• Cardiff University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
King’s College London Featured Masters Courses
University of Worcester Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Cass Business School Featured Masters Courses
Loughborough University Featured Masters Courses
"systems" AND "science"×
0 miles

Masters Degrees (Systems Science)

  • "systems" AND "science" ×
  • clear all
Showing 1 to 15 of 2,509
Order by 
The systems science program emphasizes the complementary use of mathematical, computational and heuristic approaches to solving systems problems. Read more
The systems science program emphasizes the complementary use of mathematical, computational and heuristic approaches to solving systems problems. Students learn to analyze assumptions under which various methods are applicable with the aim of selecting methods that best fit the problem. The program emphasizes learning through classes that deal with systems modeling and simulation, systems analysis and synthesis, and the various problems associated with the simplification of overly complex systems to make them manageable, and includes such research areas as fuzzy logic; data analysis and knowledge discovery; uncertainty theories; generalized information theory; soft computing; intelligent control and robotics; decision making; and complex systems.

Recent doctoral graduate placements include: Industrial Engineer for Best Buy, Industrial Engineer for IBM Corporation, Assistant Professor at Middle East University (Jordan), Industrial Engineer for North Shore-LIJ Health System.

All applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university you have attended
- For PhD candidates, an MS in engineering or related field is desirable, but does not preclude admission for exceptional applicants
- Two letters of recommendation
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee.
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE scores

And, for international applicants:
- International Student Financial Statement form (PDF)
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores

Read less
Data science combines computer science and statistics to solve exciting data-intensive problems in industry and in many fields of science. Read more
Data science combines computer science and statistics to solve exciting data-intensive problems in industry and in many fields of science. Data scientists help organisations make sense of their data. As data is collected and analysed in all areas of society, demand for professional data scientists is high and will grow higher. The emerging Internet of Things, for instance, will produce a whole new range of problems and opportunities in data analysis.

In the Data Science master’s programme, you will gain a solid understanding of the methods used in data science. You will learn not only to apply data science: you will acquire insight into how and why methods work so you will be able to construct solutions to new challenges in data science. In the Data Science master’s programme, you will also be able to work on problems specific to a scientific discipline and to combine domain knowledge with the latest data analysis methods and tools. The teachers of the programme are themselves active data science researchers, and the programme is heavily based on first-hand research experience.

Upon graduating from the Data Science MSc programme, you will have solid knowledge of the central concepts, theories, and research methods of data science as well as applied skills. In particular, you will be able to:
-Understand the general computational and probabilistic principles underlying modern machine learning and data mining algorithms.
-Apply various computational and statistical methods to analyse scientific and business data.
-Assess the suitability of each method for the purpose of data collection and use.
-Implement state-of-the-art machine learning solutions efficiently using high-performance computing platforms.
-Undertake creative work, making systematic use of investigation or experimentation, to discover new knowledge.
-Report results in a clear and understandable manner.
-Analyse scientific and industrial data to devise new applications and support decision making.

The MSc programme is offered jointly by the Department of Computer Science, the Department of Mathematics and Statistics, and the Department of Physics, with support from the Helsinki Institute for Information Technology (HIIT) and the Helsinki Institute of Physics (HIP), all located on the Kumpula Science campus. In your applied data science studies you can also include multidisciplinary studies from other master's programmes, such as digital humanities, and natural and medical sciences.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The Data Science MSc programme combines elements from computer science and mathematical sciences to provide you with skills in topics such as machine learning, distributed systems and statistical methods. You might also find that knowledge in a particular scientific field is useful for your future career. You can obtain this through minor studies in the MSc programme, or it might already be part of your bachelor-level degree.

Studies in the Data Science MSc programme include both theoretical and practical components, including a variety of study methods (lectures, exercises, projects, seminars; done both individually and in groups). Especially in applied data science, we also use problem-based learning methods, so that you can address real-world issues. You will also practise academic skills such as scientific writing and oral presentation throughout your studies. You are encouraged to include an internship in your degree in order to obtain practical experience in the field.

Minor studies give you a wider perspective of Data Science. Your minor subject can be an application area of Data Science (such as physics or the humanities), a discipline that supports application of Data Science (such as language technology), or a methodological subject needed for the development of new Data Science methods and models (such as computer science, statistics, or mathematics).

Selection of the Major

You can specialise either in the core areas of data science -- algorithms, infrastructure and statistics -- or in its applications. This means that you can focus on the development of new models and methods in data science, supported by the data science research carried out at the University of Helsinki; or you can become a data science specialist in an application field by incorporating studies in another subject. In addition to mainstream data science topics, the programme offers two largely unique opportunities for specialisation: the data science computing environment and infrastructure, and data science in natural sciences, especially physics.

Programme Structure

You should be able to complete the MSc Programme in Data Science of 120 credits (ECTS) in two years of full-time study. The programme consists of:
-Common core studies of basic data science courses.
-Several modules on specific topics within data science algorithms, data science infrastructures and statistical data science, and on data science tools.
-Seminars and colloquia.
-Courses on academic skills and tools.
-Possibly an internship in a research group or company.
-Studies in an application domain.
-Master’s thesis (30 credits).

Career Prospects

Industry and science are flooded with data and are struggling to make sense of it. There is urgent demand for individuals trained to analyse data, including massive and heterogeneous data. For this reason, the opportunities are expected to grow dramatically. The interdisciplinary Data Science MSc programme will train you to work in data-intensive areas of industry and science, with the skills and knowledge needed to construct solutions to complex data analysis problems.

If you are focusing on the core areas of data science, you will typically find employment as a researcher or consultant, sometimes after taking a PhD in Computer Science or Statistics to deepen your knowledge of the field and research methods. If your focus is on the use of data science for specific applications, you will typically find work in industry or in other fields of science such as physics, digital humanities, biology or medicine.

Internationalization

The Data Science MSc is an international programme, with students from around the world and an international research environment. All of the departments taking part in the programme are internationally recognised for their research and a significant fraction of the teaching and research staff come from abroad.

The departments participate in international student exchange programmes and offer you the chance to include international experience as part of your degree. Data Science itself is an international field, so once you graduate you can apply for jobs in any country.

In the programme, all courses are in English. Although the Helsinki area is quite cosmopolitan and English is widely spoken, you can also take courses to learn Finnish at the University of Helsinki Language Centre. The Language Centre also offers an extensive programme of foreign language courses for those interested in learning other languages.

Research Focus

The MSc programme in Data Science is offered jointly by three departments and two research institutes. Their research covers a wide spectrum of the many aspects of data science. At a very general level, the focal areas are:
-Machine learning and data mining
-Distributed computation and computational infrastructures
-Statistical modelling and analysis
-Studies in the programme are tightly connected to research carried out in the participating departments and institutes.

Read less
Computer science has a brilliant future! You could help to create new network solutions, build the future digital society, develop secure digital services, or be involved in a ground-breaking international software project. Read more
Computer science has a brilliant future! You could help to create new network solutions, build the future digital society, develop secure digital services, or be involved in a ground-breaking international software project. Perhaps you will develop algorithms for utilising genome data in medicine or optimise bus routes using positioning data. Do you wonder about all the things that can be automated? Or would you like to dig deeper and become a researcher?

