• Regent’s University London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of St Andrews Featured Masters Courses
University of Southampton Featured Masters Courses
University of Leeds Featured Masters Courses
Coventry University Featured Masters Courses
"systems" AND "theory"×
0 miles

Masters Degrees (Systems Theory)

  • "systems" AND "theory" ×
  • clear all
Showing 1 to 15 of 1,103
Order by 
The MRES in Global Health Systems Theory and Policy is a pre-doctoral training programme designed to provide a critical, research led approach to the study of Global Heath systems, together with training in the key research skills appropriate for Doctoral level study. Read more
The MRES in Global Health Systems Theory and Policy is a pre-doctoral training programme designed to provide a critical, research led approach to the study of Global Heath systems, together with training in the key research skills appropriate for Doctoral level study. Alongside a suite of substantive modules offered in conjunction with the School's Global Health MScs, the programme includes core modules in research design, qualitative and quantitative methods taken jointly with social science students from a range of disciplines across QMUL, Kings College London and Imperial College as part of the training offered by the ESRC funded London Interdisciplinary Social Science Doctoral Training Partnership.

Students who successfully complete the programme will be able to move on to a PhD and eventually work in health policy and other fields of public health and public policy with a global perspective and equipped to enhance capacity and work effectively in multi-disciplinary teams on behalf of local populations.

Why study the MRES in Global Health Systems Theory and Policy at Queen Mary?
There are a number of distinct features about the course which include: an emphasis on the social determinants of health; a focus on the interface between politics and policy; a concern for social justice; and a stress upon primary care acting as a platform for effective public health action.

The course offers an opportunity to develop a pronounced multi-disciplinary analysis that includes sociology, anthropology, economics, law, geography as well as public health medicine. You will therefore learn from a truly multidisciplinary programme, which will give you a genuinely broad education and wide perspective.

Furthermore, the Barts and London School of Medicine and Dentistry is comprised of two renowned and prestigious teaching hospitals: St Bartholomew’s and The Royal London. Both continue to make an outstanding contribution to modern medicine and together have been consistently ranked among the top five in the UK for medicine.

The Global Health Unit combines the local and the global in a stimulating and challenging research and teaching environment – we have strong links to the NHS, local authorities, third-sector organisations, policymakers in the UK and elsewhere, and leading international figures in global health.

We integrate different types of teaching delivery including small group seminars and participation in public health conferences. We have collaborations with other universities and organisations from around the world to aid research, teaching, policy development, and community engagement, and we encourage students to get involved in both our local and international work.

Read less
All those involved in the wider defence enterprise, across government, military, industry, science and technology have changing needs and aspirations for defence. Read more

Course Description

All those involved in the wider defence enterprise, across government, military, industry, science and technology have changing needs and aspirations for defence. Agility, resilience, continuity of supply, skills and innovation now complement the continuing need to balance cost, time and performance in everything we do.

The Centre for Systems Engineering has been at the forefront of developing systems engineering education for the past fifteen years, blending the breadth of systems thinking with the rigour of systems engineering and closely integrating this within acquisition management.

You will develop knowledge and skills in understanding the wider context of defence capability and guiding the development of operational, support and enabling business solutions which both deliver cost effective outcomes and contribute to the attributes of defence as a whole.

Course overview

The course is modular and you will accumulate credits for each module you successfully complete:

- Full modules are each worth 10 credits.
- The Advanced Systems Engineering Workshop is worth 20 credits.

The course structure has been devised to give the maximum amount of flexibility for you to create your own learning pathway whilst ensuring that the fundamental principles of systems engineering are compulsory.

- The PgCert comprises 60 credits of which 40 are for compulsory modules and 20 are for elective modules.
- The PgDip comprises 120 credits of which 70 are for compulsory modules and 50 are for elective modules.
- The MSc comprises 200 credits of which 70 are for compulsory modules, 50 credits are for elective modules and 80 are for the thesis associated with the Individual Project.

Full-time MSc - one year, Part-time MSc - up to three years, Full-time PgCert - one year, Part-time PgCert - two years, Full-time PgDip - one year, Part-time PgDip - two years

(For MOD status students the duration may vary, subject to annual review.)

Individual Project

The Individual Project provides you with an opportunity to undertake an in-depth study of an area of particular interest to you or your sponsor which is written up as a thesis or dissertation. The study might include, for example:

- Application of Systems Engineering tools and techniques to a real world problem.
- Analysis of underpinning Systems Engineering theory and practice.
- Development of new or tailored Systems Engineering processes.

Modules

The Compulsory and Elective Modules below are as for the MSc and PgDip. For PgCert students Capability Context and Advanced Systems Engineering Workshop are Elective.

Core -

Advanced Systems Engineering Workshop (ASEW)
Applied Systems Thinking
Capability Context
Lifecycle Processes Introduction
Lifecycle Processes Advanced
Systems Approach to Engineering

Elective -

Availability, Reliability, Maintainability and Support Strategy (ARMSS)
Decision Analysis, Modelling and Support (DAMS)
Human Centric Systems Engineering (HCSE)
Introduction to Defence Capability
Model Based Systems Engineering
Simulation and Synthetic Environments
System of Systems Engineering
Thesis Selection Workshop
- Systems Engineering and Software
- Systems Engineering Workshop
- Networked and Distributed Simulation Exercise

Assessment

Coursework, written examinations, oral examinations, portfolio and, for the MSc only, an individual thesis.

Funding

Funding is available to MoD students. For more information contact MoD Enquiries by calling 01793 314485 (Option 4) or Mil: 96161 4485.

For more information on funding for non-MoD students please contact

Career opportunities

Takes you on to impressive career prospects across a range of roles commensurate with your experience. This includes membership of multidisciplinary teams in acquisition, supply or research organisations. This could be in both general systems engineering roles or as a focal point for specific skills such as availability, reliability and maintenance (ARM), human factors, requirements, architecture test and evaluation, etc. It is also applicable to key roles in MoD acquisition such as Project Team leader, capability manager and requirements manager.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/Systems-Engineering-for-Defence-Capability

Read less
This highly focused MSc explores some of the mathematics behind modern secure information and communications systems, specialising in mathematics relevant for public key cryptography, coding theory and information theory. Read more
This highly focused MSc explores some of the mathematics behind modern secure information and communications systems, specialising in mathematics relevant for public key cryptography, coding theory and information theory. During the course critical awareness of problems in information transmission, data compression and cryptography is raised, and the mathematical techniques which are commonly used to solve these problems are explored.

The Mathematics Department at Royal Holloway is well known for its expertise in information security and cryptography and our academic staff include several leading researchers in these areas. Students on the programme have the opportunity to carry out their dissertation projects in cutting-edge research areas and to be supervised by experts.

The transferable skills gained during the MSc will open up a range of career options as well as provide a solid foundation for advanced research at PhD level.

See the website https://www.royalholloway.ac.uk/mathematics/coursefinder/mscmathematicsofcryptographyandcommunications(msc).aspx

Why choose this course?

- You will be provided with a solid mathematical foundation and a knowledge and understanding of the subjects of cryptography and communications preparing you for research or professional employment in this area.

- The mathematical foundations needed for applications in communication theory and cryptography are covered including Algebra, Combinatorics Complexity Theory/Algorithms and Number Theory.

