• Regent’s University London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Leeds Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
FindA University Ltd Featured Masters Courses
Coventry University Featured Masters Courses
University of Greenwich Featured Masters Courses
FindA University Ltd Featured Masters Courses
"therapeutic" AND "protei…×
0 miles

Masters Degrees (Therapeutic Proteins)

  • "therapeutic" AND "proteins" ×
  • clear all
Showing 1 to 12 of 12
Order by 
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017. Read more
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017.
http://www.shu.ac.uk/VCAwardJanuary2017

Enhance your knowledge and skills in biosciences with an emphasis on biotechnology and increase your competitiveness in the job market. Whether you are a new graduate or already employed and seeking to further your career prospects, this course offers a solid career development path. You can also choose this course if you wish to pursue research in biotechnology at PhD level.

Biotechnology is the application of biological processes and is underpinned by:
-Cell biology
-Molecular biology
-Bioinformatics
-Structural biology.

It encompasses a wide range of technologies for modifying living organisms or their products according to human needs.

Applications of biotechnology span medicine, technology and engineering. Important biotechnological advances including:
-The production of therapeutic proteins using cloned DNA, for example insulin and clotting factors.
-The application of stem cells to treat human disease.
-The enhancement of crop yields and plants with increased nutritional value.
-Herbicide and insect resistant plants.
-Production of recombinant antibodies for the treatment of disease.
-Edible vaccines, in the form of modified plants.
-Development of biosensors for the detection of biological and inorganic analytes.

You gain:
-Up-to-date knowledge of the cellular and molecular basis of biological processes.
-An advanced understanding of DNA technology and molecular biotechnology.
-Knowledge of developing and applying biotechnology to diagnosis and treatment of human diseases.
-Practical skills applicable in a range of bioscience laboratories.
-The transferable and research skills to enable you to continue developing your knowledge and improving your employment potential.

The course is led by internationally recognised academics who are actively involved in biotechnology research and its application to the manipulation of proteins, DNA, mammalian cells and plants. Staff also have expertise in the use of nanoparticles in drug delivery and the manipulation of microbes in industrial and environmental biotechnology.

You are supported throughout your studies by a personal tutor.

You begin your studies focusing on the fundamentals of advanced cell biology and molecular biology before specialising in both molecular and plant biotechnology. Practical skills are developed throughout the course and you gain experience in molecular biology techniques such as PCR and sub cloning alongside tissue culture.

Core to the program is the practical module where you gain experience in a range of techniques used in the determination of transcription and translational levels, for example.

All practicals are supported by experienced academic staff, skilled in the latest biotechnological techniques.

Research and statistical skills are developed throughout the program. Towards the end of the program you apply your skills on a two month research project into a current biotechnological application. Employability skills are developed throughout the course in two modules.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/mscpgdippgcert-biotechnology

What is biotechnology

Biotechnology is the basis for the production of current leading biopharmaceuticals and has already provided us with the 'clot-busting' drug, tissue plasminogen activator for the treatment of thrombosis and myocardial infarction. It also holds the promise of new treatments for neurodegeneration and cancer through recombinant antibodies. Recombinant proteins are also found throughout everyday life from washing powders to cheese as well as many industrial applications.

Genetically modified plants have improved crop yields and are able to grow in a changing environment. Manipulation of cellular organisms through gene editing methods have also yielded a greater understanding of many disease states and have allowed us to understand how life itself functions.

Course structure

Full time – 14 months to Masters. Part time – typically 2 years to Masters. The Diploma and Certificate are shorter. Starts September and January.

The masters (MSc) award is achieved by successfully completing 180 credits. The Postgraduate Certificate (PgCert) is achieved by successfully completing 60 credits. The Postgraduate Diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules
-Cell biology (15 credits)
-Biotechnology (15 credits)
-Plant biotechnology (15 credits)
-Molecular biology (15 credits)
-Applied biomedical techniques (15 credits)
-Professional development (15 credits)
-Research methods and statistics (15 credits)
-Research project (60 credits)

Options (choose one from)
-Human genomics and proteomics (15 credits)
-Cellular and molecular basis of disease (15 credits)
-Cellular and molecular basis of cancer (15 credits)

Assessment
Assessment methods include written examinations and coursework including: problem-solving exercises; case studies; reports from practical work; in-depth critical analysis; oral presentations. Research project assessment includes a written report and viva.