In the Master’s programme in computer science you can become an expert in a wide range of fields. You will have access to the focus areas of research in computer science at the University of Helsinki: algorithms, distributed or networked systems, and software engineering. You will gain lasting professional skills for specialist, design, or managerial posts in the corporate world, or for research and doctoral education, since the Master’s programme in computer science gives you the aptitude for both independent working and multidisciplinary teamwork.

This education will give you:
-The ability to advance your knowledge in the different areas of computer science.
-The skill to seek, assess, and analyse scientific information in your own area of expertise, and apply the methods of the field in an ethical and sustainable way.
-The ability to act as expert in the field, and to develop the practices and methods of your field in cooperation with specialists from other fields.
-Oral and written communication skills in an international work environment.

The quality teaching within the computer science programme at the University of Helsinki has been highlighted repeatedly in national and international teaching assessments. The student-centred, in-depth learning gives you a solid basis for life-long learning. Studying at the leading research unit for computer science in Finland offers you constant interaction with current research and insight into the development patterns in the field.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

In future, we will increasingly be using intelligent tools, consisting of networked hardware, software, services, and data. They will work based on intelligent, learning algorithms, data streams carried by communication protocols, and global infrastructures.

Within the Algorithms sub-programme, you will study effective algorithms and their application within other disciplines and in corporate life. Future IT systems will contain more and more intelligent components, the function of which will be based on complex mathematical models created automatically with the aid of machine-learning methods. The problems to be solved are computationally challenging, and the ever increasing amounts of data will create their own challenges when it comes to the efficiency of the algorithms needed.

The Networking and services sub-programme educates you to become an expert and strategic leader in the design and management of new global infrastructures. The infrastructures include Internet technologies in fixed networks and mobile environments, as well as the information and service networks built on top of them. Focus areas include the theory, data security, and trust within distributed systems, interactive systems, and the adaptability of services in a changing environment.

The Software systems sub-programme introduces you to the design and implementation of advanced software. The development of a shared software framework or platform for several software products is very demanding both technically and from the development project viewpoint. Developing such software requires technical skills, but also team- and project work, quality assurance, and communication. Within this sub-programme, you can specialise in software engineering, software technology, or information management, and study the current research questions in these areas in depth.

Selection of the Major

The sub-programmes in the Master’s programme for computer science are:
-Algorithms
-Networking and services
-Software systems

You can select any of these programmes according to your preferences at the beginning of your studies. The sub-programme determines which courses you should take.

Programme Structure

The Master’s programme comprises 120 credits, which can be completed in two years, in accordance with an approved personal study plan. The degree includes:
-80 credits of advanced courses, including shared courses within the programme, courses within the programme which support the thesis topic, the Master’s thesis (Pro gradu), 30 credits.
-40 credits of other courses from your own or other programmes. The other courses can include a work-orientation period.

Career Prospects

The employment outlook within the field is excellent. Masters of computer science find varied positions within the ICT field, both as employees and entrepreneurs. The nature of the education is also geared towards giving you an aptitude for managerial posts. All the sub-programmes provide the qualifications to find employment in a wide variety of jobs.

Software-system graduates often start their careers as software developers and designers, while network graduates often start with software at the infrastructure level (such as data communications, computation, or data entry). The skills learned in the algorithms sub-programme enable you to work on challenging tasks in various fields.

As a graduate you can find employment within small or large corporations as well as organisations in the private, public, or third sector. Due to the global nature of the field, you can find employment anywhere in the world. Taking modules from other education programmes will help you apply your computer science skills in other areas. Many jobs are based on these combinations.

Thanks to its strong scientific basis, the degree is also an excellent springboard to a doctoral programme.

Internationalization

There is a very international atmosphere within the programme, as nearly a third of the students come from abroad, and the advanced courses are instructed by international researchers.

In addition, the University of Helsinki and the Faculty of Science offer you many opportunities for international activities:
-Instruction in English within other education programmes.
-International tasks within the students’ organisations or union.
-Language courses at the Language Centre of the University of Helsinki.

You can also get information and counselling about independent international experience, such as:
-Student exchange in one of the exchange locations of the faculty or university.
-Traineeships abroad.

Computer science at the University of Helsinki is a popular exchange location, especially from Germany. Some 5-10 students come annually; exchange students have come from 14 countries in recent years. The students in the department have taken exchange periods in 16 countries in the past few years.

Research Focus

There are several multidisciplinary research projects under way at the Faculty of Science, which are being carried out in cooperation with the research institutes on the science campus and with other faculties, universities, and corporations. The role of computer science within these projects is to develop the basic methods of the discipline in strategic areas and to collaborate in depth with other disciplines.

The sub-programmes within the Master’s programme cover a considerable part of the strategic focus areas of computer science research at the University of Helsinki: algorithms, data analysis and machine learning, networking and services, software systems, bioinformatics, and data science.

Computer science is part of three Finnish Academy centres of excellence: for computational inference, inversion problems, and cancer genetics. These units represent the collaboration between computer science and other disciplines.

Computer science has coordinated the long-lived Algodan centre of excellence, which has been the basis for many current research groups.

Read less
Computer Science is one of the drivers of technological progress in all economic and social spheres. Those graduating with an M.Sc. Read more

About Computer Science

Computer Science is one of the drivers of technological progress in all economic and social spheres. Those graduating with an M.Sc. in Computer Science are specialists in at least one field of computer science who have wide-ranging science-based methodological expertise.
Graduates are able to define, autonomously and comprehensively, computer science problems and their applications, structure them and build abstract models. Moreover, they are able to define and implement solutions that are at the state of the art of technology and science.

Features

– A broad, international and relevant selection of courses
– As a student, you will work on cutting-edge research projects
– Individual guidance in small learning groups
– Excellent enterprise relations maintained by the chairs and institutes
– Numerous partnerships with universities throughout the world, including a double degree programme with the Institut national des sciences appliquées de Lyon (INSA)

Syllabus

The programme offers the following five focus modules:
1) Algorithms and Mathematical Modelling
2) Programming and Software Systems
3) Information and Communication Systems
4) Intelligent Technical Systems
5) IT Security and Reliability
1) Algorithms and Mathematical Modelling: This module teaches you about determinstic and stochastic algorithms, their implementation, evaluation and optimisation. You will acquire advanced knowledge of computer-based mathematical methods – particularly in the areas of algorithmic algebra and computational stochastics – as well as developing an in-depth expertise in mathematical modelling and complexity analysis of discrete and continuous problems.
2) Programming and Software Systems: This module imparts modern methods for constructing large-scale software systems, as well as creating and using software authoring, analysis and optimisation tools. In this module you will consolidate your knowledge of the various programming paradigms and languages, the structure of language processing systems, and learn to deal with parallelism in program procedures.
3) Information and Communication Systems: In this module you will study the interactions of the classic computer science areas of information systems and computer networks. This focus area represents an answer to the problem of increasing volume and complexity of worldwide information distribution and networks, and for the growing requirements on quality and performance of computer communication. Additionally, you will learn to transfer database results to multimedia data.
4) Intelligent Technical Systems: In this module you are acquainted with digital image and signal processing, embedded systems and applications of intelligent technical systems in industrial and assistance systems, which are necessary for production automation and process control, traffic control, medical and building technology. You will learn to develop complex applications using computer systems and deal with topics such as image reconstruction, camera calibration, sensor data fusion and optical measurement technology.
5) IT Security and Reliability: This module group is concerned with security and reliability of IT systems, e.g. in hardware circuitry and communication protocols, as well as complex, networked application systems. To ensure the secure operation of these systems you will learn design methodology, secure architectures and technical implementation of the underlying components.