- You will have the opportunity to carry out your dissertation project in a cutting-edge research area; our dissertation supervisors are experts in their fields who publish regularly in internationally competitive journals and there are several joint projects with industrial partners and Royal Holloway staff.

- After completing the course former students have a good foundation for the next step of their career both inside and outside academia.

Department research and industry highlights

The members of the Mathematics Department cover a range of research areas. There are particularly strong groups in information security, number theory, quantum theory, group theory and combinatorics. The Information Security Group has particularly strong links to industry.

Course content and structure

You will study eight courses as well as complete a main project under the supervision of a member of staff.

Core courses:
Advanced Cipher Systems
Mathematical and security properties of both symmetric key cipher systems and public key cryptography are discussed as well as methods for obtaining confidentiality and authentication.

Channels
In this unit, you will investigate the problems of data compression and information transmission in both noiseless and noisy environments.

Theory of Error-Correcting Codes
The aim of this unit is to provide you with an introduction to the theory of error-correcting codes employing the methods of elementary enumeration, linear algebra and finite fields.

Public Key Cryptography
This course introduces some of the mathematical ideas essential for an understanding of public key cryptography, such as discrete logarithms, lattices and elliptic curves. Several important public key cryptosystems are studied, such as RSA, Rabin, ElGamal Encryption, Schnorr signatures; and modern notions of security and attack models for public key cryptosystems are discussed.

Main project
The main project (dissertation) accounts for 25% of the assessment of the course and you will conduct this under the supervision of a member of academic staff.

Additional courses:
Applications of Field Theory
You will be introduced to some of the basic theory of field extensions, with special emphasis on applications in the context of finite fields.

Quantum Information Theory
‘Anybody who is not shocked by quantum theory has not understood it' (Niels Bohr). The aim of this unit is to provide you with a sufficient understanding of quantum theory in the spirit of the above quote. Many applications of the novel field of quantum information theory can be studied using undergraduate mathematics.

Network Algorithms
In this unit you will be introduced to the formal idea of an algorithm, when it is a good algorithm and techniques for constructing algorithms and checking that they work; explore connectivity and colourings of graphs, from an algorithmic perspective; and study how algebraic methods such as path algebras and cycle spaces may be used to solve network problems.

Advanced Financial Mathematics
In this unit you will investigate the validity of various linear and non-linear time series occurring in finance and extend the use of stochastic calculus to interest rate movements and credit rating;

Combinatorics
The aim of this unit is to introduce some standard techniques and concepts of combinatorics, including: methods of counting including the principle of inclusion and exclusion; generating functions; probabilistic methods; and permutations, Ramsey theory.

Computational Number Theory
You will be provided with an introduction to many major methods currently used for testing/proving primality and for the factorisation of composite integers. The course will develop the mathematical theory that underlies these methods, as well as describing the methods themselves.

Complexity Theory
Several classes of computational complexity are introduced. You will discuss how to recognise when different problems have different computational hardness, and be able to deduce cryptographic properties of related algorithms and protocols.

On completion of the course graduates will have:
- a suitable mathematical foundation for undertaking research or professional employment in cryptography and/or communications

- the appropriate background in information theory and coding theory enabling them to understand and be able to apply the theory of communication through noisy channels

- the appropriate background in algebra and number theory to develop an understanding of modern public key cryptosystems

- a critical awareness of problems in information transmission and data compression, and the mathematical techniques which are commonly used to solve these problems

- a critical awareness of problems in cryptography and the mathematical techniques which are commonly used to provide solutions to these problems

- a range of transferable skills including familiarity with a computer algebra package, experience with independent research and managing the writing of a dissertation.

Assessment

Assessment is carried out by a variety of methods including coursework, examinations and a dissertation. The examinations in May/June count for 75% of the final average and the dissertation, which has to be submitted in September, counts for the remaining 25%.

Employability & career opportunities

Our students have gone on to successful careers in a variety of industries, such as information security, IT consultancy, banking and finance, higher education and telecommunication. In recent years our graduates have entered into roles including Principal Information Security Consultant at Abbey National PLC; Senior Manager at Enterprise Risk Services, Deloitte & Touche; Global IT Security Director at Reuters; and Information Security manager at London Underground.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
This programme will not have a 2016 intake as the content is being extensively improved. A one-year course that will provide engineering and science graduates with a thorough knowledge of modern radio and mobile communication systems. Read more

NOTE

This programme will not have a 2016 intake as the content is being extensively improved.

A one-year course that will provide engineering and science graduates with a thorough knowledge of modern radio and mobile communication systems.

AIM OF COURSE

Mobile radio encompasses a diversity of communications requirements and technical solutions including cellular mobile radio and data systems (eg GSM, GPRS, 3G, 4G, WiMax) and Personal Mobile Radio as well as various indoor radio systems including Bluetooth, WIFI, Wireless Indoor Networks (WINs or LANs). In view of the huge size of the market for these enhanced systems providing flexible personal communications, it is important that industry equips itself to meet this challenge. This MSc course aims to provide industry with graduates who possess a thorough knowledge both of actual modern radio systems and of the fundamental principles and design constraints embodied in those systems.

COURSE STRUCTURE

The course spans 50 weeks of full-time study and is divided into teaching and project modules. The teaching block is based on 6 modular courses, each comprising approximately 40 hours of lectures (or lecture equivalents) with additional directed study and practical work. All of these modules are augmented by specific case studies, applications and tutorials.

COURSE HIGHLIGHTS

Radio Systems Engineering
A radio receiver design is analysed in detail so that design compromises may be understood. Topics include gain, selectivity, noise figure, dynamic range, intermodulation, spurious output, receiver structures, mixers, oscillators, PLL synthesis, filters and future design trends. This course also includes familiarisation with industry - standard design packages. Introduces key concepts in conventional and novel antenna design. It incovers the following topics: basic antenna structures (eg wire, reflector, patch and helical antennas); design considerations for fixed and mobile communication systems; phased array antennas; conformal and volume arrays; array factor and pattern multiplication; mutual coupling; isolated and embedded element patterns; active match; true time delay systems; pattern synthesis techniques; adaptive antennas; adaptive beamforming and nulling.

Mobile Radio Systems and Propagation
The aim of this module is to investigate the nature of radio propagation in mobile radio environments. This will be achieved through the examination of several modern mobile radio systems. The effects of the propagation environment will also be considered.

Spectrum Management and Utilization
The electromagnetic spectrum is a finite resource which has to be properly managed. This module will address issues related to spectrum management. Topics covered will include: spectrum as a resource; space, time and bandwidth; international regulation organisations and control methods; definitions of spectrum utilisation and spectrum utilisation efficiency; spectrum-consuming properties of radio systems; protection ratio; frequency dependent rejection and the F-D curve; spectrum management tools, models and databases; spectrally-efficient techniques; efficient use of the spectrum.

Electromagnetic Compatability (EMC)
This module provides an introduction to EMC. Topics include fundamental EM interactions and how these give rise to potential incompatibilities between systems; current EMC legislation; test environments and test facilities.