Read less
Sunderland is ranked sixth in the UK for pharmacy and pharmacology, according to The Guardian University Guide 2013. This Masters is one of the few in the UK that covers biopharmaceuticals as well as pharmaceuticals. Read more
Sunderland is ranked sixth in the UK for pharmacy and pharmacology, according to The Guardian University Guide 2013.

Course overview

This Masters is one of the few in the UK that covers biopharmaceuticals as well as pharmaceuticals. The course covers drug delivery systems for large molecules such as proteins, genes and anticancer drugs that offer innovative ways to improve the health and wellbeing of our society.

The course also covers advanced formulations and delivery of small drug molecules. There is a focus on nanotechnology, dosage forms, pharmacokinetics and statistical methods used in data analysis.

Our supportive tutors will guide the development of rigorous approaches to research including sound methodologies, good manufacturing practice, high laboratory standards and effective communication of results.

Your Masters research project will be supervised by an expert in the relevant field, possibly in collaboration with a pharmaceutical company or research institution.

This course is particularly relevant if you plan to undertake a PhD in the area of pharmaceutical sciences, biopharmaceuticals or drug delivery. It is also suitable if you are considering, or already involved in, a career in pharmaceutical-related industries, hospitals or research institutions.

Pharmacy is a particular area of strength at the University of Sunderland. We have worked with GlaxoSmithKline for over 20 years and Pfizer has funded research projects at Sunderland for over 10 years.

Course content

The course mixes taught elements with independent research and self-directed study. There is flexibility to pursue personal interests in considerable depth, with guidance and inspiration from Sunderland's supportive tutors. Modules on this course include:
-Dosage Forms and Pharmacokinetics (20 Credits)
-Delivering Gene and Therapeutic Proteins (20 Credits)
-Essential Research and Study Skills (20 Credits)
-Research Manipulation (20 Credits)
-Nanotechnology (20 Credits)
-Bioinformatics (20 Credits)
-Research Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, problem-based learning, laboratory work, group work and visits to relevant companies. We also welcome guest speakers from the pharmaceutical industry who deliver guest lectures and seminars.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include written examinations, online tests and coursework, which includes oral and poster presentations.

Facilities & location

Sunderland's exceptional facilities include state-of-the-art equipment for pharmaceutics, synthetic, analytical and medicinal chemistry and pharmacology.

Facilities for Chemistry
We’ve recently spent £1 million on our new state-of-the-art analytical equipment. The analytical suite contains equipment which is industry-standard for modern clinical and pharmaceutical laboratories. Our state-of-the-art spectroscopic facility allows us to investigate the structures of new molecules and potential medicinal substances. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LCNMR/MS) platforms; this is an exceptional facility for a university. We also have low and high-resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment.

Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography and Gas Chromatography for separating unknown chemical mixtures.

Facilities for Pharmaceutics and Pharmacology
Our highly technical apparatus will help you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects. In addition to equipment for standard pharmacopoeial tests, such as dissolution testing, friability and disintegration, we also have highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

We also have equipment for wet granulation, spray drying, capsule filling, tablet making, powder mixing inhalation, film coating and freeze drying.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical sciences, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Employment & careers

On completing this course you will be equipped with the skills and understanding needed for Research & Development roles with employers such as:
-Pharmaceutical and biopharmaceutical companies
-Medical research institutes
-Hospitals

Salaries for senior pharmacologists range from £35,000 to around £80,000. Clinical laboratory scientists earn an average of £36,000. A Masters degree will also enhance opportunities in academic roles or further study towards a PhD.

Read less
Pharmaceutical Biotechnology is the science that covers all technologies required for the production, manufacturing and registration of biological drugs. Read more
Pharmaceutical Biotechnology is the science that covers all technologies required for the production, manufacturing and registration of biological drugs. Advances in recombinant genetics facilitate the routine cloning of genes and the creation of genetically modified organisms that can be used in industrial production. Pharmaceutical Biotechnology is a rapidly evolving and multidisciplinary field and our MSc Pharmaceutical Biotechnology programme will focus on the new developments in the production of proteins, organisms, DNA-based vaccines, therapeutic proteins, downstream processing and characterisation, bioinformatics, advanced molecular principles, and research methods.

