• University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Imperial College London Featured Masters Courses
King’s College London Featured Masters Courses
University of Leeds Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
University of Leeds Featured Masters Courses
University College London Featured Masters Courses
"teaching" AND "of" AND "…×
0 miles

Masters Degrees (Teaching Of Biology)

  • "teaching" AND "of" AND "biology" ×
  • clear all
Showing 1 to 15 of 785
Order by 
Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Read more
Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Not only must further research be done, but industry and business also need environmental specialists with a strong background in natural sciences. As new regulations and European Union directives are adopted in practice, people with knowledge of recent scientific research are required.

Upon graduating from the Programme you will have competence in:
-Applying experimental, computational and statistical methods to obtain and analyse atmospheric and environmental data.
-Knowledge applicable to solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.
-Making systematic and innovative use of investigation or experimentation to discover new knowledge.
-Reporting results in a clear and logical manner.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The six study lines are as follows:
Aerosol Physics
Aerosol particles are tiny liquid or solid particles floating in the air. Aerosol physics is essential for our understanding of air quality, climate change and production of nanomaterials. Aerosol scientists investigate a large variety of phenomena associated with atmospheric aerosol particles and related gas-to-particle conversion using constantly improving experimental, theoretical, model-based and data analysis methods. As a graduate of this line you will be an expert in the most recent theoretical concepts, measurement techniques and computational methods applied in aerosol research.

Geophysics of the Hydrosphere
Hydrospheric geophysics studies water in all of its forms using physical methods. It includes hydrology, cryology, and physical oceanography. Hydrology includes the study of surface waters such as lakes and rivers, global and local hydrological cycles as well as water resources and geohydrology, the study of groundwater. Cryology focuses on snow and ice phenomena including glacier mass balance and dynamics, sea ice physics, snow cover effects and ground frost. Physical oceanography covers saline water bodies, focusing on describing their dynamics, both large scale circulation and water masses, and local phenomena such as surface waves, upwelling, tides, and ocean acoustics. Scientists study the hydrosphere through field measurements, large and small scale modelling, and formulating mathematical descriptions of the processes.

Meteorology
Meteorology is the physics of the atmosphere. Its best-known application is weather forecasting, but meteorological knowledge is also essential for understanding, predicting and mitigating climate change. Meteorologists study atmospheric phenomena across a wide range of space and time scales using theory, model simulations and observations. The field of meteorology is a forerunner in computing: the development of chaos theory, for example, was triggered by the unexpected behaviour of a meteorological computer model. Meteorology in ATM-MP is further divided into dynamic meteorology and biometeorology. Dynamic meteorology is about large-scale atmospheric dynamics, modelling and observation techniques, whereas biometeorology focuses on interactions between the atmosphere and the underlying surface by combining observations and modelling to study the flows of greenhouse gases and energy with links to biogeochemical cycles, for example. As a graduate of the meteorology line, you will be an expert in atmospheric phenomena who can produce valuable new information and share your knowledge.

Biogeochemical Cycles
Biogeochemistry studies the processes involved in cycling of elements in terrestrial and aquatic ecosystems by integrating physics, meteorology, geophysics, chemistry, geology and biology. Besides natural ecosystems, it also studies systems altered by human activity such as forests under different management regimes, drained peatlands, lakes loaded by excess nutrients and urban environments. The most important elements and substances studied are carbon, nitrogen, sulphur, water and phosphorus, which are vital for ecosystem functioning and processes such as photosynthesis. Biogeochemistry often focuses on the interphases of scientific disciplines and by doing so, it also combines different research methods. It treats ecosystems as open entities which are closely connected to the atmosphere and lithosphere. You will thus get versatile training in environmental issues and research techniques. As a graduate of this line you will be an expert in the functioning of ecosystems and the interactions between ecosystems and the atmosphere/hydrosphere/lithosphere in the context of global change. You will have knowledge applicable for solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.

Remote Sensing
Remote sensing allows the collection of information about the atmosphere, oceans and land surfaces. Various techniques are applied for monitoring the state and dynamics of the Earth system from the ground, aircraft or satellites. While Lidar and radar scan from the surface or mounted on aircraft, instruments on polar orbiting or geostationary satellites permit measurements worldwide. In atmospheric sciences remote sensing has found numerous applications such as observations of greenhouse and other trace gases, aerosols, water vapour, clouds and precipitation, as well as surface observations, for example of vegetation, fire activity, snow cover, sea ice and oceanic parameters such as phytoplankton. Synergistic satellite data analysis enables the study of important processes and feedback in the climate system. Remote sensing advances climate research, weather forecasting, air quality studies, aviation safety and the renewable energy industry. As a graduate of the remote sensing line you will have broad expertise in the operational principles of remote sensing instruments as well as methods of data collection, analysis and interpretation.

Atmospheric Chemistry and Analysis
Atmospheric chemistry studies the composition and reactions of the molecules that make up the atmosphere, including atmospheric trace constituents and their role in chemical, geological and biological processes, including human influence. The low concentrations and high reactivity of these trace molecules place stringent requirements on the measurement and modelling methods used to study them. Analytical chemistry is the science of obtaining, processing, and communicating information about the composition and structure of matter and plays an essential role in the development of science. Environmental analysis consists of the most recent procedures for sampling, sample preparation and sample analysis and learning how to choose the best analytical methods for different environmental samples. Physical atmospheric chemistry studies focus on the reaction types and reaction mechanisms occurring in the atmosphere, with emphasis on reaction kinetics, thermodynamics and modelling methods. As a graduate of this line you will have understanding of the chemical processes of the atmosphere and the latest environmental analytical methods, so you will have vital skills for environmental research.

Programme Structure

The basic degree in the Programme is the Master of Science (MSc). The scope of the degree is 120 credits (ECTS). As a prerequisite you will need to have a relevant Bachelor’s degree. The possible major subjects are Physics, Meteorology, Geophysics, Chemistry, and Forest Ecology. The programme is designed to be completed in two years. Studies in ATM-MP consist of various courses and project work: lecture courses, seminars, laboratory work and intensive courses.

Your first year of studies will consist mainly of lecture courses. During the second year, you must also participate in the seminar course and give a presentation yourself. There is also a project course, which may contain laboratory work, data analysis, or theoretical or model studies. You will have to prepare a short, written report of the project. There are also several summer and winter schools as well as field courses for students in the Programme. Many of the courses take place at the Hyytiälä Forestry Field Station in Southern Finland. The intensive courses typically last 5–12 days and include a concise daily programme with lectures, exercises and group work.

Career Prospects

There is a global need for experts with multidisciplinary education in atmospheric and environmental issues. Governmental environmental agencies need people who are able to interpret new scientific results as a basis for future legislation. Industry, transportation and businesses need to be able to adapt to new regulations.

As a Master of Science graduating from the Programme you will have a strong background of working with environmental issues. You will have the ability to find innovative solutions to complex problems in the field of environmental sciences, climate change and weather forecasting. Graduates of the Programme have found employment in Meteorological Institutes and Environmental Administration in Finland and other countries, companies manufacturing instrumentation for atmospheric and environmental measurements and analysis, and consultancy companies. The Master's degree in ATM-MP also gives you a good background if you intend to proceed to doctoral level studies.

Internationalization

The Programme offers an international study environment with more than 30% of the students and teaching staff coming from abroad.

The ATM-MP is part of a Nordic Nordplus network in Atmosphere-Biosphere Studies, which gives you good opportunities to take courses currently in fourteen Nordic and Baltic universities. There are also several Erasmus agreements with European universities. The PanEurasian Experiment (PEEX) project provides you with opportunities to carry out part of your studies especially in China and Russia.

Research Focus

All the units teaching in the Programme belong to the National Centre of Excellence (FCoE) in Atmospheric Science – From Molecular and Biological processes to the Global Climate (ATM), which is a multidisciplinary team of the Departments of Physics, Forest Sciences and Chemistry at the University of Helsinki, the Department of Applied Physics at the University of Eastern Finland (Kuopio) and the Finnish Meteorological Institute.

The main objective of FCoE ATM is to quantify the feedbacks between the atmosphere and biosphere in a changing climate. The main focus of the research is on investigating the following topics:
1. Understanding the climatic feedbacks and forcing mechanisms related to aerosols, clouds, precipitation and biogeochemical cycles.
2. Developing, refining and utilising the newest measurement and modelling techniques, from quantum chemistry to observations and models of global earth systems.
3. Creating a comprehensive understanding of the role of atmospheric clusters and aerosol particles in regional and global biogeochemical cycles of water, carbon, sulphur, nitrogen and their linkages to atmospheric chemistry.
4. Integrating the results in the context of understanding regional and global Earth systems.

In addition to the research focus of FCoE, current research in hydrospheric geophysics at Helsinki University has an emphasis on cryology, with a focus on the effect of aerosols on Indian glaciers, the impact of climate change on the Arctic environment, the dynamics of the Austfonna ice cap in Svalbard, and the winter season in the coastal zone of the Baltic Sea.

Read less
Through a mix of lectures, laboratories, clinical demonstrations and hospital visits, our MSc in Medical Imaging will develop you as a professional, enhancing your ability to take on new challenges with confidence. Read more
Through a mix of lectures, laboratories, clinical demonstrations and hospital visits, our MSc in Medical Imaging will develop you as a professional, enhancing your ability to take on new challenges with confidence. This programme is run together with the Department of Physics.

PROGRAMME OVERVIEW

Medical imaging is a rapidly-growing discipline within the healthcare sector, involving clinicians, physicists, computer scientists and those in IT industries.

This programme delivers the expertise you'll need to forge a career in medical imaging, including radiation physics, image processing, biology, computer vision, pattern recognition, artificial intelligence and machine learning.