Communication Systems and Digital Signal Processing
Students are introduced to a range of concepts underpinning communications system design. DSP topics include the theory and applications of: real-time DSP concepts/devices; specialist filter applications; A/D and D/A interface technology; review of Fourier/digital filter applicable to DSP; modem design: modulation, demodulation, synchronisation, equalisation; signal analysis and synthesis in time and frequency domain; hands-on experience of DSP tools and DSP applications.

Low Power/Low Voltage Design and VHDL
This module introduces the low power and low voltage design requirements brought about by increasingly small scale sizes of circuit integration. The module also introduces students to VHDL, which is widely used in industry today.

Design Exercise (RF Engineering)
This self-contained exercise aims to introduce the student to aspects of RF engineering, system specification, design and implementation. A design, such as a 2GHz receiver, will be taken through to practical implementation.

Radio Frequency and Microwave Measurements
This covers the theory of EM waves, propagation and scattering. It introduces the student to methods and instruments to measure important EM wave properties such as power and reflection coeffcients.

Active RF and Microwave Circuits
This module provides the student with an appreciation of; noise in microwave systems (basic theory, sources of noise, noise power and temperature, noise figure and measurement of noise); detectors and mixers (diodes and rectification, PIN diodes, single ended mixers, balanced mixers, intermodulation products); microwave amplifiers and oscillators (microwave bipolar transistors and FETs, gain and stability, power gain, design of single stage transistor amlifier, conjugate matching, low noise amplifier design and transistor oscillator design).

PROJECT MODULE
Following a course on research skills and project planning, each student carries out one major project from Easter to September focusing on a real industrial problem. Some projects are carried out ‘on-site’ with our local and national industrial partners. The basics of project planning and structure are taught and supervision will be given whilst the student is writing a dissertation for submission at the end of the course.

Read less
This MSc concentrates on the commercially important and rapidly expanding area of embedded digital systems. It is the ideal choice if you plan a career in embedded systems engineering, or for professional development if you already work in the engineering industry. Read more
This MSc concentrates on the commercially important and rapidly expanding area of embedded digital systems. It is the ideal choice if you plan a career in embedded systems engineering, or for professional development if you already work in the engineering industry.

Embedded systems are at the heart of many engineering devices and you will investigate how they are designed and implemented in hardware and software. You will learn how to critically understand and apply circuit and system simulation techniques, with an emphasis on products that incorporate embedded technology. You will also understand the design of embedded systems, including microcontroller architectures and real-time embedded hardware operating systems.

The course has significant input from industry and as part of the course you will be given the chance to undertake a 6-month unpaid internship*. Whilst not compulsory, internships provide the opportunity to put the theory you’ve learned in the classroom into practice in the real world.

Routes of study:
The course is available to study via two routes:
- MSc Embedded Systems Design (with internship)
- MSc Embedded Systems Design (without internship)

Please note: *Internships are available to full-time students only. Internship places are limited. Students have the opportunity to work in a participating UK company or within a Research Centre at the University. You can also opt to study the course without an internship which will reduce your course length.

See the website http://courses.southwales.ac.uk/courses/1492-msc-embedded-systems-design-with-internship

What you will study

Modules include:
- Embedded Systems Design
- Designing with RTOS
- Digital Design with HDLs
- Research Methodology and Product Management
- Opto-Electronics Devices for Life Science and Measurement
- Applied Digital Signal Processing
- * Six month Internship*
- Msc Major Project (60 credits)

Learning and teaching methods

MSc Embedded Systems Design is delivered in three major blocks that offer an intensive but flexible learning pattern, with two entry opportunities for applicants each year in February and September. You will learn to use the latest computer-aided engineering tools and techniques for the design, manufacture and testing of electronic products. There are six taught modules and an 18-week major project. If you study part-time, you will study three modules per year.

The course is available to study via two main routes, you can opt to add further value to your studies by undertaking an internship or simply focus on building your academic knowledge through a on-campus study as detailed below:


MSc Embedded Systems Design (with internship):

- Delivery: Full-time only | Start dates: September and February
If you choose to undertake an internship, your course will be delivered in four major blocks that offer an intensive but flexible learning pattern. Six taught modules are completed during two teaching blocks featuring 12 contact hours per week. This is followed by 6 month period of internship, after which the student returns to undertake a 16-week major research project. Please note: Course length may vary dependent on your chosen start date.


MSc Embedded Systems Design (without internship):

- Delivery: Full-time and Part-time | Start dates: September and February
The study pathway available without internship is available full-time and part-time. The full-time route is delivered in three major blocks. Six taught modules are completed during two teaching blocks featuring 12 contact hours per week followed by a 16-week major research project. The full-time course duration is about 12 months, if you study part-time then you will complete the course in three years. Part-time study involves completing three modules in each of the first two years and a major research project in the final year. The use of block-mode delivery in this way allows flexible entry and exit, and also enables practising engineers to attend a single module as a short course.

Work Experience and Employment Prospects

Many industries need specialists in embedded systems design, and by the time you graduate, your skills and knowledge will be highly desired by employers. Careers are available in industrial and technology sectors such as embedded systems hardware or software development, telecommunication implementations, instrumentation, general real-time device applications, and signal processing development.

Internship

Internships are only available to students studying full-time: Following successful completion of six taught modules, you will be competitively selected to join participating UK companies or University Research Centres on a six-month period of unpaid work placement before returning to undertake your major research project. All students who have an offer for the MSc Embedded Systems Design (with internship) are guaranteed an internship either in industry or in a University Research Centre.

There are 10 internship places available. Students who wish to undertake an internship must apply for the MSc Embedded Systems Design (with internship). It is anticipated that there will be significant demand for this programme and applicants are advised to apply as soon as possible to avoid disappointment. Applications will be considered on a first come first served basis and the numbers of students offered a place on the programme with internship will be capped.

If the course is already full and we are unable to offer you a place on the Masters course with internship, we may be able to consider you for the standard MSc Embedded Systems Design (without internship) which is a shorter programme.

Assessment methods

Typically, each module will be assessed through coursework.

Read less
This course covers a wide range of topics from both applied and applicable mathematics and is aimed at students who want to study the field in greater depth, in areas which are relevant to real life applications. Read more
This course covers a wide range of topics from both applied and applicable mathematics and is aimed at students who want to study the field in greater depth, in areas which are relevant to real life applications.

You will explore the mathematical techniques that are commonly used to solve problems in the real world, in particular in communication theory and in physics. As part of the course you will carry out an independent research investigation under the supervision of a member of staff. Popular dissertation topics chosen by students include projects in the areas of communication theory, mathematical physics, and financial mathematics.

The transferable skills gained on this course will open you up to a range of career options as well as provide a solid foundation for advanced research at PhD level.

See the website https://www.royalholloway.ac.uk/mathematics/coursefinder/mscmathematicsforapplications.aspx

Why choose this course?

- You will be provided with a solid mathematical foundation and knowledge and understanding of the subjects of cryptography and communications, preparing you for research or professional employment in this area.

- The Mathematics Department at Royal Holloway is well known for its expertise in information security and cryptography. The academics who teach on this course include several leading researchers in these areas.

- The mathematical foundations needed for applications in communication theory and cryptography are covered including Algebra, Combinatorics Complexity Theory/Algorithms and Number Theory.