Our MSc Pharmaceutical Biotechnology programme produces graduates with a critical and analytical capability and a flexible approach to problem solving. These skills will enhance your laboratory and professional competence at a supervisory level and you will be able to work independently and use your initiative to solve the diverse problems you may encounter. You will also be able to bring a creative approach to the development and promotion of new biotechnology products. Biotechnology is developing rapidly; there is a major emphasis on product- and process-oriented biotechnological research and development for applications in agriculture, industry and the health sector. These applications will bring benefits for society and are increasingly recognised by governments, industry and financial institutions. Our programme helps to address the expanding demand from international markets for graduates with an excellent knowledge of biotechnology.

The aims of the programme are:

- To provide students with an understanding of the subject specific knowledge, as well as a critical, analytical and flexible approach to problem-solving in the field of pharmaceutical biotechnology

- To provide students with enhanced practical and professional skills and thus prepare students effectively for professional employment or doctoral studies in the field of biotechnology

- To enable students to work independently and use initiative in solving the diverse problems that may be encountered

- To instill a critical awareness of advances at the forefront of biotechnology.

Visit the website http://www2.gre.ac.uk/study/courses/pg/sci/pb

Science - General

We offer a range of sciences programmes from biotechnology to formulation science. Whatever you choose to study you will be taught by experienced staff in state-of-the-art laboratories and gain the skills you need to succeed in your chosen field. Employability is central to all our programmes and you will benefit from our strong links with employers, industry work placements and professional accreditations.

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

Pharmaceutical Biotechnology (30 credits)
Biotechnology Research Projects (60 credits)
Bioinformatics (30 credits)
Research Methods and Data management (30 credits)
English Language Support (for Postgraduate students in the School of Science)
Applied Molecular Biology (30 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Coursework, examinations, presentations, thesis, on-line assessment. This programme involves a series of lectures, seminars and workshops.Case studies will provide you with exposure to up-to-date problems and enhance your problem solving and team-work in a way that simulates an industrial setting. A research project in a well equipped department led by staff with a diversity of research experience will give you the opportunity to carry out novel research and enhance your practical skills, analytical thinking and independence.

Career options

Biotechnology and pharmaceutical industries, intellectual property industry (IP), academics, bio-informatics/IT, health services, research and higher degrees (PhD).

Find out about the teaching and learning outcomes here - http://www2.gre.ac.uk/?a=643706

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
The Institute of Genetic Medicine brings together a strong team with an interest in clinical and developmental genetics. Our research focuses on the causes of genetic disease at the molecular and cellular level and its treatment. Read more
The Institute of Genetic Medicine brings together a strong team with an interest in clinical and developmental genetics. Our research focuses on the causes of genetic disease at the molecular and cellular level and its treatment. Research areas include: genetic medicine, developmental genetics, neuromuscular and neurological genetics, mitochondrial genetics and cardiovascular genetics.

As a research postgraduate in the Institute of Genetic Medicine you will be a member of our thriving research community. The Institute is located in Newcastle’s Life Science Centre. You will work alongside a number of research, clinical and educational organisations, including the Northern Genetics Service.

We offer supervision for MPhil in the following research areas:

Cancer genetics and genome instability

Our research includes:
-A major clinical trial for chemoprevention of colon cancer
-Genetic analyses of neuroblastoma susceptibility
-Research into Wilms Tumour (a childhood kidney cancer)
-Studies on cell cycle regulation and genome instability

Cardiovascular genetics and development

We use techniques of high-throughput genetic analyses to identify mechanisms where genetic variability between individuals contributes to the risk of developing cardiovascular disease. We also use mouse, zebrafish and stem cell models to understand the ways in which particular gene families' genetic and environmental factors are involved in the normal and abnormal development of the heart and blood vessels.

Complex disease and quantitative genetics

We work on large-scale studies into the genetic basis of common diseases with complex genetic causes, for example autoimmune disease, complex cardiovascular traits and renal disorders. We are also developing novel statistical methods and tools for analysing this genetic data.

