• University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Nottingham Trent University Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
University of Leeds Featured Masters Courses
"systems" AND "neuroscien…×
0 miles

Masters Degrees (Systems Neuroscience)

We have 97 Masters Degrees (Systems Neuroscience)

  • "systems" AND "neuroscience" ×
  • clear all
Showing 1 to 15 of 97
Order by 
Understanding the relationship between brain, cognition and behaviour is one of the biggest challenges the scientific community is currently working on. Read more

Understanding the relationship between brain, cognition and behaviour is one of the biggest challenges the scientific community is currently working on. Computational cognitive neuroscience is a young and exciting discipline that tackles these long-standing research questions by integrating computer modelling with experimental research.

This Masters programme will foster a new generation of scientists who will be trained in both neuro-computational modelling as well as cognitive neuroscience. Its core topics include:

  • Creating computational/mathematical models of neurons, circuits and cognitive functions
  • The fundamentals of cognitive neuroscience (brain mechanisms and structures underlying cognition and behaviour)
  • Advanced data analysis and neuroimaging techniques

The programme is suitable for students from a variety of disciplines including - but not limited to - psychology, computing, neuroscience, engineering, biology, maths and physics. Students with no prior programming experience are welcome.

Graduates of this Masters will acquire a unique set of complementary skills that will make them extremely competitive in securing research or analyst positions in both academia and industry.

Why study this course?

  • This cutting-edge programme is at the forefront of a new, rapidly emerging field of research.
  • It is multidisciplinary, conveying the theory and practice of computational and cognitive neurosciences.
  • Graduates of this programme will gain a competitive edge in the job market over graduates of other, standard programmes in related fields.

Modules & structure

You will study the following core modules:

You will also undertake a 60 credit research project investigating an aspect of cognitive neuroscience using computational modelling, advanced data analysis methods, or a combination of these techniques. Culminating in a 10,000 word dissertation, the project will be carried out by combining the computational, experimental and data analysis skills that students will acquire over Term 1 and 2.

Option modules

You will choose one option from the following two modules:

  • Data Programming
  • Introduction to MATLAB

You will also choose one of the following 4 options:

Please note that due to staff research commitments not all of these modules may be available every year.

Skills & careers

Graduates of this programme will have the following assets in their portfolio:

  • A sound understanding of brain mechanisms and structures underlying cognition and behaviour
  • Knowledge or experience of experimental cognitive neuroscience methods
  • Skills in statistical data analysis
  • Knowledge of theory and practice of biologically constrained neural models of human brain function
  • Computer programming skills.

Such a cross-disciplinary profile will make graduates of this Masters particularly competitive on the job market, especially when applying for positions that require complementary expertise and skills.

The course prepares students for employment in areas including cognitive neuroscience, IT consultancy, cognitive robotics, as well as large enterprises developing software systems inspired by human cognition (e.g., web-search engines, systems for natural language processing, information extraction, data mining and human-computer interaction).

The course is also ideal preparation for further study at PhD level.



Read less
Why study at Roehampton. One of the longest running postgraduate programmes in clinical neuroscience in the UK. It will give you an insight into recent advances in neurosciences of relevance to neurological and neuropsychiatric diseases. Read more

Why study at Roehampton

  • One of the longest running postgraduate programmes in clinical neuroscience in the UK.
  • It will give you an insight into recent advances in neurosciences of relevance to neurological and neuropsychiatric diseases.
  • The programme is recognised by the Federation of Neuroscience Societies (FENS) and included in the Network of European Neuroscience Schools (NENS), which is the highest accolade in European neuroscience teaching.
  • Roehampton is ranked best modern university in London (Sunday Times Good University Guide 2015)
  • We are the most research-intensive modern university in the UK (Research Excellence Framework 2014)

Course summary

This cutting-edge programme offers an exciting opportunity to study modern neuroscience with a focus on clinical implications. You will gain a strong foundation in understanding the mechanisms and treatments of neurological and neuropsychiatric diseases.