- You will have the opportunity to carry out your dissertation project in a cutting-edge research area; our dissertation supervisors are experts in their fields who publish regularly in internationally competitive journals and there are several joint projects with industrial partners and Royal Holloway staff.

- After completing the course students have a good foundation for the next step of their career both inside and outside academia.

Department research and industry highlights

The members of the Mathematics Department cover a range of research areas. There are particularly strong groups in information security, number theory, quantum theory, group theory and combinatorics. The Information Security Group has particularly strong links to industry.

Course content and structure

You will study eight courses and complete a main project under the supervision of a member of staff.

Core courses:
Theory of Error-Correcting Codes
The aim of this unit is to provide you with an introduction to the theory of error-correcting codes employing the methods of elementary enumeration, linear algebra and finite fields.

Advanced Cipher Systems
Mathematical and security properties of both symmetric key cipher systems and public key cryptography are discussed, as well as methods for obtaining confidentiality and authentication.

Main project
The main project (dissertation) accounts for 25% of the assessment of the course and you will conduct this under the supervision of a member of academic staff.

Additional courses:
Applications of Field Theory
You will be introduced to some of the basic theory of field extensions, with special emphasis on applications in the context of finite fields.

Quantum Information Theory
‘Anybody who is not shocked by quantum theory has not understood it' (Niels Bohr). The aim of this unit is to provide you with a sufficient understanding of quantum theory in the spirit of the above quote. Many applications of the novel field of quantum information theory can be studied using undergraduate mathematics.

Network Algorithms
In this unit you will be introduced to the formal idea of an algorithm, when it is a good algorithm and techniques for constructing algorithms and checking that they work; explore connectivity and colourings of graphs, from an algorithmic perspective; and study how algebraic methods such as path algebras and cycle spaces may be used to solve network problems.

Advanced Financial Mathematics
In this unit you will investigate the validity of various linear and non-linear time series occurring in finance and extend the use of stochastic calculus to interest rate movements and credit rating;

Combinatorics
The aim of this unit is to introduce some standard techniques and concepts of combinatorics, including: methods of counting including the principle of inclusion and exclusion; generating functions; probabilistic methods; and permutations, Ramsey theory.

Computational Number Theory
You will be provided with an introduction to many major methods currently used for testing/proving primality and for the factorisation of composite integers. The course will develop the mathematical theory that underlies these methods, as well as describing the methods themselves.

Complexity Theory
Several classes of computational complexity are introduced. You will discuss how to recognise when different problems have different computational hardness, and be able to deduce cryptographic properties of related algorithms and protocols.

On completion of the course graduates will have:
- knowledge and understanding of: the principles of communication through noisy channels using coding theory; the principles of cryptography as a tool for securing data; and the role and limitations of mathematics in the solution of problems arising in the real world

- a high level of ability in subject-specific skills, such as algebra and number theory

- developed the capacity to synthesise information from a number of sources with critical awareness

- critically analysed the strengths and weaknesses of solutions to problems in applications of mathematics

- the ability to clearly formulate problems and express technical content and conclusions in written form

- personal skills of time management, self-motivation, flexibility and adaptability.

Assessment

Assessment is carried out by a variety of methods including coursework, examinations and a dissertation. The examinations in May/June count for 75% of the final average and the dissertation, which has to be submitted in September, counts for the remaining 25%.

Employability & career opportunities

Our students have gone on to successful careers in a variety of industries, such as information security, IT consultancy, banking and finance, higher education and telecommunication. In recent years our graduates have entered into roles including Principal Information Security Consultant at Abbey National PLC; Senior Manager at Enterprise Risk Services, Deloitte & Touche; Global IT Security Director at Reuters; and Information Security Manager at London Underground.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program. IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN. Read more
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program.

IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN:
- Skills and know-how in the latest and developing technologies in electrical systems
- Practical guidance and feedback from experts from around the world
- Live knowledge from the extensive experience of expert instructors, rather than from just theoretical information gained from books and college
- Credibility and respect as the local electrical systems expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Electrical Systems)** qualification

The next intake will start on the week of June 27, 2016.

Contact us to find out more and apply (http://www.eit.edu.au/course-enquiry).

** A note regarding recognition of this program in the Australian education system: EIT is the owner of this program. The qualification is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA). EIT delivers this program to students worldwide.

Visit the website http://www.eit.edu.au/master-engineering-electrical-systems

PROFESSIONAL RECOGNITION

This Master Degree (or Graduate Diploma) is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA) in Australia.

It is a professional development program and is not currently an entry-to-practice qualification. Engineers Australia are considering this and other programs for those students desiring professional status (e.g. CPEng). However, the outcome of this review may or may not result in a student gaining chartered professional status if he or she does not already possess this.

Additional Entry Requirements

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6.0) or equivalent as outlined in the EIT Admissions Policy.

Congruent field of practice means one of the following with adequate electrical engineering content (with fields not listed below to be considered by the Dean and the Admissions committee on a case-by-case basis):

• Electrical Engineering

• Electronic and Communication Systems

• Industrial Engineering

• Instrumentation, Control and Automation

• Mechatronic Systems

• Manufacturing and Management Systems

• Industrial Automation

• Production Engineering

Overview

Electrical power is an essential infrastructure of our society. Adequate and uninterrupted supply of electrical power of the required quality is essential for industries, commercial establishments and residences; and almost any type of human activity is impossible without the use of electricity. The ever-increasing cost of fuels required for power generation, restricted availability in many parts of the world, demand for electricity fueled by industrial growth and shortage of skilled engineers to design, operate and maintain power network components are problems felt everywhere today. The Master of Engineering (Electrical Systems) is designed to address the last-mentioned constraint, especially in today’s context where the field of electrical power is not perceived as being ‘cool’ unlike computers and communications and other similar nascent fields experiencing explosive growth. But it is often forgotten that even a highly complex and sophisticated data centre needs huge amounts of power of extremely high reliability, without which it is just so much silicon (and copper).

This program presents the topics at two levels. The first year addresses the design level where the student learns how to design the components of a power system such as generation, transmission and distribution as well as the other systems contributing to the safety of operation. The topics in the first year also cover the automation and control components that contribute to the high level of reliability expected from today’s power systems. Because of the constraints imposed by the fuel for power generation and the environmental degradation that accompanies power generation by fossil fuels, the attention today is focused on renewable energy sources and also more importantly how to make the generation of power more efficient and less polluting so that you get a double benefit of lower fuel usage and lower environmental impact. Even the best designed systems need to be put together efficiently. Setting up power generation and transmission facilities involves appreciable capital input and complex techniques for planning, installation and commissioning. Keeping this in view, a unit covering project management is included in the first year.

The second year of the program focuses on the highly complex theory of power systems. If the power system has to perform with a high degree of reliability and tide over various disturbances that invariably occur due to abnormal events in the power system, it is necessary to use simulation techniques that can accurately model a power system and predict its behavior under various possible disturbance conditions. These aspects are covered in the course units dealing with power system analysis and stability studies for steady-state, dynamic and transient conditions. The aspect of power quality and harmonic flow studies is also included as a separate unit.

The study of power systems has an extensive scope and besides the topics listed above, a student may also like to cover some other related topic of special interest. The ‘Special Topics in Electrical Power Systems’ unit aims to provide students with the opportunity for adding one ‘state-of-the art’ topic from a list of suggested fields. Examples are: Smart grids, Micro-grids and Geographic Information System (GIS) application in utility environment.