Language requirements

Unless English is your native language or the language of your secondary or undergraduate education, you should provide an English language certificate at level B2 CEFR, e.g. TOEFL with a minimum score of 567 PBT, 87 iBT or ITP 543 (silver); IELTS starting from 5.5; or an equivalent language certificate.

To facilitate daily life in Germany, it would be beneficial for you to have German language skills at level A1 CEFR (beginner’s level). If you do not have any German skills when starting out on the programme, you will complete a compulsory beginner’s German course during your first year of study.

Read less
This award winning programme was designed in partnership with academics and employers to meet the specific requirements of industry. Read more
This award winning programme was designed in partnership with academics and employers to meet the specific requirements of industry. It equips graduates with essential knowledge and skills in the fields of operations, quality, and innovation management.

The programme aims to enhance graduates’ technical and management contribution in various enterprises including manufacturing, financial services, health services, government, and many more. It invites participants from many disciplines: it is suitable for Engineering, Science, Commerce, and Arts graduates who wish to pursue a career in a high-tech environment. This conversion course aspect is of significant interest to students who may wish to change direction from their course of undergraduate study and pursue a new career path that offers them sound employment prospects in a growth area.

The Masters of Applied Science (Enterprise Systems) programme is highly regarded by employers and there has always been a strong demand for our graduates. Graduates of this programme have secured roles in engineering, management and IT in companies such as Accenture, Apple, Boston Scientific, Medtronic, Ingersoll Rand, Pepsi Co. Kerry Group, IBM, Ericsson, Elan and Hewlett Packard.

Key features of the programme include:
• An ethos of innovation
• Engaging teaching methods
• Customised learning programme
• Multidisciplinary approach
• Extensive career opportunities.

Content

You can choose from the following courses. Technology Innovation & Entrepreneurship; Project Management; Applied Innovation; Operations Management; Operations Strategy; Logistics and Transportation; Operations Research; Lean Systems; Quality Systems; Human Reliability; Systems Reliability; Ergonomics; Safety and Risk Management; Regulatory Affairs; Decision Systems & Business Analytics; Information Systems Strategy & Planning.

You will also prepare an industrial based research thesis on a topic to be agreed with an academic supervisor. We will provide some company specific case studies (and industrial mentors) in Med Tech, High Tech and Services organisations.

What some of our employers say

Martin Conroy | Senior Director Medtronic

The Enterprise systems programme at NUI Galway focuses on providing the necessary knowledge to be excellent systems thinkers. Graduates have the ability to understand people; process as well as technology related issues in an organisation. The programme encourages candidates to analyse problems using scientific methods and to generate innovative and effective solutions to these problems. Furthermore graduates are given real skills such as the ability to work in a team and communicate well. Such skills are essential to fast moving high tech companies like ours.

Alan Phelan | CEO Nucleus VP Group

We have engaged and recruited graduates and found them to be great problem solvers and critical thinkers. Their background in lean systems has been very applicable to a number of our companies where they have helped to implement sound systems and processes which have allowed our subsidiaries to scale rapidly.

What some of our graduates say

Paul Gleeson | Accenture

The programme is well delivered as there is a nice balance between practical and classroom based learning. I found the lecturers to be some of the most helpful and engaging people I have come across during my studies as they take a hand on approach to getting students involved in class discussions and debates. All in all, the programme is an excellent foundation for finding future employment opportunities due to the high level of personal and professional development you will obtain. It helped open up numerous career opportunities for me so it is a programme that I would highly recommend.

Sean Hehir | Marvao Medical

With a broad subject choice the Masters of Applied Science at NUI Galway allowed me to tailor the course to focus on the areas of interest to me which also complemented my science degree. Through team-oriented projects I developed better inter-personal skills and grew exponentially both professionally and personally. With a flexible course structure and forward thinking/innovative faculty the degree encourages and inspires entrepreneurship and innovation. The course is very relevant to current industrial practices as I found I had a working knowledge of the medical device industry from day one in my current job.

Paul McCormack | Allergan

I undertook the Masters of Applied Science in NUI Galway with the aim of acquiring new skills and knowledge to aid in my future career progression. The course was challenging and required high standards throughout. While striving to meet these standards I believe I have greatly improved my knowledge of business systems and gained valuable new skills. I believe the lessons learnt during the course will facilitate my personal and professional development into the future.

Wenjing Tang | Ernst and Young

The Master of Applied Science (Enterprise systems) programme offers a variety of multidisciplinary modules, which was a great conversion for me from the pure technical background. The essential knowledge and skills I gained from the course help me to work in different roles, either as a software developer in a technology company or an IT consultant in a financial service company. The programme is a great foundation to pursue wider career path.

Read less
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Data Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Data Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

MSc in Data Science aims to equip students with a solid grounding in data science concepts and technologies for extracting information and constructing knowledge from data. Students of the MSc Data Science will study the computational principles, methods, and systems for a variety of real world applications that require mathematical foundations, programming skills, critical thinking, and ingenuity. Development of research skills will be an essential element of the Data Science programme so that students can bring a critical perspective to current data science discipline and apply this to future developments in a rapidly changing technological environment.

Key Features of the MSc Data Science

The MSc Data Science programme focuses on three core technical themes: data mining, machine learning, and visualisation. Data mining is fundamental to data science and the students will learn how to mine both structured data and unstructured data. Students will gain practical data mining experience and will gain a systematic understanding of the fundamental concepts of analysing complex and heterogeneous data. They will be able to manipulate large heterogeneous datasets, from storage to processing, be able to extract information from large datasets, gain experience of data mining algorithms and techniques, and be able to apply them in real world applications. Machine learning has proven to be an effective and exciting technology for data and it is of high value when it comes to employment. Students of the Data Science programme will learn the fundamentals of both conventional and state-of-the-art machine learning techniques, be able to apply the methods and techniques to synthesise solutions using machine learning, and will have the necessary practical skills to apply their understanding to big data problems. We will train students to explore a variety visualisation concepts and techniques for data analysis. Students will be able to apply important concepts in data visualisation, information visualisation, and visual analytics to support data process and knowledge discovery. The students of the Data Science programme also learn important mathematical concepts and methods required by a data scientist. A specifically designed module that is accessible to students with different background will cover the basics of algebra, optimisation techniques, statistics, and so on. More advanced mathematical concepts are integrated in individual modules where necessary.