This course is designed for students from a range of backgrounds, who are interested in pursuing a career in neuroscience. You will develop a detailed understanding of modern theory and concepts relating to brain research and neuroscience and the application of these principles in the treatment of brain disorders. This course places emphasis on the clinical relevance of recent developments in neuroscience.

The development of your research methods skills is an integral part of the course. You will further your understanding of applied neuroscience with a research project which will develop your data handling and analysis skills, use of applied theory and statistics. 

You will join the Health Sciences Research Centre whose academics are currently investigating a range of topical issues such as the addictive nature of new psychoactive substances, effects of stress on the brain regulatory systems and the mechanisms of brain cell death and repair using neural stem cells. You will be welcome to attend research seminars and discussions on topical developments in neuroscience and health sciences, led by experts. 

MSc Clinical Neuroscience is recognised by the Federation of Neuroscience Societies (FENS) and included in the Network of European Neuroscience Schools (NENS), which is the highest accolade in European neuroscience teaching.

Content

In this postgraduate programme, you will develop an integrated overview of contemporary neuroscience as a rapidly developing discipline with multiple links with molecular biology, genetics, pharmacology and medical sciences. 

You will be introduced to a diverse range of topics and will have the chance to focus on areas that interest you. Examples of topics that you might cover include: clinical relevance of recent developments in neuroscience, brain imaging techniques and their applications in neurology and psychiatry, neurobiological mechanisms of human brain disorders, effects of nutrition and addiction on brain function, and research methods.

You will discuss ethical issues in clinical neuroscience and develop your ability to critically evaluate current developments in clinical brain research, which are relevant to healthcare. 

This course can accommodate students from a range of backgrounds including new graduates from life sciences or psychology as well as health professionals who hold non-traditional qualifications. The programme options of PG Diploma or PG Certificate can be useful to health professionals who wish to refresh update theory knowledge without the commitment of conducting a research project (MSc). It is also suitable for applicants from the NHS, for example neuro-nurses or therapists.

Modules

Here are examples of the modules:

  • The Brain from a Clinical Perspective
  • Biomedical Practical on Brain Function
  • Brain, Diet, and Addiction
  • The Immune Brain

Career options

Health professionals, research careers in academia, NHS or private sector including the pharmaceutical industry. Alternatively, graduates may opt for further academic study at PhD level.

Email Now



Read less
A flexible and interdisciplinary programme, which challenges you to use your specific knowledge to unravel the workings of the human brain. Read more

A flexible and interdisciplinary programme, which challenges you to use your specific knowledge to unravel the workings of the human brain.

Our brain contains many ingenious networks of millions of interconnected neurons. Together, they have a storage capacity and flexibility that far exceed modern supercomputers, or any artificial intelligent system. The Master’s specialisation in Neuroscience aims at unravelling the neuro-biological and neuro-computational mechanisms of this fascinating, complex system. We study the full spectrum from molecule to man, and from experiment to advanced theory and models.

The brain, as part of the human body, may at a first glance seem the exclusive domain of Biology. However, as the communication between neurons involves neurotransmitters and electrical ionic currents, understanding these mechanisms calls for knowledge of Chemistry and Physics. Moreover, studying mechanisms of coding and encoding of neural signals, requires advanced concepts from Mathematics and Informatics. By working together, our students learn to view complex issues from all these different sides.

Choose your own angle

Neuroscience at the Science Faculty ranges from biology to physics and mathematics, and will thus appeal to students from different Master’s programmes. The programme can be readily adapted to your individual academic background – whether that is in the field of Biology, Mathematics, Physics or Computing Science. Apart from fundamental knowledge of the brain, the Neuroscience specialisation also provides you with a general background in the principles of complex systems, and of intelligent behaviour of living and artificial systems.

Why study Neuroscience at Radboud University?

- Radboud University is the only university in the Netherlands that covers the complete research field of Neuroscience, from cognition to behaviour, and from sub-cellular processes, to single cell analysis and big data.