PROGRAMME STRUCTURE

This programme is studied full-time over 12 months and part-time over 48 months. It consists of eight taught modules and an extended project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Image Processing and Vision
-Professional Skills for Clinical Science and Engineering
-Radiation Biology
-Radiation Physics
-AI and AI Programming
-Computer Vision and Pattern Recognition
-Diagnostic Apps of Ionising Radiation
-Non-Ionising Radiation Imaging
-Engineering Professional Studies 1
-Engineering Professional Studies 2
-Extended Project

FACILITIES, EQUIPMENT AND SUPPORT

To support your learning, we hold regular MSc group meetings where any aspect of the programme, technical or non-technical, can be discussed in an informal atmosphere. This allows you to raise any problems that you would like to have addressed and encourages peer-based learning and general group discussion.

We provide computing support with any specialised software required during the programme, for example, Matlab.

The Department’s student common room is also covered by the university’s open-access wireless network, which makes it a very popular location for individual and group work using laptops and mobile devices. There is also a Faculty quiet room for individual study.

We pride ourselves on the many opportunities that we provide to visit collaborating hospitals. These enable you to see first-hand demonstrations of medical imaging facilities and to benefit from lectures by professional practitioners.

To support material presented during the programme, you will also undertake a selection of ultrasound and radiation detection experiments, hosted by our sister MSc programme in Medical Physics.

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

General transferable skills
-Be able to use computers and basic IT tools effectively
-Information retrieval. Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental content
-Understand the requirement for engineering activities to promote sustainable development
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The MPhil degree offered by the Department of Oncology is a 12 month full time programme and involves minimal formal teaching; students are integrated into the research culture of the Department and the Institute in which they are based. Read more
The MPhil degree offered by the Department of Oncology is a 12 month full time programme and involves minimal formal teaching; students are integrated into the research culture of the Department and the Institute in which they are based.

Each student conducts their MPhil project under the direction of their Principal Supervisor, with additional teaching and guidance provided by a Second Supervisor and often a Practical Supervisor. The role of each Supervisor is:

- Principal Supervisor: takes responsibility for experimental oversight of the student's research project and provides day-to-day supervision.
- Second Supervisor: acts as a mentor to the student and is someone who can who can offer impartial advice. The Second Supervisor is a Group Leader or equivalent who is independent from the student's research group and is appointed by the Principal Supervisor before the student arrives.
- Practical Supervisor: provides day-to-day experimental supervision when the Principal Supervisor is unavailable, i.e. during very busy periods. The Practical Supervisor is a senior member of the student's research team and is appointed by the Principal Supervisor before the student arrives. For those Principal Supervisors who are unable to monitor their students on a daily basis, we would expect that they meet semi-formally with their student at least once a month.

The subject of the research project is determined during the application process and is influenced by the research interests of the student’s Principal Supervisor, i.e. students should apply to study with a Group Leader whose area of research most appeals to them. The Department of Oncology’s research interests focus on the prevention, diagnosis and treatments of cancer. This involves using a wide variety of research methods and techniques, encompassing basic laboratory science, translational research and clinical trials. Our students therefore have the opportunity to choose from an extensive range of cancer related research projects. In addition, being based on the Cambridge Biomedical Research Campus, our students also have access world leading scientists and state-of-the-art equipment.

To broaden their knowledge of their chosen field, students are strongly encouraged to attend relevant seminars, lectures and training courses. The Cambridge Cancer Cluster, of which we are a member department, provides the 'Lectures in Cancer Biology' seminar series, which is specifically designed to equip graduate students with a solid background in all major aspects of cancer biology. Students may also attend undergraduate lectures in their chosen field of research, if their Principal Supervisor considers this to be appropriate. We also require our students to attend their research group’s ‘research in progress/laboratory meetings’, at which they are expected to regularly present their ongoing work.

At the end of the course, examination for the MPhil degree involves submission of a written dissertation (of 20,000 words or less), followed by an oral examination based on both the dissertation and a broader knowledge of the chosen area of research.

Course objectives

The structure of the MPhil course is designed to produce graduates with rigorous research and analytical skills, who are exceptionally well-equipped to go onto doctoral research, or employment in industry and the public service.

The MPhil course provides:

- a period of sustained in-depth study of a specific topic;
- an environment that encourages the student’s originality and creativity in their research;
- skills to enable the student to critically examine the background literature relevant to their specific research area;
- the opportunity to develop skills in making and testing hypotheses, in developing new theories, and in planning and conducting experiments;
- the opportunity to expand the student’s knowledge of their research area, including its theoretical foundations and the specific techniques used to study it;
- the opportunity to gain knowledge of the broader field of cancer research;
- an environment in which to develop skills in written work, oral presentation and publishing the results of their research in high-profile scientific journals, through constructive feedback of written work and oral presentations.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/cvocmpmsc

Format

The MPhil course is a full time research course. Most research training provided within the structure of the student’s research group and is overseen by their Principal Supervisor. However, informal opportunities to develop research skills also exist through mentoring by fellow students and members of staff. To enhance their research, students are expected to attend seminars and graduate courses relevant to their area of interest. Students are also encouraged to undertake transferable skills training provided by the Graduate School of Life Sciences. At the end of the course, examination for the MPhil degree involves submission of a written dissertation, followed by an oral examination based on both the dissertation and a broader knowledge of the chosen area of research.

Learning Outcomes

At the end of their MPhil course, students should:

- have a thorough knowledge of the literature and a comprehensive understanding of scientific methods and techniques applicable to their own research;
- be able to demonstrate originality in the application of knowledge, together with a practical understanding of how research and enquiry are used to create and interpret knowledge in their field;
- the ability to critically evaluate current research and research techniques and methodologies;
- demonstrate self-direction and originality in tackling and solving problems;
- be able to act autonomously in the planning and implementation of research; and
- have developed skills in oral presentation, scientific writing and publishing the results of their research.

Assessment

Examination for the MPhil degree involves submission of a written dissertation of not more than 20,000 words in length, excluding figures, tables, footnotes, appendices and bibliography, on a subject approved by the Degree Committee for the Faculties of Clinical Medicine and Veterinary Medicine. This is followed by an oral examination based on both the dissertation and a broader knowledge of the chosen area of research.

Continuing

The MPhil Medical Sciences degree is designed to accommodate the needs of those students who have only one year available to them or, who have only managed to obtain funding for one year, i.e. it is not intended to be a probationary year for a three-year PhD degree. However, it is possible to continue from the MPhil to the PhD in Oncology (Basic Science) course via the following 2 options:

(i) Complete the MPhil then continue to the three-year PhD course:

If the student has time and funding for a further THREE years, after completion of their MPhil they may apply to be admitted to the PhD course as a continuing student. The student would be formally examined for the MPhil and if successful, they would then continue onto the three year PhD course as a probationary PhD student, i.e. the MPhil is not counted as the first year of the PhD degree; or

(ii) Transfer from the MPhil to the PhD course:

If the student has time and funding for only TWO more years, they can apply for permission to change their registration from the MPhil to probationary PhD; note, transfer must be approved before completion of the MPhil. If granted permission to change registration, the student will undergo a formal probationary PhD assessment (submission of a written report and an oral examination) towards the end of their first year and if successful, will then be registered for the PhD, i.e. the first year would count as the first year of the PhD degree.

Please note that continuation from the MPhil to the PhD, or changing registration is not automatic; all cases are judged on their own merits based on a number of factors including: evidence of progress and research potential; a sound research proposal; the availability of a suitable supervisor and of resources required for the research; acceptance by the Head of Department and Degree Committee.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

The Department of Oncology does not have specific funds for MPhil courses. However, applicants are encouraged to apply to University funding competitions: http://www.graduate.study.cam.ac.uk/finance/funding and the Cambridge Cancer Centre: http://www.cambridgecancercentre.org.uk/education-and-training

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Ecology and evolutionary biology offer a perspective on biology from the level of genes to communities of species. In the master's degree program, you can become familiar with a wide variety of topics in three areas. Read more
Ecology and evolutionary biology offer a perspective on biology from the level of genes to communities of species.

In the master's degree program, you can become familiar with a wide variety of topics in three areas: ecology, evolutionary biology and conservation biology. You can choose studies from any of these areas, as well as from other master's degree programmes. The programme is diverse and multidisciplinary: teaching is done with lectures, laboratory and computer training courses, interactive seminars, study tours and field courses. The field courses range from the northern subarctic region to tropical rainforests.

Our wide expertise extends from molecular ecology to population and community biology. The Centres of Excellence of Metapopulation Biology and Biological Interactions are located in our department.

Our programme offers you a wide range of options: evolutionary biology or genetics for those interested in ecological genetics and genomics, as well as the ability to take advantage of the high-quality molecular ecology and systematics laboratory; conservation biology for those interested in regional or global environmental problems; and ecological modelling skills for those interested in computational biology. Our training also offers Behavioural Ecology.

Ecology, evolutionary biology and conservation biology are not only fascinating topics for basic research, they also have a key role in addressing global environmental challenges.