The MSc Data Science programme delivers the practical components using a number of programming languages and software packages, such as Hadoop, Python, Matlab, C++, OpenGL, OpenCV, and Spark. Students will also be exposed to a range of closely related subject areas, including pattern recognition, high performance computing, GPU processing, computer vision, human computer interaction, and software validation and verification. The delivery of both core and optional modules leverage on the research strength and capacity in the department. The modules are delivered by lecturers who are actively engaged in world leading researches in this field. Students of the Data Science programme will benefit from state-of-the-art materials and contents, and will work on individual degree projects that can be research-led or application driven.

Modules

Modules for the MSc Data Science programme include:

- Visual Analytics
- Data Science Research Methods and Seminars
- Big Data and Data Mining
- Big Data and Machine Learning
- Mathematical Skills for Data Scientists
- Data Visualization
- Human Computer Interaction
- High Performance Computing in C/C++
- Graphics Processor Programming
- Computer Vision and Pattern Recognition
- Modelling and Verification Techniques
- Operating Systems and Architectures

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Career Destinations

- Data Analyst
- Data mining Developer
- Machine Learning Developer
- Visual Analytics Developer
- Visualisation Developer
- Visual Computing Software Developer
- Database Developer
- Data Science Researcher
- Computer Vision Developer
- Medical Computing Developer
- Informatics Developer
- Software Engineer

Read less
The accredited Master of Science program in Computer Science is a two-year program that has been designed for international and German graduate students. Read more
The accredited Master of Science program in Computer Science is a two-year program that has been designed for international and German graduate students. The curriculum is very flexible. Students can compile their individual study plans based on their background and interests. It is also a very practical program. In addition to lectures and tutorials, students will complete two seminars, one or two projects and the master thesis.

In the beginning students will choose one or two key courses. Key courses are courses which introduce the students to the research areas represented at the Department of Computer Science. The following key courses are offered:

• Algorithm Theory
• Pattern Recognition
• Databases and Information Systems
• Software Engineering
• Artificial Intelligence
• Computer Architecture

After that, students can specialize in one of the following three areas:

• Cyber-Physical Systems
• Information Systems
• Cognitive Technical Systems

Here are some examples of subjects offered in the three specialization areas:

Cyber-Physical Systems:

• Cyber-Physical Systems – Discrete Models
• Cyber-Physical Systems – Hybrid Control
• Real Time Operation Systems and Reliability
• Verification of Embedded Systems
• Test and Reliability
• Decision Procedures
• Software Design, Modeling and Analysis in UML
• Formal Methods for Java
• Concurrency: Theory and Practice
• Compiler Construction
• Distributed Systems
• Constraint Satisfaction Problems
• Modal Logic
• Peer-to-Peer Networks
• Program Analysis
• Model Driven Engineering

Information Systems:

• Information Retrieval Data Models and Query Languages
• Peer-to-Peer Networks
• Distributed Storage
• Software Design, Modeling and Analysis in UML
• Security in Large-Scale Distributed Enterprises
• Machine Learning
• Efficient Route Planning
• Bioinformatics I
• Bioinformatics II
• Game Theory
• Knowledge Representation
• Distributed Systems

Cognitive Technical Systems:

• Computer Vision I
• Computer Vision II
• Statistical Pattern Recognition
• Mobile Robotics II
• Simulation in Computer Graphics
• Advanced Computer Graphics
• AI Planning
• Game Theory
• Knowledge Representation
• Constraint Satisfaction Problems
• Modal Logic
• Reinforcement Learning
• Machine Learning
• Mobile Robotics I

We believe that it is important for computer science students to get a basic knowledge in a field in which they might work after graduation. Therefore, our students have the opportunity to complete several courses and/or a project in one of the following application areas:

• Bioinformatics
• Educational Sciences
• Geosciences
• Cognitive Sciences
• Mathematics
• Medicine
• Meteorology
• Microsystems Engineering
• Physics
• Political Sciences
• Psychology
• Sociology
• Economics

In the last semester, students work on their master’s thesis. They are expected to tackle an actual research question in close cooperation with a professor and his/her staff.

Read less
Information drives businesses. Without it, they cease to function. Whether for day-to-day operations or strategic decision-making, there is an imperative to record, manage and use information. Read more
Information drives businesses. Without it, they cease to function. Whether for day-to-day operations or strategic decision-making, there is an imperative to record, manage and use information.

The Master of Business Information Systems (MBIS) prepares you for careers in systems design, planning and management, as well as knowledge and information management. You gain the expertise to design solutions to business information problems, and to offer strategic guidance to organisations that will enhance their management and governance.

As an MBIS graduate, you may find work as a business analyst, systems analyst, consultant, project leader, IT manager, information management specialist, archivist or librarian.

The MBIS caters to students from a variety of backgrounds. If you do not have previous training in IT, the course includes preparatory units that will give you the IT knowledge needed for the remainder of the course. However, if you already have a degree in IT, you can accelerate your study with an exemption from these preparatory units, or perhaps study further elective units in areas of your choice.

The course gives you an opportunity to explore a wide range of areas, from enterprise systems, information systems design, and business intelligence to IT strategy and project management.

If your interests lie in information and knowledge management, you can pursue a specialisation in Archives and Recordkeeping or Librarianship and Information Science, accredited by professional organisations.

In your final semester, you may take part in an Industry Experience program, working in a small team with industry mentors to develop entrepreneurial IT solutions. Or you may undertake a minor-thesis research project, investigating cutting-edge problems in BIS under the supervision of internationally recognised researchers.

High-achieving students who complete the research component may progress to further research study.

The MBIS is accredited with the Australian Computer Society (ACS).

Visit the website http://www.study.monash/courses/find-a-course/2016/business-information-systems-c6003?domestic=true

Overview

The course has a general form and also provides students with the option to specialise in archives and recordkeeping, and library and information science. Students may study the general form, complete either specialisation or combine both specialisations. The specialisations are not available to Malaysia, on-campus students.

Career opportunities

The highly flexible course structure opens up a variety of career opportunities. Graduates of the program will be expected to play leading professional roles in the field locally and overseas.

Please select a specialisation for more details:

Archives and recordkeeping

Records managers and archivists ensure that vital records of social and organisational activity are created, managed and made available to business for accountability, corporate memory, enterprise knowledge and cultural purposes. Work settings include most major private and public sector organisations, and archival institutions. Knowledge managers are concerned with developing strategies and processes for managing organisational knowledge and knowledge flows to achieve organisational goals, enhance performance and add value. A particular concern is developing an environment conducive to the creation, sharing and application of organisational knowledge, and systems that support these processes.

Business information systems studies

The general form of the course gives students the skills and knowledge to solve organisational information problems. The course caters for students who would like to be business analysts, information systems consultants and IT managers. Students will learn about information technology principles, systems analysis and design, enterprise architecture and systems, IT management and governance and project management. Students can select from a range of business information systems units to focus their studies in several areas of interest including business intelligence, user experience design and business process modelling.

Library and information science

Librarians and information specialists manage information and provide information services to clients in a wide range of contexts. They are concerned with analysing information needs, solving information problems, evaluating information sources, organising information, synthesising information into targeted information products, and training clients in the use of information products, services and systems. They work for commercial, government and community sector organisations, for information consultancies and as independent information brokers.