- The specialisation is closely connected to the world-renowned Donders Institute for Brain, Cognition and Behaviour (DI). You will get the chance to work with DI researchers during your internship, and build up a high profile network for your future career.

- The courses have a strong focus on research: they will cover the latest developments in brain research and technology, and train you the essential academic skills.

- You will work with students and researchers from different backgrounds in the natural sciences and become acquainted with a wide variety of research methods and scientific approaches.

Change perspective

The brain, as part of the human body, may at a first glance seem the exclusive domain of Biology. However, as the communication between neurons involves neurotransmitters and electrical ionic currents, understanding these mechanisms calls for knowledge of Chemistry and Physics. Moreover, studying mechanisms of coding and encoding of neural signals, requires advanced concepts from Mathematics and Informatics. By working together, our students learn to view complex issues from all these different sides.

Career prospects

Master’s specialisation in Neuroscience

The Master’s specialisation in Neuroscience gives you the chance to work at the Donders Institute for Brain, Cognition and Behaviour, and build up your own network of international renowned scientists who are working on the human brain: an excellent preparation for a future career in science. Neuroscience will also provide you with general skills that are required for any other job you aspire:

- the ability to structure complex problems

- excellent social skills for working in a multidisciplinary team

- extensive experience in presentations

- academic writing skills

Our approach to this field

At Radboud University, all branches of Neuroscience are accounted for, and strongly intertwined through the Donders Institute for Brain, Cognition and Behaviour (DI). This unique combination of expertises is a real advantage for Neuroscience students: it gives you absolute freedom to develop your knowledge in your field of interest and a high profile network for your future career.

- Science faculty

In this specialisation at the Science faculty, you will use your background in the natural sciences to unravel neurobiological processes. When completed, you will receive a Master’s degree in Medical Biology, Molecular Life Sciences, Physics & Astronomy or Science. For highly talented students it is possible to obtain a second Master’s degree at the selective Research Master’s in Cognitive Neuroscience of the DI, which has a more cognitive approach. This extra Master’s degree takes one additional year (60 EC) to complete.

- Themes

The Master’s specialisation in Neuroscience focuses on three of the four research themes of the Donders Institute for Brain, Cognition and Behaviour:

- Perception, Action and Control

Focus: Studying sensorimotor mechanisms, their cognitive and social components, their clinical implications, and their relevance for robotics.

Research: Researchers use theoretical analysis, psychophysical and behavioural studies, neurophysiological techniques, neuroimaging, clinical and pharmacological interventions, developmental and genetic approaches.

- Plasticity and Memory

Focus: The development and decay of the healthy and the maladaptive brain.

Research: Researchers in this field study the mechanistic underpinnings and behavioural consequences of long-term changes in neural structure and function. Genetic, molecular and cellular methods, animal models, as well as human neuroimaging and cognitive neuropsychology are used.

- Brain Networks and Neuronal Communication

Focus: Complex neural networks, ranging from the very smallest – communication between individual neurons – to the largest: communication between different brain areas and the outside world.

Research: The research groups combine the development of new techniques for measurements of connectivity and activation, with the experimental application of these techniques in studies of cognition in humans, non-human primates and rodents. Computational modelling is an important component.

- Custom approach

The specialisation programme depends on the Master’s programme that you will follow. In this way, it will perfectly fit to your current knowledge and practical skills. However, as all neuroscience research topics are interdisciplinary, you will become acquainted with other disciplines as well. This will help you to develop a common ground that is necessary to communicate in a multi-faceted (research) team.

See the website http://www.ru.nl/masters/medicalbiology/neuro

Radboud University Master's Open Day 10 March 2018



Read less
The Sensory Systems, Technologies & Therapies (SenSyT) MRes programme was devised in consultation with industry partners developing treatments for sensory disorders. Read more

The Sensory Systems, Technologies & Therapies (SenSyT) MRes programme was devised in consultation with industry partners developing treatments for sensory disorders. It is an innovative biomedical and translational sciences programme intended for students pursuing a career in academia or in the pharmaceutical and biotechnology industrial sectors.