The Masters Thesis which spans over two complete semesters is the capstone of the program, requiring a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding units. As a significant research component of the course, this program component will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling the students to critique current professional practice in the electrical power industry.

WHO WOULD BENEFIT

Those seeking to achieve advanced know-how and expertise in industrial automation, including but not limited to:

- Electric Utility engineers

- Electrical Engineers and Electricians

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Consulting Engineers

- Production Managers

Read less
Our flagship course blends theory and practice, giving you a strong grounding for a career in industry or research. This continually evolving course has been running for over 40 years and is well supported by the UK Engineering and Physical Sciences Research Council (EPSRC). Read more

About the course

Our flagship course blends theory and practice, giving you a strong grounding for a career in industry or research. This continually evolving course has been running for over 40 years and is well supported by the UK Engineering and Physical Sciences Research Council (EPSRC).

The core modules provide you with the basic skills you’ll need to become a control and systems engineer. You’ll take advanced modules in current areas of interest and complete a research-level dissertation project.

Push yourself further

We have cutting edge facilities and technology, including: advanced control
and systems software, modelling, simulation and controller design tools, robotics and a flexible manufacturing systems laboratory, evolutionary computing laboratory and clean facilities for the assembly of satellite instrumentation.

Make your mark

You could pursue a career with a large international organisation or government department. Our graduates work in sectors such as manufacturing, power generation and sustainable energy, with companies including British Airways, Jaguar Land Rover, NASA, IBM, Rolls-Royce and Unilever.

A masters from Sheffield is the mark of someone with the skills to apply their knowledge in industry, anywhere in the world. Our MSc in Advanced Control and Systems Engineering is accredited by the Engineering Council UK, IET and InstMC. These marks of assurance mean our degrees meet the high standards set by the engineering profession.

A Sheffield masters is a strong foundation for a career in industry or research.

Industry links

We have strong links with industrial partners such as Rolls-Royce and BAE Systems. Our industrial partners help us to design our courses, making sure you learn the right skills.

Rolls-Royce has a research and development centre here, using our expertise to explore today’s challenges. Our masters students often work side by side with researchers at these facilities.

A stimulating environment

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research output, ahead of Oxford and Cambridge, and No 3 for overall research excellence. Our world-class reputation attracts highly motivated staff and students.

You’ll be taught by staff who work on real-world projects, developing new ideas – for submarines, robots, Formula One and even space exploration. Their approach to teaching is just as innovative: ideas like the award-winning take-home lab kit and e-puck mobile robotics activities help you develop the problem-solving skills you need for a trailblazing career.

Core modules

Foundations of Control Systems; State-Space, Optimal Control and Nonlinear Systems; Signal Processing and Estimation; Embedded Systems and Rapid Control Prototyping; Advanced Industrial Control; Control Systems Project and Dissertation.

Examples of optional modules

Intelligent and Vision Systems; Nonlinear and Hybrid Systems; Robotic and Autonomous Systems; Multisensor and Decision Systems.

Project work

You can use our award-winning take-home lab kits to explore core concepts at home. It supports our teaching, giving you the chance to learn by doing, when you want to, not just in classes. You’ll work on a major project of your own as part of your final assessment and there are chances to contribute to other projects throughout the course.

Teaching and assessment

You can expect a mix of lectures, tutorials, laboratory work and individual assignments. All the lectures and tutorials are for our systems and control students only. This helps you to bond with your fellow students, so you can learn from each other. You’re assessed on exams, coursework assignments and a project dissertation.

Read less
Our MSc Complex Systems Modelling programme enables you to apply mathematical techniques in the rapidly developing and exciting interdisciplinary field of complex systems. Read more
Our MSc Complex Systems Modelling programme enables you to apply mathematical techniques in the rapidly developing and exciting interdisciplinary field of complex systems. This field of study is applicable to areas as diverse as biomedical, natural, economic and social sciences. It is suitable for those who wish to work in research and development in an academic or industrial environment.

Key benefits

- Unrivalled location at the centre of London.

- Research-led interdisciplinary programme.

- Modern theory of complex systems modelling.

- Taught by experts in the field.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/complex-systems-modelling-msc.aspx

Course detail

- Description -

Modern societies rely on a wide range of infrastructures, institutions and technologies whose complexity has grown dramatically in the recent past. Consequently there is an ever-growing demand for expertise in complex systems modelling as a prerequisite to understanding, maintaining and further developing such systems.

The MSc in Complex Systems Modelling is a taught programme with a significant research component in the rapidly developing and exciting interdisciplinary field of Complex Systems. It covers scientific areas ranging from biomedical and natural to economic and social sciences, and consists of a wide range of modules including the following core modules:

- Research Methods and Advanced Topics in Complex Systems
- Theory of Complex Networks
- Equilibrium Analysis of Complex Systems

You must also complete a project in a relevant area after passing the written examinations. This can be carried out and supervised in the department or in appropriate academic or industrial institutions outside the College.

- Course purpose -

For graduates in mathematics, or in other suitable scientific disciplines with a strong background in mathematics, who want to work in research and development in an academic or industrial environment. The programme aims to develop a knowledge and understanding of complex systems modelling and their uses, and to enable students to use mathematical techniques to quantify, predict and improve such systems.

- Course format and assessment -

Primarily written examinations, some with coursework element, in eight lecture modules, plus an oral presentation and assessed report on the research project.

Career prospects

Our graduates are highly sought after: the applicability of complex systems modelling to areas as diverse as biomedical, natural, economic and social sciences, results in a broad range of opportunities. Some graduates are employed by the companies or laboratories that supervise their MSc research projects, or continue to PhD study.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
Effective use of renewable energy and improvements in the efficiency of power generation facilities will enable better energy management in the future and help reduce environmental impact. Read more

Why take this course?

Effective use of renewable energy and improvements in the efficiency of power generation facilities will enable better energy management in the future and help reduce environmental impact. This course responds to an urgent need for specialists in energy and power systems management, as well as a growing skills shortage of people with core knowledge in this field.

The course provides relevant, up-to-date skills that will equip both graduates and working professionals in the advanced concepts of sustainable electrical power and energy generation. It offers skills for operation, control, design, regulation and management of power systems and networks of the future. You will also receive training in and understanding of energy production, delivery, consumption and efficiency.

What will I experience?

On this course you will:

Benefit from experts in the industry who will deliver part of the course as visiting lecturers, bringing professional expertise and industry-relevant material
Be encouraged to reach a level of competence and professionalism where you can effectively integrate your technical and non-technical knowledge to solve a range of problems of a complex nature
Learn in a challenging and stimulating study environment
Develop a range of key skills by means of opportunities provided in the study units
Being an MSc course, you are encouraged and expected to be able to reach a level of competence and professionalism where you can effectively integrate your technical and non-technical knowledge to solve a range of problems of a complex nature.

What opportunities might it lead to?

The course will help to maximise your career potential in this field and equips you to work as an engineer, at an advanced level, in the fields of energy and power systems management.