Course Structure

The course is structured in three parts, A, B and C. All students complete Part B (core studies). Depending upon prior qualifications, you may receive credit for Part A (foundation studies) or Part C (advanced studies) or a combination of the two.

Note that if you are eligible for credit for prior studies you may elect not to receive the credit.

PART A. Foundations for advanced business information systems
These units provide an introduction to information systems and business concepts, including system design and analysis as applied in professional practice. You will learn basic software programming and development concepts and database technology.

These units are intended for students whose previous qualification is not in a cognate field.

PART B. Core Master's study
These studies draw on best practices within business information systems to gain critical understanding of the theories and practice relating to information systems and business process design, IT strategy, IT governance, IT management and related issues. Your study will focus on project management as well as a choice of several areas of enterprise IT and information management practice.

PART C. Advanced practice
The focus of these studies is professional or scholarly work in the broad realm of business information systems.

You have two options.

The first is a minor thesis research program, consisting of a research project and a research methods training unit. Students wishing to use this Masters course as a pathway to a higher degree by research should take this first option.

The second option is a program of coursework involving advanced study and an Industry experience studio project.

Students completing the combined specialisation Archives and Recordkeeping/Library and Information Science complete the industry experience program.

Students admitted to the course, who have a recognised honours degree in a discipline cognate to information systems, will receive credit for Part C, however, should they wish to complete a research project as part of the course they should consult with the course coordinator.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/information-technology

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/business-information-systems-c6003?domestic=true#making-the-application

Read less
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MSc in Computer Science course is for you if you are a graduate from one of a wide range of disciplines and are looking to change direction or because of the needs of your chosen career, require a solid foundation in Computer Science.

As the use of computers and computer based systems continues to grow in all aspects of life, at home and at work, it is apparent that there will be for years to come a need for many people who can combine a knowledge of Computer Science, the discipline that underlies Information Technology, and degree level knowledge in a wide variety of other disciplines.

Over the duration of the MSc Computer Science course you will study a variety of modules taught by academic staff that are part of internationally renowned research groups. The course is also regularly updated to ensure that it keeps pace with the rapid developments in Computer Science.

Key Features of Computer Science MSc

• We are top in the UK for career prospects*
• We are 3rd in the UK for teaching quality**
• 5th in the UK overall*
• 7th in the UK for student satisfaction with 98% [National Student Survey 2016]
• 7th in the UK overall and Top in Wales*
• High employability prospects - we are 8th in the UK for graduate prospects*
• 92% in graduate employment or further study six months after leaving University [HESA data 2014/15]
• UK TOP 20 for Research Excellence [Research Excellence Framework 2014]
• Our Project Fair allows students to present their work to local industry
• Strong links with industry
• £31m Computational Foundry for computer and mathematical sciences will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)

*Guardian University Guide 2017
**Times & Sunday Times University Guide 2016

Modules of Computer Science MSc

Modules for the MSc in Computer Science include Computer Science Project Research Methods but please visit our course page for more information.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Graduates of Computer Science were in professional level work or study [DLHE 14/15].

Student Profile

“I chose the MSc Computer Science as a conversion from my previous War and Society degree, primarily employment opportunities. The course was by no means easy for me coming from an arts background, and the first few weeks I felt a little over my head, but thanks to the truly stimulating content from the syllabus and the high quality of the teaching within the department I soon caught up and began to thrive on the course. My project revolved around a comparative study of the Haskell Web-Framework Yesod and ASP.NET. During the completion of this I picked up many of the skills that I now use on an everyday basis in my role at Kinspeed (A Sheffield based Software House). Since starting work I have been able to apply many of the skills I obtained during my time at Swansea and have no doubt that choosing to study the MSc Computer Science at Swansea was one of the better decisions of my life.”

Chris Swires

Research

The results of the Research Excellence Framework (REF) 2014 show that Swansea Computer Science ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).

Read less
This programme delivers a thorough grounding in current technologies and trends, offering comprehensive training in the fundamentals of the subject. Read more
This programme delivers a thorough grounding in current technologies and trends, offering comprehensive training in the fundamentals of the subject.

It combines high-quality education with rigorous intellectual challenges, enabling you to understand the principles of knowledge management, decision-making and design in process systems and business-information technologies.

PROGRAMME OVERVIEW

The MSc Information and Process Systems Engineering programme is aimed at graduates of traditional engineering, science and related disciplines.

Graduates from non-IT or related disciplines tend to be ill-prepared for the information and knowledge-related challenges and demands of today’s business environments.

We offer a wide selection of modules spanning process engineering, information systems, business and management. All taught modules are delivered by qualified experts in the topics and academic staff, assisted by specialist external lecturers.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year. Part-time students must study at least two taught technical modules per academic year. The programme consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Information Security Management
-Optimisation and Decision-Making
-Process Modelling and Simulation
-Technology, Business and Research Seminars
-Database Systems
-Knowledge-Based Systems and Artificial Intelligence
-Process and Energy Integration
-Process Systems Design
-Supply Chain Management
-Biomass Processing Technology
-Process Safety and Operation Integrity
-Process and Energy Integration
-Transition to a Low Carbon Economy
-Dissertation

FACILITIES, EQUIPMENT AND ACADEMIC SUPPORT

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

An extensive library is available for individual study. It stocks more than 85,000 printed books and e-books, and more than 1,400 (1,100 online) journal titles, all in the broad area of engineering. The library support can be extended further through inter-library loans.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects.

In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications, as well as modelling of process systems.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, on-going research. In the past, several graduates have carried on their MSc research to a PhD programme.

RESEARCH

Process integration and systems analysis for sustainability of resources and energy efficiency are carried out within our well-established Centre for Process and Information Systems Engineering (PRISE).

CAREER PROSPECTS

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision support systems alongside their main technical and/or scientific expertise.

Graduates of these programmes will be well prepared to help technology-intensive organisations make important decisions in respect of vast amounts of information, by adopting, combining, implementing and executing the right technologies.

EDUCATIONAL AIMS OF THE PROGRAMME

The primary aims are achieved through a balanced, multi-disciplinary curriculum with a core of information systems engineering modules and decision-making and process systems engineering modules as well as a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme.

The programme draws on the stimulus of recent research activities in the Faculty of Engineering and Physical Sciences. The programme provides the students with the basis for developing their own approach to learning and personal development.

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-The sources, technologies, systems, performance, and applications in information and process engineering
-Approaches to the assessment of information and process technologies
-Decision making in complex systems
-Optimisation and operations research
-Technical systems modelling
-Databases and data protection
-Representation of design processes
-Systematic approaches to observing organisational data security processes
-Understanding research issues
-Literature studies and research planning
-Experimental planning
-Communication of research outcomes
-Design of decision-support systems
-Development of databases, ontologies and agent-based architectures
-Information technology and security
-Process modelling and simulation

Intellectual / cognitive skills
-Select, define and focus upon an issue at an appropriate level
-Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
-Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills
-Assess the available information and process and their interaction
-Design and select appropriate collection and storage, and optimise and evaluate system design
-Apply generic systems engineering methods such as conceptual design and optimization to facilitate the assessment and development of information, information security and process technologies and systems

Key / transferable skills
-Preparation and delivery of communication and presentation
-Report and essay writing
-Use of general and professional computing tools
-Collaborative working with team members
-Organizing and planning of work
-Research into new areas, particularly in the aspect of literature review and skills acquisition

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This award is offered within the Postgraduate Scheme in Health Technology, which aims to provide professionals in Medical Imaging, Radiotherapy, Medical Laboratory Science, Health Technology, as well as others interested in health technology, with an opportunity to develop advanced levels of knowledge and skills. Read more

Programme Aims

This award is offered within the Postgraduate Scheme in Health Technology, which aims to provide professionals in Medical Imaging, Radiotherapy, Medical Laboratory Science, Health Technology, as well as others interested in health technology, with an opportunity to develop advanced levels of knowledge and skills.