About this degree

Through a major year-long research project and supplemental coursework, students will learn to conduct cutting-edge research aimed at understanding fundamental principles of sensory systems function and/or developing novel technologies and therapies for sensory disorders, such as deafness and blindness.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), one optional module (15 credits) and a research project with dissertation/report (120 credits).

Core modules

  • Introduction to Sensory Systems, Technologies & Therapies
  • Research in Practice
  • Translating Science into the Clinic

Optional modules

One optional module can be chosen from a group of appropriate modules currently offered at the UCL Ear Institute or at the UCL Institute of Ophthalmology, to provide more in-depth knowledge and understanding of particular issues in sensory systems research. Examples include:

  • Anatomy and Physiology of the Audiovestibular System
  • Auditory Biophysics and Electroacoustics
  • Ocular Cell Biology, Genetics and Epidemiology of Ocular Disease
  • Ocular Development in Health and Disease
  • Visual Neuroscience

Students may choose an alternative optional module from across UCL with prior approval of the Programme Director, provided that it aligns with the topic of the extended research project.

Dissertation/report

All students undertake a year-long independent research project which culminates in a dissertation of 15,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, practicals, seminars, workshops, journal clubs, and an extended research project. Assessment is through coursework, oral presentations, essays, practicals, unseen written examinations, and research dissertation.

Further information on modules and degree structure is available on the department website: Sensory Systems, Technologies and Therapies MRes

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The Sensory Systems, Technologies and Therapies MRes was devised in consultation not only with academic scientists pursuing cutting-edge research in sensory systems and therapies, but also with representatives from industries interested in developing new treatments for sensory disorders. The programme has therefore been designed with the intention of ensuring that successful graduates will be attractive candidates either for further PhD research or for jobs in the commercial sector (for example, in companies developing or marketing novel treatments for visual impairment or hearing loss).

Employability

Students will graduate with interdisciplinary training in sensory systems science; a good understanding of the clinical and commercial context for development of sensory systems technologies and therapies; and substantive experience with a cutting-edge research project.

Why study this degree at UCL?

UCL is among the world's top universities for biomedical research, with particular strength in neuroscience, sensory systems research, and translational studies. Students taking the Sensory Systems, Technologies and Therapies MRes will be based at the UCL Ear Institute, an internationally recognised centre for auditory research, and will also take core modules at the UCL Institute of Ophthalmology, one of the world's major centres for vision research.

MRes students will have access to potential research supervisors from across all UCL, and will benefit from interaction with students on the Sensory Systems, Technologies and Therapies MPhil/PhD. The Sensory Systems, Technologies and Therapies MRes will therefore provide students with outstanding opportunities to learn from and network with scientists, engineers, clinicians and students throughout the UCL community.



Read less
Learn how to create artificial information systems that mimic biological systems as well as how to use theoretical insights from AI to better understand cognitive processing in humans. Read more

Learn how to create artificial information systems that mimic biological systems as well as how to use theoretical insights from AI to better understand cognitive processing in humans.

The human brain is a hugely complex machine that is able to perform tasks that are vastly beyond current capabilities of artificial systems. Understanding the brain has always been a source of inspiration for developing artificially intelligent agents and has led to some of the defining moments in the history of AI. At the same time, theoretical insights from artificial intelligence provide new ways to understand and probe neural information processing in biological systems.

On the one hand, the Master’s in Computation in Neural and Artificial Systems addresses how models based on neural information processing can be used to develop artificial systems, probing of human information processing in closed-loop online settings, as well as the development of new machine learning techniques to better understand human brain function.

On the other hand it addresses various ways of modelling and understanding cognitive processing in humans. These range from abstract mathematical models of learning that are derived from Bayesian statistics, complexity theory and optimal control theory to neural information processing systems such as neural networks that simulate particular cognitive functions in a biologically inspired manner. We also look at new groundbreaking areas in the field of AI, like brain computer interfacing and deep learning.