Upon graduating from the Master's degree in ecology and evolutionary biology programme, you will:
-Have mastered the main theories and methods in ecology and evolutionary biology and be able to apply them to practical problems.
-Be able to plan and carry out a scientific research project.
-Have read the relevant scientific literature and be able to utilise your expertise in different types of work.
-Be able to work as an expert in your field.
-Be able to to write good scientific English.
-Be able to work in research projects and groups.
-Be able to continue on to doctoral studies.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The Master's degree program includes studies of ecology, evolutionary biology and conservation biology. The studies are organised in modules. You can affect the content of the studies by planning your personal curriculum. You can study the following themes:
-Ecology studies the abundance and distribution of species (animals, plants, microbes) and the interactions among them and with the environment. The perspective ranges from the molecular to the ecosystem level. In ecology, a central question is: Why are some species able to invade new habitats and displace native species? Which species are able to adapt to environmental change or migrate with the changing climate, and which species will become extinct?
-Evolutionary biology examines the processes which support biodiversity on its various levels (genes – individuals – populations – species – ecosystems). You will learn about the theory of evolution and how to use population genetics and genomics methods in researching evolutionary issues.
-Conservation Biology studies the depletion of biodiversity, its causes and consequences. You will learn to apply ecological theory to the problems of environmental conservation, to assess the effectiveness of methods of conservation, as well as to resolve the problems relating to conservation e.g. by modelling and computational methods. The training emphasizes the importance of interdisciplinary education in the area of conservation.

Programme Structure

You undertake modules producing a total of 120 credits (ECTS) according to your personal study plan. The degree consists of:
-60 credits of advanced studies, including a research project (Master’s thesis, 30 credits)
-60 credits of other studies chosen from the Programme or from other Programmes

Career planning or extracurricular activities can be included in your personal study plan. If you are studying to qualify as a biology teacher, you will need 60 credits of pedagogical studies in your degree. This applies only to Finnish or Swedish speaking students.

Career Prospects

Master's degree in ecology and evolutionary biology gives an access to the capability of University teaching and research tasks, for a wide range of expert and administrative tasks of the various research centres, companies, in the field of public administration (e.g., The UNITED NATIONS, the European Union, the State and the provincial administration, cities, municipalities), international and national organizations and the media. The degree also provides the scientific validity for doctoral education in different areas of biology.

The Master’s degree in Ecology and Evolutionary Biology is a well-liked option among students studying towards biology teacher qualification (Finnish and Swedish speaking students).

Internationalization

You will have the opportunity to study at foreign universities and research institutions within the framework of an international student exchange. You can also gain valuable experience by working as a tutor of international students or participating in the international activities of the Student Union or other student organisations.

The teachers and researchers in the department of Ecology and Evolutionary Biology are internationally known and respected. Their research groups host numerous international researchers as visitors and workers. They also employ many foreign graduate students, which creates an international atmosphere in the programme.

Read less
Our Medical Physics MSc programme is well-established and internationally renowned. We are accredited by IPEM (Institute of Physics and Engineering in Medicine) and we have trained some 1,000 medical physicists, so you can look forward to high-quality teaching during your time at Surrey. Read more
Our Medical Physics MSc programme is well-established and internationally renowned. We are accredited by IPEM (Institute of Physics and Engineering in Medicine) and we have trained some 1,000 medical physicists, so you can look forward to high-quality teaching during your time at Surrey.

PROGRAMME OVERVIEW

The syllabus for the MSc in Medical Physics is designed to provide the knowledge, skills and experience required for a modern graduate medical physicist, placing more emphasis than many other courses on topics beyond ionising radiation (X-rays and radiotherapy).

Examples of other topics include magnetic resonance imaging and the use of lasers in medicine.

You will learn the theoretical foundations underpinning modern imaging and treatment modalities, and will gain a set of experimental skills essential in a modern medical physicist’s job.

These skills are gained through experimental sessions in the physics department and practical experiences at collaborating hospitals using state-of-the-art clinical facilities.

PROGRAMME STRUCTURE

This programme is studied full-time over two academic years. It consists of ten taught modules and a dissertation project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Radiation Physics
-Radiation Measurement C
-Experimental and Professional Skills for Medical Physics
-Introduction to Biology and Radiation Biology
-Therapy Physics
-Diagnostic Applications of Ionising Radiation Physics
-Non-ionising Radiation Imaging
-Extended Group Project
-Research Skills (Euromasters)
-Outreach and Public Engagement
-Euromaster Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The primary aim of the programme is to provide a high quality postgraduate level qualification in Physics that is fully compatible with the spirit and the letter of the Bologna Accord.

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:
-Concepts and theories: Students will be able to demonstrate a systematic understanding of the concepts, theories and ideas of a specialized field in physics in Radiation Physics through the taught elements of one of the component MSc programmes MSc in Medical Physics.
-Instrumentation and materials: Students will understand the operation, function and performance of the key radiation detection devices and technologies or principles of the physics relevant to applied radiation physics, in particular medical applications.
-Methods and best practices: Students will become fully acquainted with the scientific methods and best practices of physics and exposed to a specialized field described in the handbook documents of the validated MSc in Medical Physics.

In the second year of the programme the outcomes are linked closely to a unique 8-month research project (two months preparation and research skills development, 5 months research, and 1 month reporting), students will apply their acquired research skills to an individual research project in a Research Group.

During the first two months of year two of the programme students will further extend their self-confidence in their practical, analytical and programming abilities; their ability to communicate; realise that they can take on responsibility for a task in the Research Group and see it through.

An important element is the assignment of responsibility for a substantial research project which is aimed to be of a standard suitable for publication in an appropriate professional journal.

It is expected that the student will approach the project in the manner of a new Research Student, e.g. be prepared to work beyond the normal working day on the project, input ideas, demonstrate initiative and seek out relevant information.

Thereby the students will acquire proficiency in research skills, including (but not limited to) careful planning, time scheduling, communication with colleagues and at workshops, keeping a detailed notebook, designing and testing equipment, taking and testing data and analysis.

The dissertation required at the end of the Research Project has the objective of encouraging students to write clearly and express their understanding of the work, thereby developing the required skills of scientific writing.

During the Research Project as a whole it is expected that the students will further develop communication skills through participation in group meetings, preparation of in-house reports, giving oral presentations and show initiative in acquiring any necessary new skills.

The oral presentation at the end of the Research Project is a chance to show their oral presentation skills and ability to think independently.

Knowledge and understanding
-Knowledge of physics, technology and processes in the subject of the course and the ability to apply these in the context of the course
-Ability to research problems involving innovative practical or theoretical work
-Ability to formulate ideas and response to problems, refine or expand knowledge in response to specific ideas or problems and communicate these ideas and responses
-Ability to evaluate/argue alternative solutions and strategies independently and assess/report on own/others work with justification

Intellectual / cognitive skills
-The ability to plan and execute, under supervision, an experiment or theoretical investigation, analyse critically the results and draw valid conclusions
-Students should be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare their theoretical (experimental) results with expected experimental (theoretical) outcomes, or with published data
-They should be able to evaluate the significance of their results in this context
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences.

Professional practical skills
-Technical mastery of the scientific and technical information presented and the ability to interpret this in the professional context.
-Ability to plan projects and research methods in the subject of the course.
-Understand and be able to promote the scientific and legal basis of the field through peer and public communication.
-Aware of public concern and ethical issues in radiation and environmental protection.
-Able to formulate solutions in dialogue with peers, mentors and others.

Key / transferable skills
-Identify, assess and resolve problems arising from material in lectures and during experimental/research activities
-Make effective use of resources and interaction with others to enhance and motivate self –study
-Make use of sources of material for development of learning and research; such as journals, books and the internet
-Take responsibility for personal and professional development
-Be self-reliant
-Responsibility for personal and professional development.

Subject knowledge and skills
-A systematic understanding of Medical Physics in an academic and professional context, and a critical awareness of current problems and/or new insights, much of which is at, or informed by, the state of the art
-A comprehensive understanding of techniques applicable to research projects in Medical Physics
-Familiarity with generic issues in management and safety and their application to Medical Physics in a professional context

Core academic skills
-The ability to plan and execute under supervision, an experiment or investigation, analyse critically the results and draw valid conclusions (students should be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare these results with expected outcomes, theoretical predictions or with published data; they should be able to evaluate the significance of their results in this context)
-The ability to evaluate critically current research and advanced scholarship in the discipline
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences

Personal and key skills
-The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
-The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This National College for Teaching and Leadership (NCTL)-accredited PGCE School Direct Secondary Mathematics course trains you to teach Mathematics to 11 to 16-year-olds. Read more
This National College for Teaching and Leadership (NCTL)-accredited PGCE School Direct Secondary Mathematics course trains you to teach Mathematics to 11 to 16-year-olds. London Metropolitan University’s partnership with local schools ensures you’ll have a continuity of support throughout both your theoretical learning and practical placements. Attendees of our PGCE Secondary courses pass with high results, with 95% achieving an Ofsted good or outstanding grade and 96% going on to obtain employment, usually with one of their placement schools. You also have access to Department of Education (DfE) bursaries as well as the Subject Knowledge Enhancement (SKE) in Mathematics if needed.

More about this course

Our PGCE School Direct Secondary Mathematics course teaches you the skills and knowledge needed for teaching mathematics to 11 to 16-year-olds (Key Stage 3 and 4) and leads to Qualified Teacher Status. This NCTL-accredited course also offers you the opportunity to develop your A level teaching where possible.

We’ll introduce you to current debates in mathematics and a wide variety of interactive teaching styles including group work and computer presentations. If you need help improving your own mathematics knowledge, we run a Subject Knowledge Enhancement course to help your training.

With our teaching placements in London, you'll improve your ability to teach in multicultural urban environments. By combining your studies at London Met with practical teaching placements, you’ll increase your understanding of the ways children learn and how your teaching style can help develop their mathematics skills.

We place great emphasis on sharing feedback between your peers and colleagues on the placement. You’ll complete a weekly reflection and contribute to discussions online in order to further develop your understanding of the role of a Secondary teacher.

The high quality of our training has led to positive feedback from Ofsted:

"Trainees and newly qualified teachers are enthusiastic about their subject, and plan and teach lessons that are well structured. They make good use of subject-specific vocabulary in their planning and teaching."
Ofsted, 2015

To help you in your application, Department of Education (DfE) bursaries are available for this course.