A. Advancement in Knowledge and Skill
‌•To develop specialists in their respective professional disciplines to enhance their career paths;
‌•To broaden students' exposure to health science and technology to enable them to cope with the ever-changing demands of work; and
‌•To provide a laboratory environment for testing problems encountered at work.

Students develop intellectually, professionally and personally while advancing their knowledge and skills in Medical Laboratory Science. The specific aims of this award are:
‌•To broaden and deepen students' knowledge and expertise in Medical Laboratory Science;
‌•To introduce students to advances in selected areas of diagnostic laboratory techniques;
‌•‌To develop in students an integrative and collaborative team approach to the investigation of common diseases;
‌•To foster an understanding of the management concepts that are relevant to clinical laboratories; and
‌•To develop students' skills in communication, critical analysis and problem solving.

B. Professional Development
‌•To develop students' ability in critical analysis and evaluation in their professional practices;
‌•To cultivate within healthcare professionals the qualities and attributes that are expected of them;
‌•To acquire a higher level of awareness and reflection within the profession and the healthcare industry to improve the quality of healthcare services; and
‌•To develop students' ability to assume a managerial level of practice.

C. Evidence-based Practice
‌•To equip students with the necessary research skills to enable them to perform evidence-based practice in the delivery of healthcare service.

D. Personal Development
‌•To provide channels for practising professionals to continuously develop themselves while at work; and
‌•To allow graduates to develop themselves further after graduation.

Programme Characteristics

Our laboratories are well-equipped to support students in their studies, research and dissertations. Our specialised equipment includes a flow cytometer, cell culture facilities, basic and advanced instruments for molecular biology research (including thermal cyclers, DNA sequencers, real-time PCR systems and an automatic mutation detection system), microplate systems for ELISA work, HPLC, FPLC, tissue processors, automatic cell analysers, a preparative ultracentrifuge and an automated biochemical analyser.

This programme is accredited by the Institute of Biomedical Science (UK), and graduates are eligible to apply for Membership of the Institute.

Programme Structure

The Postgraduate Scheme in Health Technology consists of the following awards:
‌•MSc in Medical Imaging and Radiation Science
‌•MSc in Medical Laboratory Science

A range of subjects that are specific to the Medical Laboratory Science profession, and a variety of subjects of common interest and value to all healthcare professionals, are offered. In general, each subject requires attendance on one evening per week over a 13-week semester.

Award Requirements

Students must complete 1 Compulsory Subject (Research Methods & Biostatistics), 4 Core Specialism Specific Subjects, 2 Elective Subjects (from any subjects within the Scheme) and a research-based Dissertation. They are encouraged to select a dissertation topic that is relevant to their professional and personal interests.

Students who have successfully completed 30 credits, but who have taken fewer than the required 4 Core Specialism Specific Subjects, will be awarded a generic MSc in Health Technology without a specialism award.

Students who have successfully completed 18 credits, but who decide not to continue with their course of MSc study, may request to be awarded a Postgraduate Diploma (PgD) as follows:
‌•PgD in a specialism if 1 Compulsory Subject, 4 Core Subjects and 1 Elective Subject are successfully completed; or
‌•PgD in Health Technology (Generic) if 1 Compulsory Subject and any other 5 Subjects within the Scheme are successfully completed.

Core Areas of Study

The following is a list of the Core Medical Laboratory Science Subjects. Some subjects are offered only in alternate years.

•Integrated Medical Laboratory Science
‌•Advanced Topics in Health Technology
‌•Clinical Applications of Molecular Diagnostics in Healthcare
‌•Clinical Chemistry
‌•Epidemiology
‌•Haematology & Transfusion Science
‌•Histopathology & Cytology
‌•I‌mmunology
‌•Medical Microbiology
‌•Molecular Technology in the Clinical Laboratory
‌•Workshops on Advanced Molecular Diagnostic Technology

Having selected the requisite number of subjects from the Core list, students can choose the remaining Core Subjects or other subjects available in this Scheme as Elective Subjects.

The two awards within the Scheme share a similar programme structure, and students may take subjects across disciplines. For subjects offered within the Scheme by the other discipline of study, please refer to the information on the MSc in Medical Imaging and Radiation Science.

English Language Requirements

If you are not a native speaker of English, and your Bachelor's degree or equivalent qualification is awarded by institutions where the medium of instruction is not English, you are expected to fulfil the University’s minimum English language requirement for admission purpose. Please refer to the "Admission Requirements" http://www51.polyu.edu.hk/eprospectus/tpg/admissions-requirements section for details.

Additional Document Required
Transcript / Certificate

Other Information
Suitable candidates may be invited to attend interviews.

How to Apply

For latest admission info, please visit [email protected] http://www51.polyu.edu.hk/eprospectus/tpg and eAdmission http://www.polyu.edu.hk/admission

Enquiries

For further information, please contact:
Telephone: (852) 3400 8653
Fax: (852) 2362 4365
E-mail:

For more details of the programme, please visit [email protected] http://www51.polyu.edu.hk/eprospectus/tpg/2016/55005-mmf-mmp website.

Read less
Our Computer Science MPhil and PhD programme gives you an opportunity to make a unique contribution to computer science research. Read more
Our Computer Science MPhil and PhD programme gives you an opportunity to make a unique contribution to computer science research. Your research will be supported by an experienced computer scientist within a research group and with the support of a team of advisers.

Research supervision is available under our six research areas, reflecting our strengths, capabilities and critical mass.

Advanced Model-Based Engineering and Reasoning (AMBER)

The AMBER group aims to equip systems and software engineering practitioners with effective methods and tools for developing the most demanding computer systems. We do this by means of models with well-founded semantics. Such model-based engineering can help to detect optimal, or defective, designs long before commitment is made to implementations on real hardware.

Digital Interaction Group (DIG)

The Digital Interaction Group (DIG) is the leading academic research centre for human-computer interaction (HCI) and ubiquitous computing (Ubicomp) research outside of the USA. The group conducts research across a wide range of fundamental topics in HCI and Ubicomp, including:
-Interaction design methods, eg experience-centred and participatory design methods
-Interaction techniques and technologies
-Mobile and social computing
-Wearable computing
-Media computing
-Context-aware interaction
-Computational behaviour analysis

Applied research is conducted in partnership with the DIG’s many collaborators in domains including technology-enhanced learning, digital health, creative industries and sustainability. The group also hosts Newcastle University's cross-disciplinary EPSRC Centre for Doctoral Training in Digital Civics, which focusses on the use of digital technologies for innovation and delivery of community driven services. Each year the Centre awards 11 fully-funded four-year doctoral training studentships to Home/EU students.