See the website http://www.ru.nl/masters/ai/computation

Why study Computation in Neural and Artificial Systems at Radboud University?

- Our cognitive focus leads to a highly interdisciplinary AI programme where students gain skills and knowledge from a number of different areas such as mathematics, computer science, psychology and neuroscience combined with a core foundation of artificial intelligence.

- Together with the world-renowned Donders Institute, the Behavioural Science Institute and various other leading research centres in Nijmegen, we train our students to become excellent researchers in AI.

- Master’s students are free to use the state-of-the-art facilities available on campus, like equipment for brain imaging as EEG, fMRI and MEG.

- Exceptional students who choose this specialisation have the opportunity to study for a double degree in Artificial Intelligence together with the specialisation in Brain Network and Neuronal Communication. This will take three instead of two years.

- This specialisation offers plenty of room to create a programme that meets your own academic and professional interests.

- To help you decide on a research topic there is a semi-annual Thesis Fair where academics and companies present possible project ideas. Often there are more project proposals than students to accept them, giving you ample choice. We are also open to any of you own ideas for research.

- Our AI students are a close-knit group; they have their own room in which they often get together to interact, debate and develop their ideas. Every student also receives personal guidance and supervision from a member of our expert staff.

Our research in this field

The programme is closely related to the research carried out in the internationally renowned Donders Institute for Brain, Cognition and Behaviour. This institute has several unique facilities for brain imaging using EEG, fMRI and MEG. You will be able to use these facilities for developing new experimental research techniques, as well as for developing new machine learning algorithms to analyse the brain data and integrate them with brain-computer interfacing systems.

Some examples of possible thesis subjects:

- Deep learning

Recent breakthroughs in AI have led to the development of artificial neural networks that achieve human level performance in object recognition. This has led companies like Google and Facebook to invest a lot of research in this technology. Within the AI department you can do research on this topic. This can range from developing deep neural networks to map and decode thoughts from human brain activity to the development of speech recognition systems or neural networks that can play arcade games.

- Brain Computer Interfacing

Brain computer interfaces are systems which decode a users mental state online in real-time for the purpose of communication or control. An effective BCI requires both neuro-scientific insight (which mental states should we decode?) and technical expertise (which measurement systems and decoding algorithms should be used?). A project could be to develop new mental tasks that induce stronger/easier to decode signals, such as using broadband stimuli. Another project could be to develop new decoding methods better able to tease a weak signal from the background noise, such as adaptive-beam forming. Results for both would assessed by performing empirical studies with target users in one of the EEG/MEG/fMRI labs available in the institute.

Career prospects

Our Artificial Intelligence graduates have excellent job prospects and are often offered a job before they have actually graduated. Many of our graduates go on to do a PhD either at a major research institute or university with an AI department. Other graduates work for companies interested in cognitive design and research. Examples of companies looking for AI experts with this specialisation: Google, Facebook, IBM, Philips and the Brain Foundation. Some students have even gone on to start their own companies.

Job positions

Examples of jobs that a graduate of the specialisation in Computation in Neural and Artificial Systems could get:

- PhD researcher on bio-inspired computing

- PhD researcher on neural decoding

- PhD researcher on neural information processing

- Machine learning expert in a software company

- Company founder for brain-based computer games

- Hospital-based designer of assistive technology for patients

- Policy advisor on new developments in neurotechnology

- Software developer for analysis and online visual displays of brain activity

Internship

Half of your second year consists of an internship, giving you plenty of hands-on experience. We encourage students to do this internship abroad, although this is not mandatory. We do have connections with companies abroad, for example in China, Sweden and the United States.

See the website http://www.ru.nl/masters/ai/computation

Radboud University Master's Open Day 10 March 2018



Read less
Research profile. The MSc by Research in Integrative Neuroscience is a one-year, full-time research programme covering all levels of modern neuroscience, which makes it an ideal programme to prepare you for a PhD. Read more

Research profile

The MSc by Research in Integrative Neuroscience is a one-year, full-time research programme covering all levels of modern neuroscience, which makes it an ideal programme to prepare you for a PhD.