Module Details

You will study several key topics and complete a four-month individual project in which you apply your knowledge to a significant, in-depth piece of analysis or design. Projects are tailored to your individual interests and may take place in our own laboratories or, by agreement, in industry. Experts from Industry (STS Nuclear) deliver part of the course as visiting lecturers, bringing professional expertise and industry-relevant material to the programme.

Here are the units you will study:

Power Systems Technology: This unit provides an in-depth overview of contemporary electrical power systems. It covers the elements of electrical power systems including generation, transmission and distribution in the mixed energy source paradigm.

Electrical Machines and drives: Provides an in-depth overview of the operational principles and physical design of DC and AC electrical machines as well as broad understanding of concepts of power electronics and power electronic converters, so that you can describe their application and selection criteria. You will develop an understanding of the issues present in converter design, including the impact of physical layout and heat dissipation.

Energy Systems: Focuses on the techniques and principles of operation of thermodynamics and combustion systems, as well as the provision and management of energy. It also focuses on power generation and combined systems, BioMass processers application of heat and fluid transfer.

Renewable and Alternative Energy: Provides an in-depth coverage of the principles of renewable and alternative energy systems: Winds, Solar, BioMass, Geothermal, Fuel Cells, Hydrogen Technologies and Nuclear Energy.

Nuclear Technology: A study of nuclear engineering including the theory of atomic and nuclear physics, methods and benefits of generating electricity from nuclear power plants, and the effects of ionising radiation. The nuclear fuel cycle and the associated environmental impacts are also considered. The development of international guidance on nuclear and radiological safety and a comparison of national regulatory structures are analysed. The importance of safety cultures, safety behaviours and safety cases is a key element throughout this module.

Energy Management: The unit is specifically designed to provide the students with the basic of economical analysis and evaluation of energy projects and asset management as well as risk and hazard assessment, comprising legislation, hazard identification and quantification, quantified risk analyses, methods of elimination/mitigation, economic appraisal of integrated renewable, and petroleum projects; with numerous pertinent case studies.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis and you will spend a significant amount of time in our Energy, Power systems and Electronic laboratories.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

This course is designed to respond to a growing skills shortage of people with core knowledge in energy and power systems management. It is an excellent preparation for a successful career in this ever expanding and dynamic field.

On successful completion of the course, you will have gained the skills and knowledge that will make you attractive to a wide variety of employers with interests ranging from overall system design to the more detailed development of subsystems. You will acquire the ability to critically evaluate methodologies, analytical procedures and research methods in energy and power systems management and in the use of state-of-the-art computational tools, the design of sustainable electrical power systems and networks and regulatory frameworks. For practicing engineers with professional business experience, the course is an opportunity to update your knowledge of current design practice and also to familiarise themselves with developments in codes and methods of analysis.

Read less
Learn how to create artificial information systems that mimic biological systems as well as how to use theoretical insights from AI to better understand cognitive processing in humans. Read more
Learn how to create artificial information systems that mimic biological systems as well as how to use theoretical insights from AI to better understand cognitive processing in humans.
The human brain is a hugely complex machine that is able to perform tasks that are vastly beyond current capabilities of artificial systems. Understanding the brain has always been a source of inspiration for developing artificially intelligent agents and has led to some of the defining moments in the history of AI. At the same time, theoretical insights from artificial intelligence provide new ways to understand and probe neural information processing in biological systems.
On the one hand, the Master’s in Computation in Neural and Artificial Systems addresses how models based on neural information processing can be used to develop artificial systems, probing of human information processing in closed-loop online settings, as well as the development of new machine learning techniques to better understand human brain function.
On the other hand it addresses various ways of modelling and understanding cognitive processing in humans. These range from abstract mathematical models of learning that are derived from Bayesian statistics, complexity theory and optimal control theory to neural information processing systems such as neural networks that simulate particular cognitive functions in a biologically inspired manner. We also look at new groundbreaking areas in the field of AI, like brain computer interfacing and deep learning.

See the website http://www.ru.nl/masters/ai/computation

Why study Computation in Neural and Artificial Systems at Radboud University?
- Our cognitive focus leads to a highly interdisciplinary AI programme where students gain skills and knowledge from a number of different areas such as mathematics, computer science, psychology and neuroscience combined with a core foundation of artificial intelligence.

- Together with the world-renowned Donders Institute, the Behavioural Science Institute and various other leading research centres in Nijmegen, we train our students to become excellent researchers in AI.

- Master’s students are free to use the state-of-the-art facilities available on campus, like equipment for brain imaging as EEG, fMRI and MEG.

- Exceptional students who choose this specialisation have the opportunity to study for a double degree in Artificial Intelligence together with the specialisation in Brain Network and Neuronal Communication. This will take three instead of two years.

- This specialisation offers plenty of room to create a programme that meets your own academic and professional interests.

- To help you decide on a research topic there is a semi-annual Thesis Fair where academics and companies present possible project ideas. Often there are more project proposals than students to accept them, giving you ample choice. We are also open to any of you own ideas for research.

- Our AI students are a close-knit group; they have their own room in which they often get together to interact, debate and develop their ideas. Every student also receives personal guidance and supervision from a member of our expert staff.

Our research in this field

The programme is closely related to the research carried out in the internationally renowned Donders Institute for Brain, Cognition and Behaviour. This institute has several unique facilities for brain imaging using EEG, fMRI and MEG. You will be able to use these facilities for developing new experimental research techniques, as well as for developing new machine learning algorithms to analyse the brain data and integrate them with brain-computer interfacing systems.

Some examples of possible thesis subjects:
- Deep learning
Recent breakthroughs in AI have led to the development of artificial neural networks that achieve human level performance in object recognition. This has led companies like Google and Facebook to invest a lot of research in this technology. Within the AI department you can do research on this topic. This can range from developing deep neural networks to map and decode thoughts from human brain activity to the development of speech recognition systems or neural networks that can play arcade games.

- Brain Computer Interfacing
Brain computer interfaces are systems which decode a users mental state online in real-time for the purpose of communication or control. An effective BCI requires both neuro-scientific insight (which mental states should we decode?) and technical expertise (which measurement systems and decoding algorithms should be used?). A project could be to develop new mental tasks that induce stronger/easier to decode signals, such as using broadband stimuli. Another project could be to develop new decoding methods better able to tease a weak signal from the background noise, such as adaptive-beam forming. Results for both would assessed by performing empirical studies with target users in one of the EEG/MEG/fMRI labs available in the institute.

Career prospects

Our Artificial Intelligence graduates have excellent job prospects and are often offered a job before they have actually graduated. Many of our graduates go on to do a PhD either at a major research institute or university with an AI department. Other graduates work for companies interested in cognitive design and research. Examples of companies looking for AI experts with this specialisation: Google, Facebook, IBM, Philips and the Brain Foundation. Some students have even gone on to start their own companies.

Job positions

Examples of jobs that a graduate of the specialisation in Computation in Neural and Artificial Systems could get:
- PhD researcher on bio-inspired computing
- PhD researcher on neural decoding
- PhD researcher on neural information processing
- Machine learning expert in a software company
- Company founder for brain-based computer games
- Hospital-based designer of assistive technology for patients
- Policy advisor on new developments in neurotechnology
- Software developer for analysis and online visual displays of brain activity

Internship

Half of your second year consists of an internship, giving you plenty of hands-on experience. We encourage students to do this internship abroad, although this is not mandatory. We do have connections with companies abroad, for example in China, Sweden and the United States.