Interdisciplinary Computing and Complex BioSystems (ICOS)

ICOS carries out research at the interface of computing science and complex biological systems. We seek to create the next generation of algorithms that provide innovative solutions to problems arising in natural or synthetic systems. We do this by leveraging our interdisciplinary expertise in machine intelligence, complex systems and computational biology and pursue collaborative activities with relevant stakeholders.

Scalable Computing

The Scalable Systems Group creates the enabling technology we need to deliver tomorrow's large-scale services. This includes work on:
-Scalable cloud computing
-Big data analytics
-Distributed algorithms
-Stochastic modelling
-Performance analysis
-Data provenance
-Concurrency
-Real-time simulation
-Video game technologies
-Green computing

Secure and Resilient Systems

The Secure and Resilient Systems group investigates fundamental concepts, development techniques, models, architectures and mechanisms that directly contribute to creating dependable and secure information systems, networks and infrastructures. We aim to target real-world challenges to the dependability and security of the next generation information systems, cyber-physical systems and critical infrastructures.

Teaching Innovation Group

The Teaching Innovation Group focusses on encouraging, fostering and pursuing innovation in teaching computing science. Through this group, your research will focus on pedagogy and you will apply your research to maximising the impact of innovative teaching practices, programmes and curricula in the School. Examples of innovation work within the group include:
-Teacher training and the national Computing at School initiative
-Outreach activities including visits to schools and hosting visits by schools
-Participation in national fora for teaching innovation
-Market research for new degree programmes
-Review of existing degree programmes
-Developing employability skills
-Maintaining links with industry
-Establishing teaching requirements for the move to Science Central

Research Excellence

Our research excellence in the School of Computing Science has been widely recognised through awards of large research grants. Recent examples include:
-Engineering and Physical Sciences Research Council (EPSRC), Centre for Doctoral Training in Cloud Computing for Big Data Doctoral Training Centre
-Engineering and Physical Sciences Research Council (EPSRC), Centre for Doctoral Training in Digital Civics
-Wellcome Trust and Engineering and Physical Sciences Research Council (EPSRC) Research Grant: a £10m project to look at novel treatment for epilepsy, confirming our track record in Systems Neuroscience and Neuroinformatics.

Accreditation

The School of Computing Science at Newcastle University is an accredited and a recognised Partner in the Network of Teaching Excellence in Computer Science.

Read less
All those involved in the wider defence enterprise, across government, military, industry, science and technology have changing needs and aspirations for defence. Read more

Course Description

All those involved in the wider defence enterprise, across government, military, industry, science and technology have changing needs and aspirations for defence. Agility, resilience, continuity of supply, skills and innovation now complement the continuing need to balance cost, time and performance in everything we do.

The Centre for Systems Engineering has been at the forefront of developing systems engineering education for the past fifteen years, blending the breadth of systems thinking with the rigour of systems engineering and closely integrating this within acquisition management.

You will develop knowledge and skills in understanding the wider context of defence capability and guiding the development of operational, support and enabling business solutions which both deliver cost effective outcomes and contribute to the attributes of defence as a whole.

Course overview

The course is modular and you will accumulate credits for each module you successfully complete:

- Full modules are each worth 10 credits.
- The Advanced Systems Engineering Workshop is worth 20 credits.

The course structure has been devised to give the maximum amount of flexibility for you to create your own learning pathway whilst ensuring that the fundamental principles of systems engineering are compulsory.

- The PgCert comprises 60 credits of which 40 are for compulsory modules and 20 are for elective modules.
- The PgDip comprises 120 credits of which 70 are for compulsory modules and 50 are for elective modules.
- The MSc comprises 200 credits of which 70 are for compulsory modules, 50 credits are for elective modules and 80 are for the thesis associated with the Individual Project.

Full-time MSc - one year, Part-time MSc - up to three years, Full-time PgCert - one year, Part-time PgCert - two years, Full-time PgDip - one year, Part-time PgDip - two years

(For MOD status students the duration may vary, subject to annual review.)

Individual Project

The Individual Project provides you with an opportunity to undertake an in-depth study of an area of particular interest to you or your sponsor which is written up as a thesis or dissertation. The study might include, for example:

- Application of Systems Engineering tools and techniques to a real world problem.
- Analysis of underpinning Systems Engineering theory and practice.
- Development of new or tailored Systems Engineering processes.

Modules

The Compulsory and Elective Modules below are as for the MSc and PgDip. For PgCert students Capability Context and Advanced Systems Engineering Workshop are Elective.

Core -

Advanced Systems Engineering Workshop (ASEW)
Applied Systems Thinking
Capability Context
Lifecycle Processes Introduction
Lifecycle Processes Advanced
Systems Approach to Engineering

Elective -

Availability, Reliability, Maintainability and Support Strategy (ARMSS)
Decision Analysis, Modelling and Support (DAMS)
Human Centric Systems Engineering (HCSE)
Introduction to Defence Capability
Model Based Systems Engineering
Simulation and Synthetic Environments
System of Systems Engineering
Thesis Selection Workshop
- Systems Engineering and Software
- Systems Engineering Workshop
- Networked and Distributed Simulation Exercise

Assessment

Coursework, written examinations, oral examinations, portfolio and, for the MSc only, an individual thesis.

Funding

Funding is available to MoD students. For more information contact MoD Enquiries by calling 01793 314485 (Option 4) or Mil: 96161 4485.

For more information on funding for non-MoD students please contact

Career opportunities

Takes you on to impressive career prospects across a range of roles commensurate with your experience. This includes membership of multidisciplinary teams in acquisition, supply or research organisations. This could be in both general systems engineering roles or as a focal point for specific skills such as availability, reliability and maintenance (ARM), human factors, requirements, architecture test and evaluation, etc. It is also applicable to key roles in MoD acquisition such as Project Team leader, capability manager and requirements manager.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/Systems-Engineering-for-Defence-Capability

Read less
This course is designed in collaboration with transport industry partners to equip you to meet the needs of the rail and road industries. Read more
This course is designed in collaboration with transport industry partners to equip you to meet the needs of the rail and road industries. There is an increased demand for advancements in electrical, electronic, control and communication systems for transport, with a particular focus on themes like higher efficiency and sustainability, safety and driving assistance, position and traffic control for smart transport planning.

Modern electrical, electronic, control and communication systems for intelligent transport require today engineers with a combination of skills and solutions from cross-disciplinary abilities spanning electrical, electronic, control and communications. In this context, the overall aim of this Conversion Masters is to provide you with an enriching learning experience, and to enhance your knowledge and skill-base in the area of modern road vehicle and rail transport systems design.

This conversion course is intended both for engineers in current practice and for fresh honours graduates to facilitate their professional development, mobility and employability.

Course content

This course aims to enhance your knowledge and skills in the area of intelligent and efficient transport systems design. You will develop advanced practical skills that will help you determine system requirements, select and deploy suitable design processes and use the latest specialist tool chains to test and/or prototype a device or algorithm. The programme will help you acquire the cross-disciplinary skills and abilities that today are vital to be able to implement effective solutions for modern electrical, electronic and communication systems applied to intelligent transport. The broad range of disciplines covered by the course will enable you to enter a career that requires a cross-disciplinary approach with a practical skillset.