We include molecular, cellular, systems, regenerative, cognitive, clinical and computational neuroscience. We also allow you to choose your specialty right from the start, allowing you to shape your learning around your interests and career goals.

Programme structure

You start with a taught component in the first 12 weeks, and attend ‘themed weeks’ which run in parallel with elective from which you choose your optional courses. The Elective optional courses include:

  • Developmental Neurobiology
  • Neural Circuits
  • Neurodegeneration and Regeneration

The elective courses run during the first 12 weeks on two half days per week. These will give you a deeper insight into the concepts and methodology of a specific field of interest.

For your research you can choose available projects or contact principal investigators from more than 120 groups in the Edinburgh Neuroscience community to develop your own project, which can range from psychology to nanoscience.

Examples of completed projects are:

  • Axon Initial Segment plasticity in a mouse model of Fragile X Syndrome (Peter Kind)
  • Cognitive and motor functions in neurodegenerative diseases (Thomas Bak)
  • Interactions of amyloid beta and tau in causing cognitive decline in a novel Alzheimer’s disease model (Tara Spires-Jones)
  • Role of primary cilia in the development of stem cells during development of the cerebral cortex (Thomas Theil)

Career opportunities

This programme is designed to help you in your research career. Over 90% of students on the MSc by Research in Integrative Neuroscience have positive next destinations, including PhD, research or clinical career paths.



Read less
This MSc course aims to integrate two active and rapidly developing fields, computational neuroscience and cognitive robotics, to generate innovative strategies and solutions for scientific problems and technological limitations. Read more
This MSc course aims to integrate two active and rapidly developing fields, computational neuroscience and cognitive robotics, to generate innovative strategies and solutions for scientific problems and technological limitations.

From modelling human cognition to programming robots to act in their environment, this course crosses the boundary between several disciplines, including biology, neuroscience, psychology, and computer science.

The CNCR MSc course is highly interdisciplinary encompassing psychology, cognitive science, neuroscience, computational modelling, neuroimaging, robotics, and patient rehabilitation. The Course is designed for those who are interested in applying knowledge of neural systems, brain function, and modeling to research in human cognition, perception, sensory and motor systems as well as the design of bio-inspired and biologically plausible robotic systems. It has a strong research focus with hands-on modules and practical applications. The course is aimed at both students from psychology/neuroscience with a strong quantitative background and at students from computer science and physics that want to apply their knowledge to neuroscience.

Employability

You will receive training in computational and research methods, and will gain an overview of current research in neuroscience and robotics. The programme will prepare you to go onto high quality PhD programmes, leading to work in a range of fields from advanced robotics to cognitive neuroscience.

Many of our students receive job offers before they graduate. Recent students have found employment working and training in an IT consultancy; software engineering at Google; and setting up startup companies to develop IT products inspired by human cognition.

Several of our students receive PhD offers before completing the course; one of our recent students will be studying for a PhD in computational neuroscience at University College Dublin with funding secured via a postgraduate award from the Irish Research Council. Others choose to stay at Birmingham for PhD study. The course gives you an opportunity to showcase your talent in the School of Psychology and the School of Computer Science, and to increase your chances of pursuing an academic career within the University of Birmingham.

About the School of Psychology

The School of Psychology is one of the strongest and most active psychology departments in the country. We are ranked among the top five psychology departments for research and have a reputation for excellent teaching.

With around 800 undergraduates, 250 postgraduates including 100 PhD students, and 140 research and teaching staff we are one of the largest psychology departments in the UK.

The School currently has a live research grant portfolio of £14.1m generating an annual income of around £3.8m. Of our 140 staff, 63% are core funded, and 37% are research funded.