See the website http://www.ru.nl/masters/ai/computation

Read less
Who is this course for?. Recent graduates in Electrical or Electronic Engineering or Computer Science, who wish to develop their skills in the field of distributed computing systems. Read more
Who is this course for?
Recent graduates in Electrical or Electronic Engineering or Computer Science, who wish to develop their skills in the field of distributed computing systems.
Practicing engineers and computer professionals who wish to develop their knowledge in this area.
People with suitable mathematical, scientific or other engineering qualifications, usually with some relevant experience, who wish to enter this field.

Modules

Computer Networks, which aims to advance knowledge on computer networks. Topics to be covered in this module include OSI reference model, Physical and Data Link Layer Protocols, TCP/IP Networking, IPv6, Routing Protocols, Asynchronous Transfer Mode (ATM) Networks, Packet Delay and Queuing Analysis, IP Quality of Services (Integrated Service Model and Differentiated Service Model), Resource Reservation Protocol (RSVP), Multi-Protocol Label Switching (MPLS), IP Multicasting, Network Application Layer Protocols such as HTTP, DNS, SNMP.

Network Computing, which focuses on principles and techniques for network computing. Topics to be covered in this module include Object-Oriented Software Engineering, Object-Oriented Programming with Java, Network Computing Models such as Client/Server Model and Peer-to-Peer Model, Socket Programming, Remote Procedure Call (RPC), Java Remote Method Invocation (RMI), Common Object Request Broker Architecture (CORBA), Web Computing Technologies (Java Servlet, Java Server Pages), Message Exchanging with XML, Service Oriented Architecture (SOA), XML based Web Services (WSDL, SOAP, UDDI).

Network Security and Encryption, which introduces the fundamental theory that enables what is achievable through the use of Security Engineering to be determined, and presents the practical techniques and algorithms that are currently important for the efficient and secure use of distributed /Grid computing systems. Topics to be covered in this module include Introduction to Security Engineering, Classical Cryptography (Monoalphabetic and Polyalphabetic Ciphers, Transposition, Substitution, Linear Transformation), Computational Fundamentals of Cryptosystems (Computational Complexity and Intractability, Modular Arithmetic and Elementary Number Theory), Modern Symmetric Key Cryptography (Feistel Ciphers, DES, Triple-DES and AES),Public Key Cryptography (The Diffie-Hellman Key Exchange Algorithm, Public Key Infrastructures, X.509 Certificates, PK Systems such as RSA and Elliptic Curves), Multilevel Security (the Bell-LaPadula Security Policy Model, the Biba Model, the NRL Pump), Multilateral Security (Compartmentation and the Lattice Model, the Chinese Wall, the BMA Model), Protecting e-Commerce Systems.

Distributed Systems Architecture, which presents a comprehensive evaluation of the design philosophies, fundamental constructs, performance issues and operational principles of distributed systems architectures, covering applications, algorithms and software architecture, engineering issues and implementation technology. Topics to be covered in this module include System Architecture (Bus Systems, High Performance I/O, Memory Hierarchies, Memory Coherence and File Coherence), Distributed Database, Processor Architecture, File Services, Inter-Process Communication, Naming Services, Resource Allocation and Scheduling, Distributed System Case Studies.

Grid Middleware Technologies, which introduces the principle, concepts and practice of Grid middleware technologies, and provides a practical knowledge on developing Grid applications. Topics to be covered in this module include Parallel Computing Paradigms, Parallel Programming with MPI/PVM, Cluster Computing Principles (Condor, Sun Grid Engine), Grid Computing Middleware Components (Job Submission, Resource Management and Job Scheduling, Information Service, Grid Portal, Grid Security Infrastructure), Grid Standards (OGSA/WSRF), Grid Middleware Case Study with Globus.

Grid System Analysis and Design, which aims to analyse representative production Grid systems and gain knowledge on how to design and optimise large-scale Grid systems. Topics to be covered in this module include System Analysis Methodologies with UML, Model Construction (Process Modelling, Static Class Modelling, Dynamic Modelling, Interface Modelling), Management of Large-Scale Grid System (Portal, Concurrent Version System (CVS)/Wiki), Grid System Analysis Case Study (GridPP, LCG/EGEE), Grid System Design (Performance Consideration, Open Standards, Design Patterns, Usability Analysis), Grid System Programming Models, Testing (Unit Testing, Integration Testing, Regression Testing), Debugging, Risk Analysis, System Maintenance.

Project Management, which introduces a range of formal methods and skills necessary to equip the student to function effectively at the higher levels of project management. Covers the need for the development of project management skills in achieving practical business objectives.

Workshop involves practical work, which is an important component of the course and gives students experience with relevant techniques and tools. Assignments are of practical nature and involve laboratory work with relevant equipment, hardware and software systems, conducted in a hands-on workshop environment. Typical assignments are:
TCP/IP Network Layered Protocol Analysis
Object-Oriented Programming, Java Socket Programming
Network Security and Encryption
Java RMI Programming for Distributed Systems
Grid Programming with Globus Toolkit 4 (GT4)
Grid System Analysis/Simulation

Dissertation, which is a stimulating and challenging part of the MSc programme. It provides the opportunity to apply the knowledge learnt in the taught part of the programme and to specialise in one aspect, developing students’ deep understanding and expertise in Distributed Systems related area of their choice. Students may carry out their projects wholly within the University, but industrial based projects are encouraged.

Read less
The Department of Mathematics offers graduate courses leading to M.Sc., and eventually to Ph.D., degree in Mathematics. The Master of Science program aims to provide a sound foundation for the students who wish to pursue a research career in mathematics as well as other related areas. Read more
The Department of Mathematics offers graduate courses leading to M.Sc., and eventually to Ph.D., degree in Mathematics. The Master of Science program aims to provide a sound foundation for the students who wish to pursue a research career in mathematics as well as other related areas. The department emphasizes both pure and applied mathematics. Research in the department covers algebra, number theory, combinatorics, differential equations, functional analysis, abstract harmonic analysis, mathematical physics, stochastic analysis, biomathematics and topology.