The subject areas covered within the course offer you an excellent launch pad which will enable you to enter into this ever expanding, fast growing and dominant area within the electrical engineering sector, and particularly in the area of intelligent and efficient transport systems. Furthermore, the course will provide the foundations required to re-focus existing knowledge and enter the world of multi-disciplined jobs.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-Electric Motors and Control for Transport Systems
-Power Conversion and Drives for Transport Systems
-Project
-Sensor, Data Acquisition and Communication for Transport Systems

Associated careers

The course provides the foundations required to re-focus existing knowledge and enter the world of multi-disciplined jobs. Graduates can expect to find employment, for example, as Electrical systems design engineers; Control systems engineers, Transport systems engineers; Plant control engineers; Electronic systems design engineer; Communication systems design engineers; Sensor systems engineers; Computer systems engineer. Examples of typical industries of employment can be: Transport; Automobile; Aviation; Electrical systems; Electronic systems; Assembly line manufacturers; Robotics and home help; Toy; Communication systems; Logistics and distribution; Consumer industry; Life-style industry; Security and surveillance; Petro-chemical.

Professional recognition

This course will be seeking accreditation from the IET.

Read less
In the absence of subsidy, the EU poultry sector relies on highly efficient production systems, with successful companies often using sophisticated technologies. Read more
In the absence of subsidy, the EU poultry sector relies on highly efficient production systems, with successful companies often using sophisticated technologies. This is reflected in the integrated structure of most poultry companies and the number of graduates and postgraduates employed by them.

Many companies have responded to the pressure on financial margins by setting up operations world wide. There continues to be a good demand for suitably trained graduate and postgraduate level entrants into the sector.

The skills and knowledge delivered by the Applied Poultry Science programme are highly relevant to companies using intensive methods of production and those responding to retailer demand for extensive systems. This enables both new entrants and existing employees wishing to build on their expertise and aspirations, to enhance their career opportunities within the poultry sector.

The Applied Poultry Science course is offered on a part-time distance learning basis.

It is designed to suit those in continuing employment or with other commitments. Participants come from a wide range of backgrounds, including nutritionists, breeders, vets and other poultry sector workers, all of whom wish to develop their career and businesses.

Specific course objectives are to provide graduates with:
- A sound knowledge of the underlying science of poultry production.
- A good understanding of the issues underpinning poultry production systems.
- A wide range of specialist skills appropriate to poultry science professionals.
- The ability to critically evaluate developments in poultry science, including nutritional, genetic,
- Welfare, quality assurance and environmental issues.
- The ability to produce professional level recommendations and reports.
- Research skills.

The MSc Applied Poultry Science degree is awarded by the University of Glasgow.

Course Content

The programme is a mix of technical, scientific, environmental and management skills development modules. It is taught largely by staff from the SRUC Avian Science Research Centre who are involved in poultry research studies on a daily basis and who aim to provide up to the minute, highly relevant knowledge transfer into the Applied Poultry Science programme.

The Avian Science Research Centre has a full range of facilities for those wishing to study or carry out research with SRUC ranging from a hatchery to a processing plant and a good range of different poultry production systems.

Poultry Production Systems

This module studies the poultry meat and poultry egg industry in terms of its structure and sectors including intensive and non-intensive systems. It includes global export and import markets for the major poultry meat and egg products and evaluates their quality assurance systems. It will examine the requirements for optimal performance within the various systems and investigate factors affecting performance.

Poultry Nutrition and Growth

Poultry nutrition and growth examines the principles of poultry nutrition, particularly the importance of different nutrients in terms of growth and production and how they are processed in the avian body. It includes a study of the major anatomical and physiological systems in poultry and describes the role of nutrition in poultry health in different production environments, with particular regard to nutrient deficiencies. The partitioning of energy and nutrients into the growth and development of the whole body and different components of the body will also be examined, as will methods of describing different growth patterns.

Incubation and Hatchery Practice

This module develops knowledge and an understanding of the science and technology that underpins the production of day-old stock. Students study embryo-genesis in poultry and how this is exploited by the poultry sector to maximise the production of viable hatchlings. At the conclusion of the module students will be able to critically evaluate poultry hatchery practices, where appropriate, from an international prospective.

Housing and the Environment

Large scale poultry production seeks to manage the birds’ environment to optimise the competing demands of welfare, productivity, quality and environmental protection in an economically viable way. Recognising the impacts of different housing alternatives, the relationship to environmental emissions, and the sustainability of systems are therefore essential skills for those engaged in the industry that this module addresses. The approach will initially be one of directed study in order that the full range of issues are covered; but later in the module, students will be asked to do a case study on a real poultry enterprise with the coursework being centred on the completion of the IPPC application form for an intensive poultry enterprise. Even though some students may not be familiar with large scale poultry enterprises, the structured approach required to carry out the IPPC assessment process, and the wealth of information available in the relevant technical document will give a sound basis for understanding the range of housing and environmental issues involved.

Poultry Behaviour and Welfare

This module explains the general principles of poultry behaviour and welfare and studies sensory perception, motivation and learning in poultry. It evaluates the behavioural and physiological indicators that are used to assess welfare in given circumstances. It examines current practice with respect to welfare and current welfare legislation.

Poultry Health and Hygiene

A range of different infectious and non-infectious diseases will be covered in depth, mostly affecting chickens and turkeys but with specific sessions on diseases of game birds and diseases of pigeons. The importance of notifiable diseases such as Newcastle Disease and highly pathogenic avian influenza will be emphasised, and the significance of other potentially zoonotic organisms such as Salmonella, Campylobacter, Chlamydophila Psittaci and West Nile Virus will be discussed.

Advanced Poultry Nutrition

Advanced poultry nutrition builds on the poultry nutrition and growth module and examines theoretical and practical poultry nutrition in greater depth. It links current nutritional theories, (eg. amino acid balance and requirements or the anti-nutrient and toxic properties of feedstuffs) with methods of alleviation. These are integrated with classical nutrition-balance studies and proximate analyses, exposing students to all aspects of a nutritional study. It also involves a detailed study of nutrition with respect to bird growth and health and the environmental constraints imposed on the system.

Experimental Design

This module aims to develop statistical skills to aid the technical, scientific and management decisions. It explores a range of statistical processes from the collection of data and its interpretation to the production of information charts, diagrams and tables and the analysis of data looking at differences, significance and trends.

Management Skills

With the labour market becoming more competitive there is a real need for today's graduates to develop skills beyond academic knowledge in order to thrive. This module introduces various management skills which include communication, teamworking, leadership, time management, decision-making, empowerment and motivation. It aims therefore to improve the student’s knowledge and ability to manage. A range of practical methods and approaches will be used to enable the students to better organise and motivate themselves and others.

The study weekends and short study tour are an integral part of teaching delivery and students are strongly recommended to attend these if they are to succeed in this course.

Read less

Show 10 15 30 per page



Cookie Policy    X