The School hosts four specialist research centres:

- Centre for Human Brain Health
- Centre for Applied Psychology
- The Cerebra Centre for Neurodevelopmental Disorders
- Centre for Computational Neuroscience and Cognitive Robotics

Staff and students benefit from our extensive links with local hospitals and clinics, other universities, schools and nurseries, industrial companies and local and national government departments.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Research profile. The Centre for Discovery Brain Sciences (CDBS) carries out research at molecular, cellular, systems and behavioural levels to understand fundamental mechanisms and pathways relevant to brain and body function in health and disease. Read more

Research profile

The Centre for Discovery Brain Sciences (CDBS) carries out research at molecular, cellular, systems and behavioural levels to understand fundamental mechanisms and pathways relevant to brain and body function in health and disease.

CDBS investigators exploit rapid advances in the enabling technologies available from genomics, proteomics, imaging, informatics, and in-vivo analysis to understand the function of gene products at the cell, organ and whole-animal level, and to understand cognition and behaviour at the systems, circuit, cellular and molecular level.

They also exploit the most appropriate model organisms/systems to investigate the delicate balance between high biomedical relevance (for example human, mouse, rat) and high genetic power (such as C. elegans, drosophila and zebrafish).

Research encompasses the study of the central and peripheral nervous systems, at multiple levels of analysis, from the molecular and cellular levels through to cognitive neuroscience, brain imaging, and behavioural neuroscience.

MSc by Research

The MSc by Research Neuroscience is a full-time 1-year research project done under the supervision of a CDBS Researcher. This programme has no taught component and is therefore only suitable for highly motivated students with a clear idea of their research interests and goals, with significant theoretical or practical knowledge of a chosen field. An MSc by full-time research provides an excellent training in laboratory research and a strong grounding for further study at the level of PhD.

MSc by Research Neuroscience students will work full-time on their research project with the additional option of taking selected transferable skills courses. Each student will have two supervisors. After 3 months study a short presentation and report of completed and proposed work will be made to the supervisors, at which point progression from Diploma to full Masters will be considered. Students that demonstrate sufficient progress and aptitude will progress for a further 9 months full-time research after which a Dissertation will be presented and assessed for the award of MSc.

If you're interested in applying for the MSc by Research Neuroscience please see "the how to apply" section on the right.

Note that this programme is different from “MSc by Research in Integrative Neuroscience” as the latter contains taught elements – for information on that programme please visit:

Facilities

Students have access to state-of-the-art laboratories and equipment to facilitate their research objectives. These are located both within the Central area campus and at the Little France campus. Extensive collaborations exist with the wider biomedical and clinical communities helping ensure you are supported in a world-class research environment.



Read less
Overview. The MRes courses are designed to provide students with intensive laboratory-based training in research methods, supported by in-depth understanding. Read more
Overview
The MRes courses are designed to provide students with intensive laboratory-based training in research methods, supported by in-depth understanding. The aim is to prepare graduates to make contributions, as individuals and members of a team, to research-oriented activities in the biomedical industries and related service sectors, or academia. The courses are also well-suited to students wishing to upgrade a first degree, change field, or gain valuable laboratory experience before employment or a PhD. The Strathclyde Institute of Pharmacy and Biomedical Sciences represents the largest Pharmacy research group in the UK, with 55% of its staff rated as either world-leading or internationally excellent in terms of originality, significance and rigour (data: Research Assessment Exercise 2008). The University of Strathclyde has invested £30M in a world-class, pioneering centre for biomedical and pharmaceutical sciences teaching and research, opened Aug 2010. Students will find themselves in stimulating, unique environment on account of the strongly multidisciplinary nature of the Institute. Combining fundamental and applied research across the areas of bioscience and pharmacy, SIPBS builds on its record of success in drug and vaccine discovery and development. The Institute engages with industry and the health services, ensuring that its excellent fundamental research is translated into products that are of benefit to health and society. For more information on SIPBS go to http://www.strath.ac.uk/sipbs

Course outline

An MRes degree is focussed on research and students will spend 8 months undertaking a laboratory-based project.
To support their chosen research project, students choose advanced-level taught courses in a named specialisation, from the following areas:

