• University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University College London Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
Imperial College London Featured Masters Courses
University of Bedfordshire Featured Masters Courses
London School of Economics and Political Science Featured Masters Courses
"terahertz"×
0 miles

Masters Degrees (Terahertz)

We have 11 Masters Degrees (Terahertz)

  • "terahertz" ×
  • clear all
Showing 1 to 11 of 11
Order by 
The School of Engineering and Digital Arts offers research-led degrees in a wide range of research disciplines, related to Electronic, Control and Information Engineering, in a highly stimulating academic environment. Read more
The School of Engineering and Digital Arts offers research-led degrees in a wide range of research disciplines, related to Electronic, Control and Information Engineering, in a highly stimulating academic environment. The School enjoys an international reputation for its work and prides itself in allowing students the freedom to realise their maximum potential.

Established over 40 years ago, the School has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

We undertake high-quality research that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. There is a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, a number of industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Visit the website https://www.kent.ac.uk/courses/postgraduate/262/electronic-engineering

Project opportunities

Some projects available for postgraduate research degrees (http://www.eda.kent.ac.uk/postgraduate/projects_funding/pgr_projects.aspx).

Research areas

- Communications

The Group’s activities cover system and component technologies from microwave to terahertz frequencies. These include photonics, antennae and wireless components for a broad range of communication systems. The Group has extensive software research tools together with antenna anechoic chambers, network and spectrum analysers to millimetre wave frequencies and optical signal generation, processing and measurement facilities. Current research themes include:

- photonic components
- networks/wireless systems
- microwave and millimetre-wave systems
- antenna systems
- radio-over-fibre systems
- electromagnetic bandgaps and metamaterials
- frequency selective surfaces.

- Intelligent Interactions:

The Intelligent Interactions group has interests in all aspects of information engineering and human-machine interactions. It was formed in 2014 by the merger of the Image and Information Research Group and the Digital Media Research Group.

The group has an international reputation for its work in a number of key application areas. These include: image processing and vision, pattern recognition, interaction design, social, ubiquitous and mobile computing with a range of applications in security and biometrics, healthcare, e-learning, computer games, digital film and animation.

- Social and Affective Computing
- Assistive Robotics and Human-Robot Interaction
- Brain-Computer Interfaces
- Mobile, Ubiquitous and Pervasive Computing
- Sensor Networks and Data Analytics
- Biometric and Forensic Technologies
- Behaviour Models for Security
- Distributed Systems Security (Cloud Computing, Internet of Things)
- Advanced Pattern Recognition (medical imaging, document and handwriting recognition, animal biometrics)
- Computer Animation, Game Design and Game Technologies
- Virtual and Augmented Reality
- Digital Arts, Virtual Narratives.

- Instrumentation, Control and Embedded Systems:

The Instrumentation, Control and Embedded Systems Research Group comprises a mixture of highly experienced, young and vibrant academics working in three complementary research themes – embedded systems, instrumentation and control. The Group has established a major reputation in recent years for solving challenging scientific and technical problems across a range of industrial sectors, and has strong links with many European countries through EU-funded research programmes. The Group also has a history of industrial collaboration in the UK through Knowledge Transfer Partnerships.

The Group’s main expertise lies primarily in image processing, signal processing, embedded systems, optical sensors, neural networks, and systems on chip and advanced control. It is currently working in the following areas:

- monitoring and characterisation of combustion flames
- flow measurement of particulate solids
- medical instrumentation
- control of autonomous vehicles
- control of time-delay systems
- high-speed architectures for real-time image processing
- novel signal processing architectures based on logarithmic arithmetic.

Careers

We have developed our programmes with a number of industrial organisations, which means that successful students are in a strong position to build a long-term career in this important discipline. You develop the skills and capabilities that employers are looking for, including problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Kent has an excellent record for postgraduate employment: over 94% of our postgraduate students who graduated in 2013 found a job or further study opportunity within six months.

Building on Kent’s success as the region’s leading institution for student employability, we offer many opportunities for you to gain worthwhile experience and develop the specific skills and aptitudes that employers value.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
Commercial products today combine many technologies, and industry is increasingly interdisciplinary. This course is designed to meet this demand, giving you an interdisciplinary knowledge base in modern electronics including power, communications, control and embedded processors. Read more

Commercial products today combine many technologies, and industry is increasingly interdisciplinary. This course is designed to meet this demand, giving you an interdisciplinary knowledge base in modern electronics including power, communications, control and embedded processors.

