interactions between man-made materials and biological tissues and the development of useful applications. Read more
The Biomedical Materials research degrees cover an exciting area of research in the School focusing both on fundamental understanding of interactions between man-made materials and biological tissues and the development of useful applications. We have close links with the world’s leading pharmaceutical and medical device companies and the clinical applications of our research impact many areas of medicine.

The subject
The subject of biomedical materials covers those materials that are used in the context of biology and medicine, usually to evaluate, treat, augment or replace any tissue, organ or function of the body. In surgery, a biomaterial may be a synthetic material used to replace part of a living system or to function in intimate contact with living tissue.

A new area in biomaterials involves the exploration of nanotechnology for drug delivery, biological sensing or tissue regeneration. Examples of these bionanomaterials are small particles that may be used for the delivery of drug molecules to target sites within the body or to detect diseased areas.

Biomaterials are produced using chemical, physical, mechanical processes and they often employ or mimic biological phenomena in order for them to interact with their biological surroundings in defined ways..

Application of research
The clinical applications of our research impact many areas of medicine, including drug delivery, cancer, wound healing, stem cell technology, repair and regeneration of nerve, tendon, cartilage, bone, intevertebral disc, skin, ligament and cornea.

Industry collaboration
We have strong ties with industry, including ongoing collaboration with Smith & Nephew, Johnson & Johnson, and Versamatrix A/S (Denmark), developing novel biomaterial based strategies for wound healing, bone repair, control of inflammation and drug delivery.

Read less
Academic, practical and research teaching covering all aspects of the latest developments in regenerative dentistry including dental stem cell culture, iPS and ES cells, tooth bioengineering, the role of stem cells in tooth repair and regeneration. Read more
Academic, practical and research teaching covering all aspects of the latest developments in regenerative dentistry including dental stem cell culture, iPS and ES cells, tooth bioengineering, the role of stem cells in tooth repair and regeneration. A major feature of the course is a research project carried out in one of our research labs and supported by practical demonstrations and evaluation of research publication.

Key benefits

• Training in research methodologies and the critical evaluation of data.
• Taught course on the very latest advances of stem cell research.
• World renowned department.
• Original research project.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/regenerative-dentistry-msc.aspx

Course detail

- Description -

Taught course elements include: Introduction to stem cells, ES and iPS, Dental stem cells, Endogenous dentine repair, Endodontic applications of stem cells, Whole tooth regeneration, Scaffolds and bone regeneration, Salivary gland regeneration, Periodontal ligament restoration, GMP cell culture.

Research and practical elements include a research project, practical demonstrations of dental pulp stem cell culture combined with critical evaluation of research methods and approaches in dental stem cell biology.

Examples of research projects:

- Salivary gland stem cells
- Stem cells in the middle ear and their role in homeostasis and repair
- Development of replacement teeth: location of stem cell niches in a range of species
- A chemical genetics screen for regulators of cranial muscle stem cells
- Dental pulp stem cells in tooth repair
- Exploring the relationship between surface free energy and osseointegration with modifiable ceramic coatings
- Human Embryonic tooth mesenchymal cells and bio-tooth engineering
- Periodontal tissue regeneration - evaluating different human dental stem cell populations
- Neural crest stem cells and ossification of the mandible

- Course purpose -

Regenerative dentistry is for both dentists and biological scientists who desire to learn more about the latest advances in cell and molecule-based dentistry and also gain experience in carrying out laboratory-based, cutting-edge research in dental stem cell biology.

- Course format and assessment -

Written exam, practical tests and written reports, seminar presentation.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
Normal growth of an animal, from the fertilised egg through to end of life maturity, requires concerted action of all the genes found in the animal genome. Read more

Research profile

Normal growth of an animal, from the fertilised egg through to end of life maturity, requires concerted action of all the genes found in the animal genome. Not all genes are active at any one stage or in any one cell type. Gene expression is dynamic yet programmed. Sometimes this programming goes awry and disease ensues. Research in the Division of Developmental Biology aims to characterise, understand and ultimately exploit the ever changing profile of gene expression found in mammals. This will allow the development of a better understanding of biology which in turn will enable new biotech, agricultural and biomedical advances to become reality.

We believe that a supported, active and innovative post-graduate student community is essential if we are to deliver our goals. This community represents the scientists, entrepreneurs, communicators and regulators of the future.

Research in the Division of Developmental Biology aims to enhance fundamental knowledge of the control of cellular growth and differentiation aiming to underpin the development of better disease intervention strategies.

We will advance our understanding of function in these essential biological processes through mechanistic studies at the cell, tissue and whole animal level with particular focus on:

animal biotechnology and stem cells
tissue and organ development
tissue damage and repair
regulatory networks in development

Within the Division of Developmental Biology we have 19 Group Leaders plus 2 Career Track Fellows who supervise about 30 students at any one time.

Training and support

Studentships are of 3 or 4 years duration and students will be expected to complete a novel piece of research which will advance our understanding of the field. To help them in this goal, students will be assigned a principal and assistant supervisor, both of whom will be active scientists at the Institute. Student progress is monitored in accordance with School Postgraduate (PG) regulations by a PhD thesis committee (which includes an independent external assessor and chair). There is also dedicated secretarial support to assist these committees and the students with regard to University and Institute matters.

All student matters are overseen by the Schools PG studies committee. The Roslin Institute also has a local PG committee and will provide advice and support to students when requested. An active staff:student liaison committee and a social committee, which is headed by our postgraduate liaison officer, provide additional support.

Students are expected to attend a number of generic training courses offered by the Transkills Programme of the University and to participate in regular seminars and laboratory progress meetings. All students will also be expected to present their data at national and international meetings throughout their period of study.

Facilities

In 2011 The Roslin Institute moved to a new state-of-the-art building on the University of Edinburgh's veterinary campus at Easter Bush. Our facilities include: rodent, bird and livestock animal units and associated lab areas; comprehensive bioinformatic and genomic capability; a range of bioimaging facilities; extensive molecular biology and cell biology labs; café and auditorium where we regularly host workshops and invited speakers.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X