This PGCE course has three assessment elements:
-Practical teaching experience is assessed in relation to the Standards for Qualified Teacher Status
-A reflective portfolio is compiled across the year, detailing personal experiences and reflections on your development as a teacher
-A research assignment at the end of the year which focuses on the implementation of a key area of educational policy in the area of mathematics

There are no examinations.

Professional accreditation

This PGCE course is accredited by the National College for Teaching and Leadership (NCTL).

Modular structure

This is a year-long course.

Module 1, Curriculum Studies, includes:
-The theoretical underpinning of the practice that you will take into the classroom
-Access to the pedagogical knowledge and understanding required to effectively plan and teach well structured lessons in the secondary curriculum
-Considering all aspects of the mathematics curriculum
-Training to assess school pupils’ progress in each of these curriculum areas

Module 2, Professionalism and Inclusive Practice (PIP), includes:
-Support for your wider professional development as a teacher
-Discussion of the role of children’s rights and how this underpins effective learning relationships
-Understanding of different aspects of inclusive education
-Introduction to the whole school and wider children’s workforce
-Teamwork and collaborative discussion across different subject areas

Work placement:
-120 days in London placements, learning to teach with a mentor in secondary schools

In both university and classroom contexts your self-directed study is extremely important in order to help develop your own purposeful educational enquiry, prepare effective teaching resources and ensure up-to-date subject knowledge.

What our students say

“Choosing to complete my teacher training at London Met was the best career decision I ever made. Studying in the heart of London while being surrounded by a diverse body of staff and students was exactly the preparation I needed for teaching at inner-London secondary schools. London Met’s commitment to tackling the challenging issues surrounding modern urban education was, I believe, a key factor in my rapid progression to the position of head of department after just four years of teaching.

Having gained a unique insight into the value of teacher education throughout my undergraduate studies, I then embarked on a master’s in Education, again with London Met. After successfully completing this, I am now in my eighth year in the profession and currently considering application for a Doctorate in Education.” Rosie Walsh, former PGCE Secondary Mathematics student

After the course

This PGCE leads to Qualified Teacher Status (QTS), which enables you to teach mathematics to 11 to 16-year-olds. Our trainees have gone on to secure mathematics teacher roles at schools including Langdon Academy, Islamia Girls School and Stoke Newington School and Sixth Form.

Funding

Funding is available for many postgraduate courses leading to Qualified Teacher Status (QTS). Depending on your teaching subject and degree classification, you may be eligible for a bursary or scholarship of up to £30,000 through the teacher training bursary.

PGCE School Direct

The School Direct school placements work around the training calendar for the student teacher with the PGCE offered at the university. This means we can only offer places in Early Years / Primary and in Secondary teaching Maths, Modern Languages and Science with a specialism in Biology, Chemistry or Physics.

You will attend the training workshops at the university with other regular PGCE students and carry out placements of 120 days in a school or consortium of schools with a School Direct allocation. This time could be divided between two schools with some flexibility.

London Met has School Direct partnership with nearly 100 schools. This large body of schools have joined with us to build a cross-capital alliance, providing diverse contexts in which to train the new generation of London teachers.

Most of our trainees follow a programme modelled on the traditional PGCE, with time spent under tutor supervision at London Metropolitan University and the school placement divided between two partner schools.

Moving to one campus

Between 2016 and 2020 we're investing £125 million in the London Metropolitan University campus, moving all of our activity to our current Holloway campus in Islington, north London. This will mean the teaching location of some courses will change over time.

Whether you will be affected will depend on the duration of your course, when you start and your mode of study. The earliest moves affecting new students will be in September 2017. This may mean you begin your course at one location, but over the duration of the course you are relocated to one of our other campuses. Our intention is that no full-time student will change campus more than once during a course of typical duration.

All students will benefit from our move to one campus, which will allow us to develop state-of-the-art facilities, flexible teaching areas and stunning social spaces.

Read less
This is a Postgraduate Certificate of Education (PGCE) course, also known as Postgraduate Certificate (PG Cert). As a qualified science teacher you may be required to teach National Curriculum general science to Key Stage 4, as well as your particular specialism to ‘A’ level and beyond. Read more

About the Course

This is a Postgraduate Certificate of Education (PGCE) course, also known as Postgraduate Certificate (PG Cert).

As a qualified science teacher you may be required to teach National Curriculum general science to Key Stage 4, as well as your particular specialism to ‘A’ level and beyond. To this end, the course aims to facilitate your transformation into a well-educated, well-trained, confident and motivated science educator.

Along with English and mathematics, science is one of the three core subjects of the National Curriculum and since all pupils have to study a broad, balanced curriculum in science there is a demand for well-qualified and skilled science teachers. Most pupils entering secondary school are excited at the prospect of work, for the first time in a fully equipped laboratory, and secondary school science teachers have to build upon and sustain this interest for the subject.

To meet this challenge we need capable, skilled and enthusiastic teachers who are able to motivate young people and lead them to discover the wonders of science.

Aims

The Brunel Science Postgraduate Certificate (PGCE) is an M level course with 60 credits that can contribute to further Master's level study in Education, subject to approval. The course will equip you with the knowledge, understanding and skills necessary to teach science such that you are able to:

-Demonstrate an understanding of the vital role of the teacher and the school in ensuring excellence in the educational experiences of young people;
-Undertake professional practice which enables you to evidence the Teachers’ Standards which facilitate the award of Qualified Teacher Status;
-Understand the relationships between Education and science within current national and government frameworks, and critically reflect on the impact of these in the work of schools and the educational experiences of young people;
-Recognise the contribution that science as part of the whole school curriculum makes to the development of the individual learner and groups of learners;
-Think critically about what it means to be scientifically educated and how this informs curriculum planning and design within the subject area;
-Apply a thorough knowledge and understanding of the science (Biology) National Curriculum to the planning of curriculum experiences for pupils in school;
-Demonstrate competence and confidence in your ability to teach across the contexts for pupil learning in the mathematics National Curriculum range and content, applying principles of continuity and progression;
-Use subject knowledge and relevant course specifications to plan and deliver the 14-16 curriculum including examination and vocational courses;
-Demonstrate an understanding of the subject knowledge and specification requirements for the 16-19 curriculum;
-Utilise a range of teaching strategies to meet the identified learning needs of a wide range of pupils;
-Utilise a range of resources, including information and communication technology, to enhance pupil learning in biology;
-Understand the importance of safe practice and safeguarding and apply these in working with young people both within and beyond lessons;
-Use a wide range of class management strategies to maximise pupil learning;Understand the principles of inclusion and apply these to ensure equality of opportunity for all pupils in the subject area;
-Understand national frameworks for assessment within the subject area and use these to support the recording and analysis of data, and the subsequent use of this to plan the next phase of learning;
-Raise the status of the subject area by demonstrating high standards of professionalism at all times;
-Understand the crucial role of professional learning for the teacher, the pupils and schools.

Funding

Please follow this link https://www.getintoteaching.education.gov.uk/bursaries-and-funding

Course Content

The course runs from early September through to late June. As you commence the training, your individual subject knowledge is assessed so that targeted improvements can be made throughout the year in areas that may be lacking. As the course continues, your time is spent alternating between University and school, with increasing time being spent in school as your experience develops. By the end of the course, if school placements and written M level assignments have been completed successfully you are awarded the title PGCE with recommendation for Qualified Teacher Status (QTS).

You will spend two thirds of your time teaching in Partnership schools. These are schools where we have established links and where a number of the science teachers working in them are past Brunel students. As your school experience begins, you will be attached to a mentor whose role involves guidance and management of your professional development. You will learn from observing and working alongside experienced teachers, particularly in the process of teaching your own classes (under supervision). The course has three blocks of school experience in two different schools, providing the opportunity to work in contrasting settings, whilst working towards the Teachers’ Standards (TA, 2012).

How is the University portion of the course organised?
Campus-based work relates theory to school practice, facilitating your maturity into an effective and reflective science teacher. Sessions involve student teachers working together in small groups, developing the thinking and attributes needed to teach effectively in the classroom or laboratory. Although campus sessions cover a wide range of foci, there is a particular emphasis on practical work, literacy and communication, science for all and digital technologies in line with the interests of the research-active science tutors who are experienced schoolteachers and have published widely in national and international journals.

As a Brunel PGCE student teacher you will have access to a range of teaching rooms including a new, well-equipped laboratory, a well resourced library which includes textbook schemes, teaching packs, videos and visual aids – as well as books, journals and e-journals appropriate to work at Masters level – plus extensive computer facilities where you can familiarise yourself with the hardware and software available in schools.

University tutors are available to offer advice and support throughout the course. Campus sessions have a friendly, informal atmosphere as classes gel, and you will find yourself forging lasting professional and personal relationships with other student teachers on the course.

Disclosure and Barring Service (DBS) requirement

This course involves regular access to children and/or vulnerable adults. Where this is the case, students will be required to complete a Disclosure and Barring Service (DBS) application, previously known as a Criminal Records Bureau (CRB) check. The application will cost £51.86 (this amount may be subject to change) and the University will send further instructions as part of the admissions process. For further guidance please email

Read more about the structure of postgraduate degrees at Brunel:http://www.brunel.ac.uk/courses/pg/postgraduate-taught-course-information/taught-programme-structure

Read less
Learn how to teach science and chemistry to 11 to 16-year-olds with this National College for Teaching and Leadership (NCTL) accredited PGCE School Direct course. Read more
Learn how to teach science and chemistry to 11 to 16-year-olds with this National College for Teaching and Leadership (NCTL) accredited PGCE School Direct course. You’ll learn the principles of teaching chemistry and get the vital hands-on experience necessary for later employment. Those already on our PGCE School Direct Secondary courses attain high results, with 95% achieving an Ofsted good or outstanding grade by the end of the course and 96% going on to obtain employment, often with their placement schools.