You’ll develop a broad grasp of a range of interlocking disciplines, combining core modules developing your practical lab skills and industry awareness with a range of optional modules that allow you to focus on topics that suit your interests or career plans. Next-generation silicon technologies, electric drives and generating electric power from renewable sources are among the topics you could study.

This course will appeal to people with a broad interest in electronics and communications, as well as those who are interested in modern communications techniques, radio propagation, cellular mobile systems, control systems, power and drives, and modern system on-chip technology.

Specialist facilities

Our School is an exciting and stimulating environment where you’ll learn from leading researchers in specialist facilities. These include our Keysight Technologies wireless communications lab, as well as labs for embedded systems, power electronics and drives.

Depending on your choice of project, you may have use of our Terahertz photonics lab, ultrasound and bioelectronics labs, class 100 semiconductor cleanroom, traffic generators and analysers, FPGA development tools, sensor network test beds.

The School also contains facilities for electron-beam lithography and ceramic circuit fabrication – and a III-V semiconductor molecular beam epitaxy facility. The Faculty is also home to the £4.3 million EPSRC National Facility for Innovative Robotic Systems, set to make us a world leader in robot design and construction.

Accreditation

This course is accredited by the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.



Read less
Renewable energy and cutting carbon emissions now top the global environmental agenda. This programme addresses the fundamentals of renewable energy and shows how solar, wind and other such energy sources can be efficiently integrated into practical power systems. Read more

Renewable energy and cutting carbon emissions now top the global environmental agenda. This programme addresses the fundamentals of renewable energy and shows how solar, wind and other such energy sources can be efficiently integrated into practical power systems.

You’ll study core power engineering topics such as power electronic converters, machines and control alongside modules specific to renewable energy sources, on topics like power system modelling, analysis and power converters.

At the same time, you’ll study a unique set of modules on the efficient generation of electricity from solar and wind power, as well as integrating renewable generators into micro-grids, with stability analysis and active power management. Power electronics design is covered in depth, including conventional and emerging converter topologies and advances in semiconductor power devices.

You’ll be prepared to meet the renewable energy challenges of the 21st century in a wide range of careers.

School of Electronic and Electrical Engineering

Our School is an exciting and stimulating environment where you’ll learn from leading researchers in specialist facilities. These include our Keysight Technologies wireless communications lab, as well as labs for embedded systems, power electronics and drives.

Depending on your choice of research project, you may also have access to our labs in ultrasound and bioelectronics or our Terahertz photonics lab, class 100 semiconductor cleanroom, traffic generators and analysers, FPGA development tools, sensor network test beds. We have facilities for electron-beam lithography and ceramic circuit fabrication – and a III-V semiconductor molecular beam epitaxy facility.

Accreditation

This course is accredited by the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.




Read less
The huge growth of processing power, now available in small power-efficient packages, has fuelled the digital revolution, which has touched all sectors of the economy. Read more

The huge growth of processing power, now available in small power-efficient packages, has fuelled the digital revolution, which has touched all sectors of the economy. This practically orientated, advanced course in the area of electronics design and applications provides a strong digital technology core backed with applications-led modules.

You’ll study applications as diverse as medical and electronics, e-health, intelligent building design, automotive electronics, retail and commerce to prepare you for a range of careers in industry, where the skills you gain will be in high demand. A substantial element of practical work will give you confidence with software and digital hardware implementations using microcontrollers, FPGA, DSP devices and general system-on-chip methodology.

You’ll be taught by experts informed by their own world-leading research, and you’ll have access to world-class facilities to prepare for a career in a fast-changing industry.

Our School is an exciting and stimulating environment where you’ll learn from leading researchers in specialist facilities . These include our Keysight Technologies wireless communications lab, as well as labs for embedded systems, power electronics and drives, ultrasound and bioelectronics.

There’s also a Terahertz photonics lab, class 100 semiconductor cleanroom, traffic generators and analysers, FPGA development tools, sensor network test beds. We have facilities for electron-beam lithography and ceramic circuit fabrication – and a III-V semiconductor molecular beam epitaxy facility.

Accreditation

This course is accredited by the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.



Read less
Digital signal processing (DSP) is at the core of the communications revolution. Research is constantly being carried out to develop new DSP algorithms, allowing mobile broadband services, ‘Internet of Things’ applications and other technologies to be delivered to a growing number of users. Read more

Digital signal processing (DSP) is at the core of the communications revolution. Research is constantly being carried out to develop new DSP algorithms, allowing mobile broadband services, ‘Internet of Things’ applications and other technologies to be delivered to a growing number of users.