Developmental genetics

We study genes known (or suspected to be) involved in malformations found in newborn babies. These include genes involved in normal and abnormal development of the face, brain, heart, muscle and kidney system. Our research includes the use of knockout mice and zebrafish as laboratory models.

Gene expression and regulation in normal development and disease

We research how gene expression is controlled during development and misregulated in diseases, including the roles of transcription factors, RNA binding proteins and the signalling pathways that control these. We conduct studies of early human brain development, including gene expression analysis, primary cell culture models, and 3D visualisation and modelling.

Genetics of neurological disorders

Our research includes:
-The identification of genes that in isolation can cause neurological disorders
-Molecular mechanisms and treatment of neurometabolic disease
-Complex genetics of common neurological disorders including Parkinson's disease and Alzheimer's disease
-The genetics of epilepsy

Kidney genetics and development

Kidney research focuses on:
-Atypical haemolytic uraemic syndrome (aHUS)
-Vesicoureteric reflux (VUR)
-Cystic renal disease
-Nephrolithiasis to study renal genetics

The discovery that aHUS is a disease of complement dysregulation has led to a specific interest in complement genetics.

Mitochondrial disease

Our research includes:
-Investigation of the role of mitochondria in human disease
-Nuclear-mitochondrial interactions in disease
-The inheritance of mitochondrial DNA heteroplasmy
-Mitochondrial function in stem cells

Neuromuscular genetics

The Neuromuscular Research Group has a series of basic research programmes looking at the function of novel muscle proteins and their roles in pathogenesis. Recently developed translational research programmes are seeking therapeutic targets for various muscle diseases.

Stem cell biology

We research human embryonic stem (ES) cells, germline stem cells and somatic stem cells. ES cell research is aimed at understanding stem cell pluripotency, self-renewal, survival and epigenetic control of differentiation and development. This includes the functional analysis of genes involved in germline stem cell proliferation and differentiation. Somatic stem cell projects include programmes on umbilical cord blood stem cells, haematopoietic progenitors, and limbal stem cells.

Pharmacy

Our new School of Pharmacy has scientists and clinicians working together on all aspects of pharmaceutical sciences and clinical pharmacy.

Read less
This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. Read more
This course provides comprehensive knowledge and practical training in the spread of microorganisms (predominantly bacterial and viral pathogens), disease causation and diagnosis and treatment of pathogens significant to public health. The increasing incidence of microbial infections worldwide is being compounded by the rapid evolution of drug-resistant variants and opportunistic infections by other organisms. The course content reflects the increasing importance of genomics and molecular techniques in both diagnostics and the study of pathogenesis.

In response to a high level of student interest in viral infections, the School has decided to offer the opportunity for students who focus on viruses in their module and project choices to be awarded a Master's degree in Medical Microbiology (Virology). This choice will depend on the module selection of the individual student in Terms 2 and 3 and choice of project.

Graduates from this course move into global health careers related to medical microbiology in research or medical establishments and the pharmaceutical industry.

The Bo Drasar Prize is awarded annually for outstanding performance by a Medical Microbiology student. This prize is named after Professor Bohumil Drasar, the founder of the MSc Medical Microbiology course.

The Tsiquaye Prize is awarded annually for the best virology-based project report.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/mm_progspec.pdf)
- Intercalating this course (http://www.lshtm.ac.uk/study/intercalate)

Visit the website http://www.lshtm.ac.uk/study/masters/msmm.html

Objectives

By the end of the course students should be able to:

- demonstrate advanced knowledge and understanding of the nature of viruses, bacteria, parasites and fungi and basic criteria used in the classification/taxonomy of these micro-organisms

- explain the modes of transmission and the growth cycles of pathogenic micro-organisms

- demonstrate knowledge and understanding of the mechanisms of microbial pathogenesis and the outcomes of infections

- distinguish between and critically assess the classical and modern approaches to the development of therapeutic agents and vaccines for the prevention of human microbial diseases

- demonstrate knowledge of the laboratory diagnosis of microbial diseases and practical skills

- carry out a range of advanced skills and laboratory techniques, including the purification of isolated microbial pathogens, study of microbial growth cycles and analyses of their proteins and nucleic acids for downstream applications

- demonstrate research skills

Structure

Term 1:
There is a one-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and course-specific sessions, followed by two compulsory modules:

- Bacteriology & Virology
- Analysis & Design of Research Studies

Recommended module: Molecular Biology

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:
Students take a total of five modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules that can be taken only after consultation with the Course Director.