More about this course

Successfully complete this this NCTL accredited PGCE Secondary Science with Chemistry course to achieve Qualified Teacher Status (QTS) and become a teacher of science for students up to 14 years old and chemistry for 15 to 16-year-olds. There’s also the opportunity to teach at the 16 to 18 age range.

You’ll develop your teaching strategies and pedagogical techniques at London Met and learn the fundamentals of how children learn. These study sessions will include collaborative projects and school-based work with other trainees, as well as how to implement teaching and pupil assessment.

Our PGCE School Direct course uses its London location to widen your experience of teaching in multicultural urban environments. Through your two placements you’ll help develop lesson plans and contribute to the development of pupils’ scientific skills and knowledge. London Met also provides you with the opportunity for post-16 teaching experience wherever possible.

Our commitment to your development has lead to high quality reviews from Ofsted:

"Trainees and NQTs are enthusiastic about their subject, and plan and teach lessons that are well structured. They make good use of subject-specific vocabulary in their planning and teaching."
Ofsted, 2015

Your assessment will consist of four elements:
-School placement A
-School placement B, where your teaching ability will be assessed in relation to the standard for Qualified Teacher Status
-A Professional Practice Portfolio which is compiled throughout the year, detailing personal experiences and reflections on your development as a teacher, largely in relation to your practical teaching experience
-The Educational Research Assignment, which allows you to explore an educational issue

There are no examinations.

We place great emphasis on feedback from your peers and colleagues on the placement. You’ll complete a weekly reflection and contribute to discussions online in order to further develop your understanding of the role of a Secondary teacher.

Professional accreditation

This course is accredited by the National College for Teaching and Leadership (NCTL).

Modular structure

This is a year-long course.

Module 1, Curriculum Studies, includes:
-The theoretical underpinning of the practice that you'll take into the classroom
-Access to the pedagogical knowledge and understanding required to effectively plan and teach well structured lessons in the secondary curriculum
-Sessions on Chemistry
-Training to assess school pupils’ progress in each of the these curriculum areas

Module 2, Professionalism and Inclusive Practice (PIP), includes:
-Support for the wider professional development of each student teacher
-Discussion of the role of children’s rights and how this underpins effective learning relationships
-Understanding of different aspects of inclusive education
-Introduction to the whole school and wider children’s workforce
-Teamwork and collaborative discussion across different subject areas

Work placement:
-120 days in a London placement learning to teach with a mentor in secondary schools

In both University and classroom contexts, your self-directed study is extremely important in order to support your development of purposeful educational enquiry, preparing effective teaching resources and ensuring up-to-date subject knowledge.

What our students say

“The course is well-structured and gives a solid grounding in the pedagogical disciplines needed for a career in teaching. The highlight for me has been the quality of the subject tutors. All the tutors I’ve worked with have been highly knowledgeable, approachable and more than capable of pushing students to reach their potential as future teachers.” Martin Gadgill, trainee of our PGCE Secondary Science with Chemistry

After the course

On successful completion of the course you will achieve Qualified Teacher Status (QTS) for teaching science at Key Stage 3 (ages 11-14) and Key Stage 4 (ages 14-16) and your chemistry specialism at Key Stage 4. London Met's students have an excellent rate of gaining Qualified Teacher Status and finding teaching positions within six months of graduating. Our trainees have gone on to become chemistry teachers at schools including Cardinal Pole Catholic School, South Hampstead High School, Platanos College and more.

Funding

Funding is available for many postgraduate courses leading to Qualified Teacher Status (QTS). Depending on your teaching subject and degree classification, you may be eligible for a bursary or scholarship of up to £30,000 through the teacher training bursary.

PGCE School Direct

The School Direct model aligns the training calendar for the student teacher with the PGCE offered at the university. This means we can only offer places in Early Years, Primary and Secondary levels teaching Maths, Modern Languages and Science with a specialism in Biology, Chemistry or Physics.

You will attend the training workshops at the university with other regular PGCE students. The placements of 120 days will be planned to take place within the school or consortium of schools with the School Direct allocation. This time could be divided between two schools with some flexibility.

The consortium is part of the much larger family of nearly 100 schools partnered with London Met and School Direct. This large body of schools have joined with us to build a cross-capital alliance, providing diverse contexts in which to train the new generation of London teachers.

Most of our trainees follow a programme modelled on the traditional PGCE, with time spent under tutor supervision at London Metropolitan University and the school placement divided between two partner schools.

Moving to one campus

Between 2016 and 2020 we're investing £125 million in the London Metropolitan University campus, moving all of our activity to our current Holloway campus in Islington, north London. This will mean the teaching location of some courses will change over time.

Whether you will be affected will depend on the duration of your course, when you start and your mode of study. The earliest moves affecting new students will be in September 2017. This may mean you begin your course at one location, but over the duration of the course you are relocated to one of our other campuses. Our intention is that no full-time student will change campus more than once during a course of typical duration.

All students will benefit from our move to one campus, which will allow us to develop state-of-the-art facilities, flexible teaching areas and stunning social spaces.

Read less
The MSc in Cancer Biology is for students who wish to gain an advanced education and training in the biological sciences, within the context of a disease that affects a large proportion of the global population. Read more
The MSc in Cancer Biology is for students who wish to gain an advanced education and training in the biological sciences, within the context of a disease that affects a large proportion of the global population.

The programme provides training in the modern practical, academic and research skills that are used in academia and industry. Through a combination of lectures, small-group seminars and practical classes, students will apply this training towards the development of new therapies.

The programme culminates with a research project that investigates the molecular and cellular basis of cancer biology or the development of new therapies under the supervision of active cancer research scientists.

Visit the website: https://www.kent.ac.uk/courses/postgraduate/226/cancer-biology

About the School of Biosciences

The School of Biosciences is among the best-funded schools of its kind in the UK, with current support from the BBSRC, NERC, MRC, Wellcome Trust, EU, and industry. It has 38 academic staff, 56 research staff (facility managers, research fellows, postdoctoral researchers and technicians), approximately 100 postgraduate students and 20 key support staff. The school's vibrant atmosphere has expanded to become a flourishing environment to study for postgraduate degrees in a notably friendly and supportive teaching and research environment.

Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Our expertise in disciplines such as biochemistry, microbiology and biomedical science allows us to exploit technology and develop groundbreaking ideas in the fields of genetics, molecular biology, protein science and biophysics. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Course structure

Each one-hour lecture is supplemented by two hours of small-group seminars and workshops in which individual themes are explored in-depth. There are practical classes and mini-projects in which you design, produce and characterise a therapeutic protein with applications in therapy.

In additional to traditional scientific laboratory reports, experience will be gained in a range of scientific writing styles relevant to future employment, such as literature reviews, patent applications, regulatory documents, and patient information suitable for a non-scientific readership.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

BI830 - Science at Work (30 credits)
BI836 - Practical and Applied Research Skills for Advanced Biologists (30 credits)
BI837 - The Molecular and Cellular Basis of Cancer (15 credits)
BI838 - Genomic Stability and Cancer (15 credits)
BI840 - Cancer Therapeutics: From the Laboratory to the Clinic (15 credits)
BI857 - Cancer Research in Focus (15 credits)
BI845 - MSc Project (60 credits)

Assessment

The programme features a combination of examinations and practically focused continuous assessment, which gives you experience within a range of professional activities, eg, report writing, patent applications and public health information. The assessments have been designed to promote employability in a range of professional settings.

Programme aims

This programme aims to:

- provide an excellent quality of postgraduate-level education in the field of cancer, its biology and its treatment

- provide a research-led, inspiring learning environment

- provide a regional postgraduate progression route for the advanced study of a disease that affects a high proportion of the population

- promote engagement with biological research into cancer and inspire you to pursue a scientific career inside or outside of the laboratory

- develop subject specific and transferable skills to maximise employment prospects

- promote an understanding of the impact of scientific research on society and the role for scientists in a range of professions.

Research areas

Research in the School of Biosciences is focused primarily on essential biological processes at the molecular and cellular level, encompassing the disciplines of biochemistry, genetics, biotechnology and biomedical research.

The School’s research has three main themes:

- Protein Science – encompasses researchers involved in industrial biotechnology and synthetic biology, and protein form and function

- Molecular Microbiology – encompasses researchers interested in yeast molecular biology (incorporating the Kent Fungal Group) and microbial pathogenesis

- Biomolecular Medicine – encompasses researchers involved in cell biology, cancer targets and therapies and cytogenomics and bioinformatics.

Each area is led by a senior professor and underpinned by excellent research facilities. The School-led development of the Industrial Biotechnology Centre (IBC), with staff from the other four other schools in the Faculty of Sciences, facilitates and encourages interdisciplinary projects. The School has a strong commitment to translational research, impact and industrial application with a substantial portfolio of enterprise activity and expertise.

Careers

A postgraduate degree in the School of Biosciences is designed to equip our graduates with transferable skills that are highly valued in the workplace. Our research-led ethos ensures that students explore the frontiers of scientific knowledge, and the intensive practical components provide rigorous training in cutting edge technical skills that are used in the modern biosciences while working in areas of world-leading expertise within the School.