This programme will give you a thorough understanding of different aspects of DSP and as it relates to the communications landscape, as well as specialist knowledge from your choice of optional modules.

Our DSP lab will give you hands-on experience using the DSP technology that can be found in computers, cellular phones, GPS and other technologies, and you’ll learn from expert researchers at the forefront of their fields.

You’ll also benefit from specialist industrial lectures, allowing you to relate the theoretical and design aspects of communications and signal processing to practical problems and real-world constraints.

School Facilities

Our School is an exciting and stimulating environment where you’ll learn from leading researchers in specialist facilities. These include our Keysight Technologies wireless communications lab, as well as labs for embedded systems, power electronics and drives, ultrasound and bioelectronics.

There’s also a Terahertz photonics lab, class 100 semiconductor cleanroom, traffic generators and analysers, FPGA development tools, sensor network test beds. We have facilities for electron-beam lithography and ceramic circuit fabrication – and a III-V semiconductor molecular beam epitaxy facility. The Faculty is also home to the £4.3 million EPSRC National Facility for Innovative Robotic Systems, set to make us a world leader in robot design and construction.



Read less
The communications sector has changed dramatically in the past 5 years, as mobile internet, smartphones and associated apps such as social media, commerce and digital media have spurred an information revolution. Read more

The communications sector has changed dramatically in the past 5 years, as mobile internet, smartphones and associated apps such as social media, commerce and digital media have spurred an information revolution.

This programme responds to the growth of networks and mobile internet applications, allowing you to study traditional communications theory alongside modules dealing with network security and the protocols for high-speed switches and routers.

You’ll build your knowledge of new developments in data-centric networking and the growing trend in cloud computing and online services, such as web-search, video content hosting and distribution, social networking and large-scale computations. Optional modules will allow you to specialise in topics appropriate to your interests and career plans.

It’s a chance to gain specialist knowledge and skills that will be in demand over a wide range of disciplines, from the traditional communications industries to banking, finance and commerce.

Specialist facilities

Our School is an exciting and stimulating environment where you’ll learn from leading researchers in specialist facilities. Depending on your research project, these may include our Keysight Technologies wireless communications lab, as well as labs for embedded systems, power electronics and drives, ultrasound and bioelectronics.

There’s also a Terahertz photonics lab, class 100 semiconductor cleanroom, traffic generators and analysers, FPGA development tools, sensor network test beds. We have facilities for electron-beam lithography and ceramic circuit fabrication – and a III-V semiconductor molecular beam epitaxy facility.

The Faculty is also home to the £4.3 million EPSRC National Facility for Innovative Robotic Systems, set to make us a world leader in robot design and construction.



Read less
This programme for graduates in electronic engineering or similar subjects will prepare you to become a senior manager or entrepreneur in global companies, where understanding technology and managing innovation in business are key to success. Read more

This programme for graduates in electronic engineering or similar subjects will prepare you to become a senior manager or entrepreneur in global companies, where understanding technology and managing innovation in business are key to success.

Jointly delivered by the School of Electronic and Electrical Engineering and Leeds University Business School, the course allows you to tailor the programme of studies to your needs, selecting optional modules from three engineering themes and four business themes. A set of core modules provides the foundation of your knowledge and skills.

You’ll be taught by leading experts in technology and in business management, with practical lab classes and project work allowing you to gain hands-on experience investigating and applying topics from your lectures and tutorials to real-life engineering and business situations.

This joint programme offers a unique opportunity to enhance both your technical and managerial skills.

The School of Electronic and Electrical Engineering is an exciting and stimulating environment where you’ll learn from leading researchers in areas pertinent to emerging and developing technologies. These technologies include future wireless and optical communications systems, renewable energy systems, ultrasound and bioelectronics systems, as well as nano, terahertz, and quantum technologies.

Leeds University Business School is also a leading international business school, globally, in the top 1%. It has world ranked programmes and internationally recognised teaching. You'll leave as a graduate of one of the top ten universities targeted by key employers such as Google, HSBC, Rolls-Royce and the Civil Services.



Read less
This is a vocational course in applied physics for anyone with a background in the physical sciences or engineering. You can choose classes relevant to your career interests from a wide range of topics including. Read more

Why this course?

This is a vocational course in applied physics for anyone with a background in the physical sciences or engineering.