- Slot 1:
Clinical Virology
Molecular Biology & Recombinant DNA Techniques

- Slot 2:
Clinical Bacteriology 1
Molecular Virology

- Slot 3:
Advanced Training in Molecular Biology
Basic Parasitology

- Slot 4:
Clincal Bacteriology 2
Molecular Biology Research Progress & Applications

- Slot 5:
Antimicrobial Chemotherapy
Molecular Cell Biology & Infection
Mycology
Pathogen Genomics

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tmmi.html

Project Report

During the summer months (July - August), students complete a laboratory-based original research project on an aspect of a relevant organism, for submission by early September. Projects may take place within the School or with collaborating scientists in other colleges or institutes in the UK or overseas.

The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose

Course Accreditation

The Royal College of Pathologists accepts the course as part of the professional experience of both medical and non-medical candidates applying for membership. The course places particular emphasis on practical aspects of the subjects most relevant to current clinical laboratory practice and research.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msmm.html#sixth

Read less
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017. Read more
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017.
http://www.shu.ac.uk/VCAwardJanuary2017

This course increases your knowledge and skills in pharmacology and biotechnology to increase your competitiveness in the job market or complete research at PhD level. If you are already employed, this course can help you to further your career prospects.

The course is delivered by internationally recognised academics who are involved in biotechnology and pharmacology research. Research projects include studying the manipulation of proteins and their application to Alzheimer's disease, epilepsy, ion channels and the development of novel drugs from natural products.

You learn in detail how drugs act at the molecular and cellular level and then how biotechnological techniques are used to produce new drugs. Examples include developing new and effective treatments for diseases, such as Alzheimer’s and rheumatoid arthritis.
You also gain experience of the latest techniques used by the pharmaceutical industry to produce and study the effects of novel drugs.

The course gives you:
-Up-to-date knowledge of cellular and molecular pathology of various human diseases.
-The basis of therapeutic rationales for treating diseases and their development.
-An advanced understanding of recombinant DNA technology and how it is used to produce drugs.
-Experience of the latest practical techniques, such as cell culture, quantitative PCR analysis, cloning, western blotting, and analytical techniques such as HPLC and mass spectrometry.
-The transferable and research skills to enable you to continue developing your knowledge and improve your employment potential.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/mscpgdippgcert-pharmacology-and-biotechnology

Course structure

Full time – 14 months to Masters. Part time – typically 2 years to Masters. The certificate and diploma are shorter. Starts September and January.

The Masters (MSc) award is achieved by successfully completing 180 credits. The Postgraduate Certificate (PgCert) is achieved by successfully completing 60 credits. The Postgraduate Diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules
-Cell biology (15 credits)
-Fundamentals of pharmacology (15 credits)
-Molecular biology (15 credits)
-Biotechnology (15 credits)
-Professional development (15 credits)
-New approaches to pharmacology (15 credits)
-Research methods and statistics (15 credits)
-Research project (60 credits)

Optional modules (one from)
-Applied biomedical techniques (15 credits)
-Cellular and molecular basis of cancer (15 credits)
-Pharmaceutical drug development (15 credits)
-Human genomics and proteomics (15 credits)

Assessment
Assessment is mostly by written examination and coursework including problem solving exercises, case studies and input from practical laboratory work. Research project assessment includes a written report and viva voce.

Read less
Molecular biology is a key area underpinning modern biology in the post-genomic era. The science of molecular biology analyses the structure and function of organisms – viral, microbial and eukaryotic – at a molecular level. Read more
Molecular biology is a key area underpinning modern biology in the post-genomic era. The science of molecular biology analyses the structure and function of organisms – viral, microbial and eukaryotic – at a molecular level. The structure and function of nucleic acids, genes, proteins and cell-signalling molecules are also analysed by molecular biology. Molecular biology techniques can be used to investigate errors in cellular systems that are fundamental to an advanced understanding of disease aetiology. In addition, innovations in molecular biology permit sophisticated modification of organisms, and manipulation of their functions, to permit the production of novel products and the development of novel therapeutic technologies. The burgeoning global bioscience sector creates a continuing demand for the education of scientists at postgraduate level skilled in molecular biology.