Destinations for our graduates include the leading pharmaceutical and biotechnological companies within the UK and leading research institutes both at home and abroad.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply-online/226

Read less
Upon graduation from the Master’s Programme in Translational Medicine (TRANSMED) you can be expected to. -Be fluent in medical sciences and clinical practice from the point of view of a researcher. Read more
Upon graduation from the Master’s Programme in Translational Medicine (TRANSMED) you can be expected to:
-Be fluent in medical sciences and clinical practice from the point of view of a researcher.
-Be familiar with up-to-date translational research methodologies.
-Be adept at scientific reasoning and critical analysis of scientific literature.
-Acknowledge the regulatory and ethical aspects of biomedical and clinical research.
-Have mastered scientific and medical terminologies.
-Have excellent communication and interpersonal skills, enabling you to find employment in an international and interdisciplinary professional setting.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The TRANSMED studies are built upon three core educational themes:
Development of Research Skills
These include an introduction to current methodologies, which are further developed during a training period in a research group; research ethics: principles of clinical investigation; and writing of research or grant proposals.

Studies in Human Disease
These range from normal human physiology and anatomy, and basic biomedical courses, to more specialised studies covering various topics pertinent to the specialist option. You supplement these studies with clinical rounds, during which you have an opportunity to study selected patient cases in hospital wards, under the supervision of a clinician mentor.

Development of Communication Skills
These are promoted throughout the curriculum, through utilisation of interactive approaches and discussions, problem-based learning and oral presentations. The multidisciplinary TRANSMED community encompasses a wide range of educational backgrounds and provides ample opportunities for direct interactions with medical students, science and clinical teachers to enable you to practice and adopt interdisciplinary communication skills. At the end of the course of study, your communication skills will be evaluated in the final exam, during which you will orally present your research plan to expert examiners.

Selection of the Majors

The major of the programme is Translational medicine. During your first study year you can choose any of the five available specialisation options. These options and their specific goals are:
Neuroscience and Psychobiology
-To acquire knowledge on research methodology and state-of-the-art information in systems and cognitive neuroscience, as well as in clinical neuropsychology.
-To learn to produce new scientific information in the fields of psychobiology of human life, health, and stress, and to transfer the results between basic research and clinical settings.

Cancer
-To acquire basic knowledge of the principles of neoplastic growth, cancer progression and dissemination.
-To acquire basic understanding of the interplay between different cell types during neoplastic growth.
-To acquire knowledge of major research methodologies and disease models in cancer biology.

Regenerative Medicine
-To understand the principles of developmental and stem cell biology and regenerative pharmacology as the basis of regenerative therapies.
-To be familiar with the major technologies applied in regenerative medicine, including tissue engineering, cell and organ transplantation and transplantation immunology.
-To understand the ethical principles of clinical translation of basic research and application of regenerative medicine therapies.

Metabolic Disorders
-To be able to understand the basic metabolic pathways.
-To understand the pathophysiology of metabolic disorders such as diabetes mellitus, insulin resistance, metabolic syndrome and obesity.
-To be able to use genetic knowledge as a basis for prediction, diagnosis and treatment of metabolic disorders.

Cross-Disciplinary Translational Medicine
-To achieve a broad understanding of topics and methods in the field of Translational medicine.

Programme Structure

The scope of the programme is 120 credits (ECTS) and can be completed within two academic years (60 ECTS / year).

The Master of Science in Translational medicine degree includes 60 ECTS of advanced and 60 ECTS of other studies. Both of these include both obligatory and optional studies.

The majority of the advanced studies are related to the chosen specialist option and include:
-Master’s thesis (30 ECTS)
-Placement in a research group for learning advanced methods in your selected field of study
-Methodological and human health and disease-related courses
-Clinical rounds in Helsinki University Central Hospital (HUCH) clinics
-Final examination in your field of specialisation

The other studies include e.g.
-Article analysis, scientific writing and presentation
-Biomedicine and introductory courses in research methods
-Career planning and orientation
-Individual study coaching and personal study plans
-Research ethics

You can select the optional courses based on your personal interests, or to support your chosen specialisation option. You can also include courses from other suitable Master’s programmes at the University of Helsinki, such as:
-Life Science Informatics
-Genetics and molecular biosciences
-Neuroscience
-Human Nutrition and Food Behaviour

You can also include studies in other universities under the flexible study right-agreement (JOO).

Career Prospects

The Master of Science in Translational medicine degree provides excellent opportunities to apply for and attend postgraduate studies. Currently, 50% of TRANSMED graduates are continuing their studies in doctoral programmes, either at the University of Helsinki or abroad.

TRANSMED graduates are also highly valued in the private sector. Around 35% of graduates have been employed directly by bioindustry, pharma or other health sector enterprises either in Finland or abroad. Titles include product manager, product specialist, personalised health care manager etc. All such enterprises usually recruit both at the graduate (MSc) and postgraduate (PhD) levels.

The health and health technology sectors represent a rapidly emerging field, and one of the areas with a growing importance as the population ages and the costs of new therapies steadily increase. Thus, the demand for well-trained specialists in the field of translational medicine is likely to increase in the near future, providing excellent career prospects globally.

Internationalization

The Translational Medicine major is only available in this international programme, making the programme attractive to both Finnish and international students. Indeed, opportunities for personal interaction with students from different cultures are an integral feature of the studies. During your studies, you can also volunteer to act as a tutor for the incoming international students.

The international research community in The Academic Medical Centre Helsinki actively participates in teaching in TRANSMED. You complete the research group practice for your Master’s thesis in multicultural research groups.

It is also possible to complete your Master’s thesis work or research group placement abroad, or to include coursework done at a foreign university.

Research Focus

The specialisation options of the programme – Neuroscience and psychobiology, Cancer, Regenerative medicine, Metabolic disorders, and Cross-disciplinary translational medicine – are closely aligned with the research focus areas of the Faculty of Medicine: malignancy, inflammation, metabolism, degenerative processes as well as psychiatric disorders and their mechanisms. You therefore have an opportunity to learn from, and be supervised by, the leading experts and professors in their fields.

Read less
Established in 1972, Surrey's MSc in Radiation and Environmental Protection is one of the UK’s longest running programmes in the field of nuclear science and its applications. Read more
Established in 1972, Surrey's MSc in Radiation and Environmental Protection is one of the UK’s longest running programmes in the field of nuclear science and its applications.

The programme is taught by a combination of world-leading nuclear physics academics and leading experts from the UK’s radiological protection and nuclear industries.

PROGRAMME OVERVIEW

Our programme will give you a thorough grounding in the radiation and environmental protection aspects of nuclear physics.

This includes in-depth knowledge of radiation protection and showing you how the technical and organisational procedures of the discipline may be applied to the broader concept of environmental protection.

The substantial practical element of this programme enables you to relate taught material to real-world applications. Formal lectures are complemented with work in specialist radiation laboratories that were recently refurbished as part of a £1m upgrade to our facilities.

Here you will work with a wide range of radioactive sources and radiation detectors. There is also an extended project in the spring and an eleven-week MSc dissertation project in the summer.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Radiation Physics
-Radiation Measurement
-Nuclear Power & Non-ionising Radiation
-Introduction to Biology and Radiation Biology
-Radiation Protection
-Environmental Physics and Environmental Protection
-Extended Group Project
-Radiation Laboratory Skills
-Research Project and Dissertation

RESEARCH-LED TEACHING

The programme material is taught by a combination of academics from the Department of Physics at Surrey and specialists provided by industrial partners. The Surrey academics are part of the Centre for Nuclear and Radiation Physics which houses the largest academic nuclear physics research group in the UK.

In addition to the formal lectures for taught modules, the programme provides a wide range of experimental hands-on training. This includes a nine-week radiation physics laboratory which takes place in the specialist radiation laboratories within the Department of Physics at the University of Surrey.

These were recently refurbished as part of a £1 million upgrade to the departmental teaching infrastructure. Within the Department, we also have a common room and a departmental library, which contains copies of earlier MSc dissertations.

As well as the laboratory training, you will also undertake a research project at the beginning of the Spring semester as a precursor to the eleven-week research dissertation project which makes up the final part of the MSc.

There are many opportunities for both the spring research project and summer dissertation project to be taken in an external industrial environment.

CAREERS

The programme has produced over 500 UK and overseas graduates, many of whom have gone on to well-paid positions in companies in the nuclear and radiation sectors. In the UK we need to decommission old reactors and build new ones to provide a low-carbon source of energy.

This, together with, for example, the importance of radioisotopes in fields such as medicine, means that the career prospects of our graduates are excellent.

EDUCATIONAL AIMS OF THE PROGRAMME

The programme integrates the acquisition of core scientific knowledge with the development of key practical skills with a focus on professional career development within medical physics and radiation detection, and related industries.

The principle educational aims and outcomes of learning are to provide participants with advanced knowledge, practical skills and understanding applied to medical physics, radiation detection instrumentation, radiation and environmental practice in an industrial or medical context.

This is achieved by the development of the participants’ understanding of the underlying science and technology and by the participants gaining an understanding of the legal basis, practical implementation and organisational basis of medical physics and radiation measurement.