You can choose classes relevant to your career interests from a wide range of topics including:
- high-power microwave technology
- laser-based particle acceleration and enabled applications
- physics and the life sciences
- materials and solid state physics
- photonics
- quantum optics and quantum information technology

You‘ll put the knowledge gained in the taught classes to use on a research project. You can design the project to fit in with your interests and career plans.

The course gives you the opportunity to explore and master a wide range of applied physics skills. It teaches you transferable, problem-solving and numeracy skills that are widely sought after across the commercial sector.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/appliedphysics/

You’ll study

You’ll have two semesters of taught classes made up of compulsory and optional modules. This is followed by a three-month research project.

Facilities

This course is run by our Department of Physics. The department’s facilities include:
- cutting-edge high-power laser and particle acceleration research with SCAPA, enabling generation of radiation from the terahertz to - the X-ray region, and biomedical applications
- the Ultrafast Chemical Physics lab with state-of-the-art femtosecond laser systems for multi-dimensional IR spectroscopy
- a scanning electron microscopy suite for analysis of hard and soft matter
- access to top-of-the-range high-performance and parallel computer facilities
- state-of-the-art high-power microwave research facility in the Technology & Innovation Centre
- advanced quantum optics and quantum information labs
- several labs researching optical spectroscopy and sensing

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Our teaching is based on lectures, tutorials, workshops, laboratory experiments and research projects.

Assessment

The final assessment will be based on your performance in examinations, coursework, a research project and, if required, in an oral exam.

What kind of jobs do Strathclyde Physics graduates get?

To answer this question we contacted some of our Physics graduates from all courses to find out what jobs they have. They are working across the world in a number of different roles including:
- Medical Physicist
- Senior Engineer
- Professor
- Systems Engineer
- Treasury Analyst
- Patent Attorney
- Software Engineer
- Teacher
- Spacecraft Project Manager
- Defence Scientist
- Procurement Manager
- Oscar winner

- Success story: Iain Neil
Iain Neil graduated from Strathclyde in Applied Physics in 1977 and is an optical consultant, specialising in the design of zoom lenses for the film industry. He has received a record 12 Scientific and Technical Academy Awards, the most for any living person.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
The Department gives MSc students an opportunity to study and perform a research project under the supervision of recognized experts and to acquire specialist knowledge of one or a few topics at the cutting edge of contemporary physics. Read more
The Department gives MSc students an opportunity to study and perform a research project under the supervision of recognized experts and to acquire specialist knowledge of one or a few topics at the cutting edge of contemporary physics.

The project will be devoted to one of several topical areas of modern physics including high-temperature superconductivity, terahertz semiconductor and superconductor electronics, quantum computing and quantum metamaterials, physics of extreme conditions and astrophysics.

Core study areas currently include mathematical methods for interdisciplinary sciences, research methods in physics, superconductivity and nanoscience and a research project.

Optional study areas currently include characterisation techniques in solid state physics, quantum information, advanced characterisation techniques, quantum computing, and physics of complex systems.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/advanced-physics/

Programme modules

Compulsory Modules:
- Mathematical Methods for Interdisciplinary Sciences
- Research Methods in Physics
- Superconductivity and Nanoscience
- Research Project Part 1
- Research Project Part 2

Optional Modules:
- Characterisation Techniques in Solid State Physics
- Fundamentals of Quantum Information
- Matlab as a Scientific Programming Language
- Advanced Characterisation Techniques
- Quantum Computing
- Physics of Complex systems

Learning and teaching

Knowledge and understanding are acquired through lectures, tutorials, problem classes and guided independent study. Assessment in taught modules is by a combination of examination and coursework. The MSc includes a significant research project completed through guided independent study with a research supervisor.

Careers and further study

The aim of the course is to equip students with key skills they need for employment in industry, public service or academic research.

Why choose physics at Loughborough?

We are a community of approximately 170 undergraduates, 30 postgraduates, 16 full-time academic staff, seven support staff, and several visiting and part-time academic staff.

Our large research student population and wide international links make the Department a great place to work.

- Research
Our research strengths are in the areas of condensed matter and materials, with a good balance between theory and experiment.
The quality of our researchers is recognised internationally and we publish in highly ranked physics journals; one of our former Visiting Professors, Alexei Abrikosov, was awarded the 2003 Nobel Prize in Physics.

- Career Prospects
100% of our graduates were in employment and/or further study six months after graduating. They have gone on to work with companies such as BT, Nikon Metrology, Prysmian Group, Rutherford Appleton Laboratory ISIS and Smart Manufacturing Technology.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/advanced-physics/

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X