The MSc Molecular Biology with Professional Experience, is an extended full-time Masters programme with a substantive professional experience component. Within the professional experience modules, students have the option of undertaking an internship with a host organisation or, alternatively, campus-based professional experience. Internships are subject to a competitive application and selection process and the host organisation may include the University.

Internships may be paid or unpaid, and this will depend on what is being offered and agreed with the host organisation. Students who do not wish to undertake an internship or are not successful in securing an internship will undertake campus-based professional experience, which will deliver similar learning outcomes through supervised projects and activities designed to offer students the opportunity to integrate theory with an understanding of professional practice.

WHY CHOOSE THIS COURSE?

This course is intended for life science graduates from both home and overseas courses who wish to develop their knowledge and skills in biosciences with an emphasis on molecular biology. The aim of the course is to produce scientists who will be able to contribute to a range of careers including academic, commercial, industrial and healthcare applications of molecular biology. This course is also an excellent foundation for those wishing to pursue research in molecular biology at PhD level.

You will have the opportunity to study a broad range of Molecular Biology at a theoretical and a practical level. You will have the opportunity to gain hands-on experience of molecular biology techniques. You will have the opportunity to develop a range of transferrable and research skills that will develop your knowledge and enhance your employment potential.

WHAT WILL I LEARN?

The course is focused on the key elements of molecular biology and comprises modules on the following topics:
-Genomes and DNA Technology
-Cell Culture and Antibody Technology
-Mammalian Cell and Molecular Biology
-Molecular Microbiology
-Molecular Biology of Disease

The course will also comprise a Research Skills module. In addition, a Research Project forms part of the MSc course.

Additionally, the understanding gained from these modules will be demonstrated and applied in either the University-based project (12 months full-time or 24 months part-time, on course HLST104), or the professional experience modules giving students the option of undertaking an internship with a host organisation or, alternatively, campus-based professional experience.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

Molecular biology is one of the most buoyant sectors of the biosciences jobs market. Indeed, molecular biology is a key area underpinning modern biology in the post-genomic era. Consequently, many different branches of biology in both the academic and industrial sectors make use of molecular biology skills and rely on analyses at the molecular level to drive developments. It is predicted that growth in the Molecular Biology employment market will be above average over the period 2010–20.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
The MSc in Biotherapeutics and Business educates students on the practical uses of molecular advances in the discovery of proteins and other biomolecular drug candidates and their development into biotherapeutics. Read more
The MSc in Biotherapeutics and Business educates students on the practical uses of molecular advances in the discovery of proteins and other biomolecular drug candidates and their development into biotherapeutics. It will provide students with a comprehensive understanding of the development of biotherapeutics, beginning with pre-clinical modelling and target identification together with antibody engineering, biochemical and biophysical characterisation, and development issues for bioprocessing.
Systems biology of biotechnological processes and approaches to the analysis of proteomicsbased discovery data will be covered in detail, together with mathematical modelling, bioinformatics analysis and data integration strategies. Regulatory issues, and innovation and commercialisation strategies, will also be covered. Mammalian cell culture and bioprocess laboratory structure will be comprehensively covered in addition to novel approaches to therapeutic development. You will also receive a comprehensive business education. You will learn to identify and solve business problems in local and international settings, enhance your communication and leadership skills, and improve your ability for independent thinking and developing creative solutions.

Key Fact

The programme is the result of a close collaboration between the UCD School of Biomolecular and Biomedical Science and the UCD
Michael Smurfit Graduate School of Business, which is Ireland’s leading business school.