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-A systematic understanding of Radiation and Environmental Protection in an academic and professional context together with a critical awareness of current problems and / or new insights
-A comprehensive understanding of techniques applicable to their own research project in Radiation and / or Environmental Protection
-Originality in the application of knowledge, together with a practical understanding of radiation-based, experimental research projects
-An ability to evaluate and objectively interpret experimental data pertaining to radiation detection
-Familiarity with generic issues in management and safety and their application to Radiation and Environmental Protection in a professional context

Intellectual / cognitive skills
-The ability to plan and execute under supervision, an experiment or investigation and to analyse critically the results and draw valid conclusions from them. Students should be able to evaluate the level of uncertainty in their results, understand the significance of uncertainty analysis and be able to compare these results with expected outcomes, theoretical predictions and/or with published data. -Graduates should be able to evaluate the significance of their results in this context
-The ability to evaluate critically current research and advanced scholarship in the discipline of radiation protection
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non- specialist audiences

Professional practical skills
-The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
-The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources
-Responsibility for personal and professional development. Ability to use external mentors for personal / professional purposes

Key / transferable skills
-Identify and resolve problems arising from lectures and experimental work
-Make effective use of resources and interaction with others to enhance and motivate self-study
-Make use of sources of material for development of learning and research such as journals, books and the internet
-Take responsibility for personal and professional development

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The MSc Physics Euromasters offers you the flexibility to tailor your studies according to your interests, building on the research strengths of our friendly Department, and the supportive environment that we provide for our students. Read more
The MSc Physics Euromasters offers you the flexibility to tailor your studies according to your interests, building on the research strengths of our friendly Department, and the supportive environment that we provide for our students.

We collaborate with a variety of partners across the academic, public and industry communities, including the National Physical Laboratory.

PROGRAMME OVERVIEW

You will select modules from a wide range of fundamental and applied physics topics. The application-focused modules are co-taught by practitioners in public service and industry to ensure that students gain real-world insight.

A module in research skills will prepare you to apply your new knowledge and skills in an eleven-week research project undertaken during the summer.

Your chosen research projects can open the door to many careers, not just further research. They will give you tangible experience of working independently and communicating your work effectively and efficiently in written form: key requirements in many professions.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Introduction to Biology and Radiation Biology
-Radiation Physics
-Radiation Measurement
-Detection Instrumentation
-Radiation Laboratory Skills
-Experimental and Professional Skills for Medical Physics
-Research Skills
-Non-linear Physics
-Topics in Theoretical Physics
-Imaging and Remote Sensing
-Diagnostic Applications of Ionising Radiation Physics
-Radiation Protection
-Extended Group Project
-Therapy Physics
-Non-ionising Radiation Imaging
-Nuclear Power and Non-ionising Radiation
-Environmental Physics and Environmental Protection
-Astrophysical Dynamics
-Quantum Magnetism and Superconductivity
-Advances in Nanophotonics
-Research Project and Dissertation
-Special Relativity
-Modern Analytical Techniques
-Nuclear Astrophysics
-Light and Matter
-Advanced Quantum Physics
-Cosmology and Galaxy Formation
-Semiconductor Physics and Technology

EDUCATIONAL AIMS OF THE PROGRAMME

The primary aim of the programme is to provide a high quality postgraduate level qualification in physics.

PROGRAMME LEARNING OUTCOMES

Students will:
-Be able to demonstrate an advanced understanding of theories and ideas in a sub- discipline of Physics
-Have insight into current topics and problems of that sub-discipline in a professional and/or academic context
-Be able to apply their knowledge and practical understanding of scientific methodology in their chosen research topic (e.g. experimental techniques, simulation tools, developing theoretical models etc.)
-Analyse, evaluate and interpret data produced and/or summarised in the literature in their chosen area of speciality
-Be able to carry out a scientific investigation under the guidance and advice of their supervisor
-Acquire, analyse, interpret and draw conclusions from their findings with the appropriate numerical methods and due consideration to uncertainties; they will also be able to critically evaluate the significance of their conclusions, strengths and weaknesses of their study in the context of up-to- date literature relevant to their research topic and present their work in written form to the scientific audience of their speciality in a professional and concise manner

Throughout the programme, students will develop the ability to manage their own learning in terms of time management as well as identifying and accessing the resources required for their academic study. The different learning outcomes of the potential awards may be summarised as follows:

Subject knowledge and skills
-A systematic understanding of their chosen area of specialisation in an academic and professional context together with a critical awareness of current problems and / or new insights, much of which is at, or informed by the state of the art
-A comprehensive understanding of techniques applicable to their own research project
-Originality in the application of knowledge, together with a practical understanding of radiation-based, experimental research projects
-An ability to evaluate and objectively interpret experimental data in their chosen topic of specialisation
-Familiarity with generic issues in management and safety and their application in a professional context

Core academic skills
-The ability to plan and execute under supervision, an experiment or investigation and to analyse critically the results and draw valid conclusions from them
-The ability to evaluate the level of uncertainty in results, understand the significance of uncertainty analysis and be able to compare these results with expected outcomes, theoretical predictions and/or with published data, along with the ability to evaluate the significance of results in this context
-The ability to evaluate critically current research and advanced scholarship in their chosen discipline of specialisation
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences

Personal and key skills
-The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
-The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources
-Responsibility for personal and professional development
-The ability to use external mentors for personal / professional purposes

Knowledge and understanding
-Knowledge of physics, technology and processes in the subject of the course and the ability to apply these in the context of the course
-Ability to research problems involving innovative practical or theoretical work
-Ability to formulate ideas and response to problems, refine or expand knowledge in response to specific ideas or problems and communicate these ideas and responses
-Ability to evaluate/argue alternative solutions and strategies independently and assess/report on own/others work with justification

Intellectual / cognitive skills
-The ability to plan and execute, under supervision, an experiment or theoretical investigation, analyse critically the results and draw valid conclusions
-Students should be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare their theoretical (experimental) results with expected experimental (theoretical) outcomes, or with published data
-They should be able to evaluate the significance of their results in this context
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences

Professional practical skills
-Technical mastery of the scientific and technical information presented and the ability to interpret this in the professional context
-Ability to plan projects and research methods in the subject of the course
-Understand and be able to promote the scientific and legal basis of the field through peer and public communication
-Aware of public concern and ethical issues in radiation and environmental protection
-Able to formulate solutions in dialogue with peers, mentors and others

Key / transferable skills
-Identify, assess and resolve problems arising from material in lectures and during experimental/research activities
-Make effective use of resources and interaction with others to enhance and motivate self –study
-Make use of sources of material for development of learning and research; such as journals, books and the internet
-Take responsibility for personal and professional development
-Be self-reliant
-Responsibility for personal and professional development

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Our MSc Veterinary Microbiology programme, run in partnership with local world-leading veterinary research institutes (Pirbright, APHA and VMD), offers an in-depth understanding of veterinary infectious diseases and global issues such as AMR, and their associated impact on man. Read more
Our MSc Veterinary Microbiology programme, run in partnership with local world-leading veterinary research institutes (Pirbright, APHA and VMD), offers an in-depth understanding of veterinary infectious diseases and global issues such as AMR, and their associated impact on man.

It offers specialist practical training in the diagnosis of important viral and bacterial diseases of global animal and human health importance.

PROGRAMME OVERVIEW

This programme is intended for those who wish to enhance their understanding of the role of microorganisms in animal health and disease, and provides an excellent grounding in molecular biology, immunology, epidemiology and microbiology.

This grounding leads into the study of the complex mechanisms of host/microbe interactions that are involved in the pathogenesis of specific animal diseases, and provides insights into diagnosis and interventions, such as vaccines, essential for disease control.

You will enhance your critical and analytical skills and gain hands-on experience in the diagnosis of veterinary diseases, such that you may identify problems, formulate hypotheses, design experiments, acquire and interpret data, and draw conclusions.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Microbiology and Veterinary Immunology
-Microbial Genetics
-Molecular Epidemiology of Infectious Diseases
-Transmission and Control of Infectious Diseases of Animals (Non-vector)
-Transmission and Control of Infectious Diseases of Animals (Vector)
-Infectious Diseases of Animals - Practical sessions (APHA, Pirbright ^ PHE/VMD)
-Diseases of Animal Systems: Gastro-intestinal Diseases of Animals
-Diseases of Animal Systems: Respiratory Diseases of Animals
-Diseases of Animal Systems: Multi-system Diseases of Animals
-Diseases of Animal Systems: CNS/Skin Diseases of Animals
-Research Project

WHO IS THE PROGRAMME FOR?

This is a full or part-time programme, intended mainly for graduates, those already working in veterinary diagnostic/research laboratories and staff from other laboratories who want to enhance their understanding of the role of microorganisms in animal health and disease.

Pharmaceutical research personnel, policymakers, veterinarians, public health personnel and environmental biologists will also benefit.

EDUCATIONAL AIMS OF THE PROGRAMME

This is a one year full-time programme aimed at preparing graduates to work in a range of fields in which a detailed understanding of veterinary microbiology is a valuable asset.

These fields include research, commerce, government and policy, reference laboratory and diagnostic work, epidemiology and disease mapping, veterinary science, farming especially animal production, wild and zoo animal conservation and education.

As such, it is intended that graduates will achieve the highest levels of professional understanding of veterinary microbiology within a range of contexts.

The programme combines the study of the theoretical foundations of, and scholarly approaches to, understanding the application and various practices of veterinary microbiology within the contexts described above along with the development of practical and research skills.

The main aims are to enable students to:
-Acquire sound knowledge of the major principles of veterinary microbiology
-Develop the skills to perform relevant interpretation and evaluation of data
-Apply those acquired skills in practice through research
-To utilise acquired knowledge and evaluative skills to communicate successfully with stakeholders

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas.

The learning outcomes have been aligned with the descriptor for qualification at level 7 given in the Framework for Higher Education Qualifications (FHEQ) produced by the Quality Assurance Agency (QAA) for Higher Education.