Current faculty projects and research interests:

• Ring Theory and Module Theory, especially Krull dimension, torsion theories, and localization

• Algebraic Theory of Lattices, especially their dimensions (Krull, Goldie, Gabriel, etc.) with applications to Grothendieck categories and module categories equipped with torsion theories

• Field Theory, especially Galois Theory, Cogalois Theory, and Galois cohomology

• Algebraic Number Theory, especially rings of algebraic integers

• Iwasawa Theory of Galois representations and their deformations Euler and Kolyvagin systems, Equivariant Tamagawa Number
Conjecture

• Combinatorial design theory, in particular metamorphosis of designs, perfect hexagon triple systems

• Graph theory, in particular number of cycles in 2-factorizations of complete graphs

• Coding theory, especially relation of designs to codes

• Random graphs, in particular, random proximity catch graphs and digraphs

• Partial Differential Equations

• Nonlinear Problems of Mathematical Physics

• Dissipative Dynamical Systems

• Scattering of classical and quantum waves

• Wavelet analysis

• Molecular dynamics

• Banach algebras, especially the structure of the second Arens duals of Banach algebras

• Abstract Harmonic Analysis, especially the Fourier and Fourier-Stieltjes algebras associated to a locally compact group

• Geometry of Banach spaces, especially vector measures, spaces of vector valued continuous functions, fixed point theory, isomorphic properties of Banach spaces

• Differential geometric, topologic, and algebraic methods used in quantum mechanics

• Geometric phases and dynamical invariants

• Supersymmetry and its generalizations

• Pseudo-Hermitian quantum mechanics

• Quantum cosmology

• Numerical Linear Algebra

• Numerical Optimization

• Perturbation Theory of Eigenvalues

• Eigenvalue Optimization

• Mathematical finance

• Stochastic optimal control and dynamic programming

• Stochastic flows and random velocity fields

• Lyapunov exponents of flows

• Unicast and multicast data traffic in telecommunications

• Probabilistic Inference

• Inference on Random Graphs (with emphasis on modeling email and internet traffic and clustering analysis)

• Graph Theory (probabilistic investigation of graphs emerging from computational geometry)

• Statistics (analysis of spatial data and spatial point patterns with applications in epidemiology and ecology and statistical methods for medical data and image analysis)

• Classification and Pattern Recognition (with applications in mine field and face detection)

• Arithmetical Algebraic Geometry, Arakelov geometry, Mixed Tate motives

• p-adic methods in arithmetical algebraic geometry, Ramification theory of arithmetic varieties

• Topology of low-dimensional manifolds, in particular Lefschetz fibrations, symplectic and contact structures, Stein fillings

• Symplectic topology and geometry, Seiberg-Witten theory, Floer homology

• Foliation and Lamination Theory, Minimal Surfaces, and Hyperbolic Geometry

Read less
The MSc in Health Systems and Global Policy considers how the principles and practice of effective and fair public health care can inform health policy and health systems in national and local settings, and emphasises the importance of understanding health systems in debates around global health policy. Read more

Health systems and global health at Queen Mary

The MSc in Health Systems and Global Policy considers how the principles and practice of effective and fair public health care can inform health policy and health systems in national and local settings, and emphasises the importance of understanding health systems in debates around global health policy. An important focus of the programme will be the theoretical and practical principles of solidarity in health systems. The programme analyses the principles of health systems, and makes global linkages to social, political, economic, and cultural issues in individual countries and themes.

The health systems masters is part of a wider programme of study in global policy and international health. Underpinned by a commitment to the principles of social justice and fairness, these programmes will provide students with an understanding of the significance of the current global challenges for health care and public health, and will offer a multidisciplinary focus on global public health and primary care in a time of increasing health inequalities.

Queen Mary is committed to teaching and researching global health, and has assembled for this initiative an experienced team from across the university, led by professors who have previously established and run successful and highly prestigious programmes both online and on campus. Prof Allyson Pollock is one of the UK's leading public intellectuals in medicine, and is a world authority on global health and public health policy. Prof Trish Greenhalgh is one of the international stars of general practice, a leading educationalist in international primary health and enormously influential in primary health research. The programmes are based in the Centre for Primary Care and Public Health, which is responsible for leading global health teaching in the Barts and The London School of Medicine and Dentistry, the leading UK medical school for global health in the undergraduate medical curriculum.

Who is this programme for?

The Health Systems and Global Policy programme is of particular interest to medical and clinical practitioners, civil servants, public health practitioners, social and political scientists, lab scientists, and NGO workers. Dealing with health systems, the programme is concerned with underlying principles, and so is of relevance to those working or planning to work locally in London, in the UK, or anywhere in the world where these principles apply, and at the local, national, or international level.

Programme outline

In the first semester modules develop the key concepts and research methods and analysis for studying global health and health systems. These present students with relevant methodological issues and challenges while providing interdisciplinary foundations. In the second semester students gain a more detailed understanding of areas of special relevance to global public health policy through the specialist module, Globalisation and Health Care Reform, and through elective modules that allow them to focus on the aspects of health policy and health systems of most interest to them.

Core modules

• Epidemiology and Statistics
• Health, Illness and Society
• Health Inequalities and Social Determinants of Health
• Health Systems, Economics, and Policy

Specialist module

• Globalisation and Health Systems

Elective modules

• Migration, Culture and Advanced Social Determinants of Health
• Public Health, International Law and Governance
• Primary Health Care: Theory and Practice
• Globalisation and Contemporary Medical Ethics
• Human Rights and Public Health
• Intellectual Property, Medicine, and Health Care
• Knowledge Innovation and Management

15,000 word dissertation

Read less
If you have earned a first degree with an information systems focus and are interested in following up with a Master's degree in the same discipline, then you've come to the right place. Read more

About the programme

If you have earned a first degree with an information systems focus and are interested in following up with a Master's degree in the same discipline, then you've come to the right place.
The M.Sc. Information Systems allows you to consolidate your knowledge of e-commerce, business information systems, IT management, knowledge management and other topical subjects.
This degree programme involves original research and working on hands-on projects.

Features

In addition to the courses taught in this programme you will also have the opportunity to attend courses from the related programmes of study, Business Administration, Computer Science, IT Security, IT Law and Media and Communication.
Moreover, the Language Centre offers many language courses – in many cases certified up to UNIcert® IV, the highest attainable level – allowing you to perfect your knowledge of a foreign language.
If you are interested in studying abroad for a semester or two at one of our numerous partner universities in Europe, America or Asia, the International Office team will be happy to help you plan your study abroad.

Syllabus

While studying this programme you should gain a minimum of 100 ECTS credits and write a Master's thesis. Out of the 100 credits, 35 are earned in compulsory electives, of which 7 must be earned in a seminar; at least 10 credits come from the Methods modules and a minimum of 18 from Principles of Business and Economics.

Methods
The Methods module group teaches you the principles of mathematics, which are important for business and economics; empirical research methods; decision theory; operations research and fundamental concepts and techniques used in information systems. In the assessments, you will be expected to demonstrate in-depth knowledge of the subject matter and show that you have the methodology to understand the state of the art of research in the subject area and are able to apply the it to problems in the real world.

Principles of Business and Economics
Principles of Business and Economics deals with the theory and empirical studies in business and household finance, computational representation, and with the control of resources and dispositions in businesses and household, as well as their taxation. The module also imparts knowledge on international, market-oriented control, strategic and organisational management of companies, as well as marketing theory and empirical studies.

Information Systems
Information Systems consists of the modules Theory and Empirical Research and Methods, Models and Tools for Analysis, Development, Implementation and Use of Information Systems and Information and Communication Technologies in the context of their application. The subject area is interdisciplinary in nature and comprises the socio-economic dimension of IT applications.

Advanced Interdisciplinary Studies
The Advanced Interdisciplinary Studies modules consist of theory and empirical studies of subjects closely related to information systems. These include courses from the Master's programme in Media and Communication (e.g. cross-media concepts, design of computer-aided educational settings, etc.), from Computer Science (IT law, media law and legal informatics), from Business Administration (e.g. marketing courses, social media management, entrepreneurial organisation, etc.) and from computer science (e.g. information management, software analysis, cloud computing, multimedia databases, information security).

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X