Course Content and Structure

90 credits 60 credits 30 credits
taught masters taught modules project modules
The structure of the programme is as follows:
Semester 1
• Professional Career Development
• Management & Org. Behaviour
• Corporate Accounting & Finance
• Business of Biotechnology & Science
• Biotherapeutic Pipeline I
• Recombinant DNA Technology
• Biomedical Diagnostics
• High Content Screening Microscopy
• Pharmacology & Drug Development
Semester 2
• Professional Career Development
• Biotherapeutic Pipeline II
• Systems Biology in Drug Development
• Bioprocessing Laboratory
• Emerging Issues in Biotechnology
• Regulatory Affairs
• Microbial & Animal Cell Products
Semester 3
• Valuation and Commercialisation of Biotherapeutics
• Biotherapeutics Case Study
Modules and topics shown are subject to change and are not guaranteed by UCD.

Career Opportunities

This advanced graduate degree in Biotherapeutics and Business has been developed in consultation with employers and therefore will be recognised and valued by them. A key feature is the opportunity to carry out a business development plan, which will allow graduates to develop connections with prospective employers, thereby enhancing chances of employment on graduation.
Prospective employers include: Abbott; Allergan; Amgen; Baxter Healthcare;
Eli Lilly and Co.; Dignity Sciences; GlaxoSmithKline; Icon Clinical Research;
ImmunoGen Inc.; Janssen Pharmaceutical Ltd.; Johnson & Johnson Ltd.; Merck
Sharp & Dohme; Quintiles; Quest International; Sandoz; Seroba Kernel.

Facilities and Resources

Students on this programme will benefi t from the use of a research skills laboratory in the prestigious UCD Conway Institute, as well as state-of-the-art teaching and laboratory facilities in the new O’Brien Centre for Science.

Read less
The biotechnological applications of molecular biology underpin major industries in the medical and agricultural sectors. Insights from the study of genetic material are already benefitting the development of new diagnostic tests, therapeutic agents, bioenergy production systems, improved crops and more. Read more

About the course

The biotechnological applications of molecular biology underpin major industries in the medical and agricultural sectors. Insights from the study of genetic material are already benefitting the development of new diagnostic tests, therapeutic agents, bioenergy production systems, improved crops and more. The range and value of these developments is rapidly increasing.

This exciting MSc Molecular Biology and Biotechnology program provides training for bioscience graduates to develop confidence and independence in their practical skills and knowledge relevant to careers in this area. Successful graduates will be ready to undertake further study at PhD level or to enter employment in the biotechnology sector.

You’ll learn essential practical skills; study the relevant theory in the Departments of Molecular Biology and Biotechnology (MBB) and Chemical and Biological Engineering (CBE); and carry out an individual research project, in which you’ll learn how to design and conduct research, keep records and present the research in different styles.

Where your masters can take you

Our graduates work in health care, pharmaceuticals, food safety and production, brewing and agrochemicals. Many of our masters students go on to do a PhD then pursue a career in research; others have gained entry to the prestigious NHS Scientist Training Programme (STP).

An international reputation

The 2014 Research Excellence Framework (REF) ranks Sheffield No 1 for biomedical research and in the UK top five for biological sciences generally. We have regular seminars from distinguished experts, and our motivated staff undertake collaborative research ranging from biotechnology to medicine.

Teaching and assessment

Our masters courses give you a solid grounding in experimental science, with personal supervision and tutorials by experienced scientists, based in modern and well-equipped labs, leading on to a research project in which you design and conduct your own research. You will learn cutting edge science from research leaders, and gain practice in reading the scientific literature and writing reports. Assessment is based on a combination of coursework, project work, formal examinations and a dissertation.

Core modules

Laboratory Skills in Molecular Bioscience; Principles of Biochemical Engineering; Advanced Research Topics; Literature Review; Research Project (typical research areas include plant genetic engineering, engineering of proteins of commercial importance, or genetic studies by random mutagenesis).

Examples of optional modules

Choose two from: The RNA World, Cells as Factories, Plant Biotechnology, Microbiology of Extreme Environments.