Knowledge and understanding
-The main principles of current veterinary microbiology
-The methods and approaches used for the molecular characterisation, and diagnosis of disease agents
-The main principles of infectious diseases epidemiology
-The analysis of disease and disease carriage that impact on the development and application of control measures to combat diseases
-Modes of control of infectious diseases
-Modes of transmission
-The various aspects of host pathology and immune responses to disease agents
-Analytical skills to allow interpretation of data and formulation of conclusions

Intellectual/cognitive skills
-Critically appraise scholarly and professional writing on a wide range of subjects pertaining to the various aspects of veterinary microbiology
-Critically analyse experimental data to enable the formulation of hypotheses
-Design relevant experiments to test formulated hypotheses
-Efficiently analyse new developments in technology and critically assess their utilisation to answer existing and new problems

Professional practical skills
-Plan and execute an experiment/investigation, act autonomously and demonstrate originality
-Analyse numerical data using appropriate computer tools including specialist computer packages
-Communicate experiments at a project level, including report writing
-Perform specific specialised experimental skills

Key/transferable skills
-Problem solve
-Evaluate and exploit new technology
-Communicate ideas, principles and theories effectively by oral, written and visual means
-Work effectively in small groups and teams towards a common goal/outcome
-Apply basic statistical and numerical skills to data
-Use information technology including specialist packages

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The MSc Physics offers you the flexibility to tailor your studies according to your interests, building on the research strengths of our friendly Department, and the supportive environment that we provide for our students. Read more
The MSc Physics offers you the flexibility to tailor your studies according to your interests, building on the research strengths of our friendly Department, and the supportive environment that we provide for our students.

We collaborate with a variety of partners across the academic, public and industry communities, including the National Physical Laboratory.

PROGRAMME OVERVIEW

You will select modules from a wide range of fundamental and applied physics topics. The application-focused modules are co-taught by practitioners in public service and industry to ensure that students gain real-world insight.

A module in research skills will prepare you to apply your new knowledge and skills in an eleven-week research project undertaken during the summer.

Your chosen research projects can open the door to many careers, not just further research. They will give you tangible experience of working independently and communicating your work effectively and efficiently in written form: key requirements in many professions.

Why not discover more about the subject in our video?

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Introduction to Biology and Radiation Biology
-Radiation Physics
-Radiation Measurement
-Detection Instrumentation
-Radiation Laboratory Skills
-Experimental and Professional Skills for Medical Physics
-Research Skills
-Non-linear Physics
-Topics in Theoretical Physics
-Imaging and Remote Sensing
-Diagnostic Applications of Ionising Radiation Physics
-Radiation Protection
-Extended Group Project
-Therapy Physics
-Non-ionising Radiation Imaging
-Nuclear Power and Non-ionising Radiation
-Environmental Physics and Environmental Protection
-Astrophysical Dynamics
-Quantum Magnetism and Superconductivity
-Advances in Nanophotonics
-Research Project and Dissertation
-Special Relativity
-Modern Analytical Techniques
-Nuclear Astrophysics
-Light and Matter
-Advanced Quantum Physics
-Cosmology and Galaxy Formation
-Semiconductor Physics and Technology

EDUCATIONAL AIMS OF THE PROGRAMME

The primary aim of the programme is to provide a high quality postgraduate level qualification in physics.

PROGRAMME LEARNING OUTCOMES

Students will:
-Be able to demonstrate an advanced understanding of theories and ideas in a sub- discipline of Physics
-Have insight into current topics and problems of that sub-discipline in a professional and/or academic context
-Be able to apply their knowledge and practical understanding of scientific methodology in their chosen research topic (e.g. experimental techniques, simulation tools, developing theoretical models etc.)
-Analyse, evaluate and interpret data produced and/or summarised in the literature in their chosen area of speciality
-Be able to carry out a scientific investigation under the guidance and advice of their supervisor
-Acquire, analyse, interpret and draw conclusions from their findings with the appropriate numerical methods and due consideration to uncertainties; they will also be able to critically evaluate the significance of their conclusions, strengths and weaknesses of their study in the context of up-to- date literature relevant to their research topic and present their work in written form to the scientific audience of their speciality in a professional and concise manner
-Throughout the programme, students will develop the ability to manage their own learning in terms of time management as well as identifying and accessing the resources required for their academic study

Subject knowledge and skills
-A systematic understanding of their chosen area of specialisation in an academic and professional context together with a critical awareness of current problems and / or new insights, much of which is at, or informed by the state of the art
-A comprehensive understanding of techniques applicable to their own research project
Originality in the application of knowledge, together with a practical understanding of radiation-based, experimental research projects
-An ability to evaluate and objectively interpret experimental data in their chosen topic of specialisation
-Familiarity with generic issues in management and safety and their application in a professional context

Core academic skills
-The ability to plan and execute under supervision, an experiment or investigation and to analyse critically the results and draw valid conclusions from them
-The ability to evaluate the level of uncertainty in results, understand the significance of uncertainty analysis and be able to compare these results with expected outcomes, theoretical predictions and/or with published data, along with the ability to evaluate the significance of results in this context
-The ability to evaluate critically current research and advanced scholarship in their chosen discipline of specialisation
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences

Personal and key skills
-The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
-The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources
-Responsibility for personal and professional development
-The ability to use external mentors for personal / professional purposes
-Knowledge and understanding
-Knowledge of physics, technology and processes in the subject of the course and the ability to apply these in the context of the course
-Ability to research problems involving innovative practical or theoretical work
-Ability to formulate ideas and response to problems, refine or expand knowledge in response to specific ideas or problems and communicate these ideas and responses
-Ability to evaluate/argue alternative solutions and strategies independently and assess/report on own/others work with justification

Intellectual / cognitive skills
-The ability to plan and execute, under supervision, an experiment or theoretical investigation, analyse critically the results and draw valid conclusions
-Students should be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare their theoretical (experimental) results with expected experimental (theoretical) outcomes, or with published data
-They should be able to evaluate the significance of their results in this context
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences

Professional practical skills
-Technical mastery of the scientific and technical information presented and the ability to interpret this in the professional context
-Ability to plan projects and research methods in the subject of the course
-Understand and be able to promote the scientific and legal basis of the field through peer and public communication
-Aware of public concern and ethical issues in radiation and environmental protection
-Able to formulate solutions in dialogue with peers, mentors and others

Key / transferable skills
-Identify, assess and resolve problems arising from material in lectures and during experimental/research activities
-Make effective use of resources and interaction with others to enhance and motivate self –study
-Make use of sources of material for development of learning and research; such as journals, books and the internet
-Take responsibility for personal and professional development
-Be self-reliant
-Responsibility for personal and professional development

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This is a new strand of the PGCE Science where you will specialise in Biology. Students who successfully complete this route will be in a strong position to gain employment as teachers of Biology up to post-18 and general science at least to KS3 and possibly KS4. Read more
This is a new strand of the PGCE Science where you will specialise in Biology. Students who successfully complete this route will be in a strong position to gain employment as teachers of Biology up to post-18 and general science at least to KS3 and possibly KS4.

The PGCE programme has been designed to train teachers to practice as a subject specialist teacher for the secondary age range (11-16). Trainees are assessed against the standards for Qualified Teacher Status (QTS) across the age range. Trainees will also often gain experience of the 16-18 age range, although they will not be formally assessed in this phase.

Course detail

The course is active and practical allowing trainees to develop professional competence through work undertaken in schools and in the university. Trainees work with young people, develop their expertise in their specialist subject area, share and discuss educational issues and study relevant educational research. The course is just the beginning of what we hope will be a process of continual professional development throughout a challenging and rewarding career.

The course is part of UWE's Department of Education's programme for Initial Teacher Training. Units studied are:

• Subject Knowledge for Teaching
• Professional Development
• Professional Practice
• Classroom Based Enquiry

These units are studied in both the school and the university-based parts of the course, the work on each site being complementary. The course centres on learning about the nature, content and teaching of all aspects of the science curriculum for 11-16 year olds and of specialist Biology for 14-19 year olds.

Structure

During your 12 weeks of study at the university, a range of aspects of teaching and learning of the Science curriculum will be addressed, for example:

• Common misconceptions in Science
• Behaviour for learning in the science classroom
• The science curriculum and qualifications
• Use of ICT in science
• Use of assessment to help all learners to make progress
• Safety in Science lessons
• The nature of Science

We will introduce you to a range of teaching styles, classroom management skills, lesson planning and assessment procedures both in the university and through classroom support from teachers in schools. You will consider strategies to support young people in their learning of science. You will also consider the use of a range of teaching styles and resources, including the appropriate use of information and communications technology (ICT).

You will participate in sessions with other biology graduates, and in mixed science groups. You will also work with graduates from other disciplines where cross-curricular issues, such as learning theories and behaviour management are covered.

Format

We recognise that embarking on a new course of study can sometimes be quite a challenging undertaking. You will have support from a number of staff in the university including your group tutor. Additionally any student can get support on a range of issues from a Department Student Adviser.

Placements

24 weeks are spent on placement: a total of nine weeks in one placement during the autumn term and 12 weeks in a second placement during the spring and summer, with shorter placements designed to complement your school experiences, including opportunities to spend time in primary or special schools.

As well as teaching, the course includes contact time with a Senior Professional Tutor and a Subject Mentor in school, directed study time and personal study time.

Trainees in some placements also have the opportunity for a third placement during the final weeks of the course.
You will also be provided with opportunities to work collaboratively with young people as a whole subject group or with other scientists.

Assessment

In order to pass the course, trainees are required to pass each unit. They are assessed on a number of written assignments and also on classroom practise against the standards specified by the Secretary of State for the award of Qualified Teacher Status (QTS). Before you start the course it is recommended that trainees take the computer-based QTS skills tests in Numeracy, Literacy and ICT.

Careers / Further study

The Postgraduate Certificate in Education (PGCE) courses now include 60 credits of assessment at Master's Level (Level M). For candidates who opt not to attempt the requisite credit at Level M, a Professional Graduate Certificate in Education will be available as an alternative award.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X