Read less
Centauri Therapeutics Ltd, in partnership with the School of Human and Life Sciences at Christchurch University is offering a MRes studentship in the area of Bioinformatics and SELEX technologies. Read more
Centauri Therapeutics Ltd, in partnership with the School of Human and Life Sciences at Christchurch University is offering a MRes studentship in the area of Bioinformatics and SELEX technologies.
Systematic Evolution of Ligands by Exponential Enrichment (SELEX) enables the enrichment of oligonucleotide aptamers from highly diverse libraries of unique sequences. Nucleic acid aptamers are short, single-stranded oligonucleotides that form three-dimensional structures capable of high affinity binding to specific targets. High-affinity aptamers have been identified against a broad range of proteins, carbohydrates and small molecules. NGS technology and sophisticated bioinformatics analyses are applied to SELEX campaigns with the aim of early identification of aptamer families. The project will focus on the identification of novel aptamers to microbial targets. Bioinformatic analyses will be applied to understand and direct the outputs from SELEX screening campaigns.
Centauri Therapeutics is a UK-based biotechnology company focused on the discovery and development of novel molecules targeting life threatening diseases. We are interested in the application of SELEX technology to the identification of therapeutic aptamers. We are looking for highly-motivated and talented people who are about to complete, or have recently completed, their degree-level studies. Candidates must show enthusiasm and aptitude for bioinformatics (ideally with Unix/programming experience) alongside molecular and cellular biology laboratory research. The student will predominantly be based at Discovery Park, Sandwich but will also spend time at the Canterbury Campus of Christchurch University.
The studentships provide for UK/EU tuition fees and stipend, and are available from September 2016. Applicants should have a Molecular Biology or related degree, and in the first instance should submit an application letter and CV to Samit Kundu (CCCU, ) and Helen Lavender (Centauri Therapeutics, ) at the earliest opportunity. Applications will be considered on a continuing basis until the post is filled.

Read less
The MSc by Research in the Faculty of Social and Applied Sciences has been designed to offer a range of pathways for you to research your chosen subject interests within Social and Applied Sciences, whilst sharing in the multi-disciplinary nature of the taught component of the course. Read more
The MSc by Research in the Faculty of Social and Applied Sciences has been designed to offer a range of pathways for you to research your chosen subject interests within Social and Applied Sciences, whilst sharing in the multi-disciplinary nature of the taught component of the course.

You’ll share a breadth of experience – the multi-disciplinary nature of the taught component means you will share a broad experience of methodological and research issues. Allied with subject specific supervision, this will allow you to develop a unique awareness of knowledge and experiences across the natural and social sciences in addition to a focus on your own research topic.

Biosciences pathway:
Students pursuing the bioscience pathway would be expected to have research which falls within the areas of the members of the biomolecular research group (BMRG). The BMRG have specialities in cell and molecular biology, protein science, chemical and structural biology, cancer biology, bioinformatics, metabolomics and evolutionary genetics. A selection of current research projects include:

*Development of fluorescent chemosensors for medical applications, biochemical investigations, environmental monitoring, biotechnology and drug discovery.
*Investigating the protein structure and biological control potential of plant lectins.
*Studying organism development and ageing with respect to environmental stimuli.
*Studying prion protein development and maintenance in yeast.
*Investigating the therapeutic potential of novel animal venoms as anti-microbial, anti-parasitic and anti-cancer agents.
*Computationally investigating the molecular dynamics of cell skeletal components.
*Investigating mammalian embryology and comparative genomic studies in a variety of avian species.
*Investigating the biochemical and biophysical properties of muscle proteins.
*Investigating alternative splicing and the circadian clock in plant stress responses.
*Deployment of molecular techniques an attempt to understand the patterns in the spatial distribution of organisms.

Members also have collaborative interests with external partners including local schools and biotechnology businesses. For more information on member’s research activities or for contact details, please click on a member’s individual Staff Profile.

We are a close-knit community of academics, researchers and students dedicated to the study of Life Sciences. You would be joining an active and dynamic post-graduate community and would have the opportunity to contribute to and benefit from this community.

Find out more about the section of Life Sciences at https://www.canterbury.ac.uk/social-and-applied-sciences/human-and-life-sciences/life-sciences/about-us.aspx. You can also find out more about our research https://www.canterbury.ac.uk/social-and-applied-sciences/human-and-life-sciences/life-sciences/research/research.aspx.

Read less

  • 1
Show 10 15 30 per page


Share this page:

Cookie Policy    X