Taught classes delivered through lectures, workshops and practical classes in four areas:
1. Transferable skills training in data mining, interpretation and presentation; experimental planning, personal effectiveness, ethics in research
2. Commercialisation and entrepreneurship
3. MRes-specific classes relevant to subject area

Biomedical Sciences

Example research projects:
1. Antileishmanial activity of extracts and compounds from Monodora myristica
2. Imaging and modelling of cancer development
3. Endothelial progenitor cell expression and differentiation
4. Targeted radiotherapy for cancer
5. The involvement of pulmonary veins in atrial fibrillation: electrical properties
6. Reducing bacterial resistance to antibiotics
7. Development of neural stem cells with increased levels of the autophagy cell survival pathway
8. Investigating the role of Sigma 54 in Pseudomonas aeruginosa virulence
9. Transcriptional network analysis of the Escherichia coli core stress response.
10. Identification of novel anti-microbial compounds targeted at biofilm formation

Drug Delivery systems

Example research projects
1. Nanoparticulate formulations of insulin and their analysis
2. Mesoporous silicas for oral delivery of cyclosporine
3. Bioprocessing of biopharmaceuticals
4. Modified and time-delayed oral solid-dose release formulations
5. Nasal formulations of poorly soluble compounds
6. Reducing bacterial resistance to antibiotics: establishing, optimising and implementing a high throughput assay to discover natural product derived inhibitors of metallo beta-lactamase.
7. Imaging of dermal formulations using Raman microscopy techniques
8. Antileishmanial activity of extracts and compounds from Monodora myristica
9. Anti-trypanosomal active triterpenoids from some African Propolis
10. Investigation into the potential therapeutic properties of marine organisms
11. Photo-triggered adhesion of mammalian cells

Drug Discovery

Projects in the areas of :
1. Drug Delivery
2. Molecular Biology
3. Pharmacology
4. Pharmaceutical Materials and Formulation
5. Toxicology

Neuroscience

Projects in the areas of:
1. Electrophysiology
2. Stem cell biology for regenerative purposes
3. Cell biology
4. Inflammation
5. In vitro culture systems
6. Functional genetics

How to Apply
Applicants should apply through the University of Strathclyde on-line application form: http://pgr.strath.ac.uk indicating "Masters by Research", and named specialisation as appropriate. Applicants are not required to submit a detailed research proposal at this stage.

Read less
This course provides specialist skills in core systems biology with a focus on the development of computational and mathematical research skills. Read more

This course provides specialist skills in core systems biology with a focus on the development of computational and mathematical research skills. It specialises in computational design, providing essential computing and engineering skills that allow you to develop software to program biological systems.

This interdisciplinary course is based in the School of Computing Science and taught jointly with the Faculty of Medical Sciences and the School of Mathematics and Statistics. The course is ideal for students aiming for careers in industry or academia. We cater for students with a range of backgrounds, including Life Sciences, Computing Science, Mathematics and Engineering.

Computational Systems Biology is focused on the study of organisms from a holistic perspective. Computational design of biological systems is essential for allowing the construction of complex and large biological systems.

We provide a unique, multidisciplinary experience essential for understanding systems biology. The course draws together the highly-rated teaching and research expertise of our Schools of Computing Science, Mathematics and Statistics, Biology, and Cell and Molecular Biosciences. The course also has strong links with Newcastle's Centre for Integrated Systems Biology of Ageing and Nutrition (CISBAN).

Our course is designed for students from both biological and computational backgrounds. Prior experience with computers or computer programming is not required. Students with mathematical, engineering or other scientific backgrounds are also welcome to apply.

The course is part of a suite of related programmes that also include:

-Bioinformatics MSc

-Synthetic Biology MSc

-Computational Neuroscience and Neuroinformatics MSc

All four programmes share core modules, creating a tight-knit cohort. This encourages collaborations on projects undertaking interdisciplinary research.

Project work

Your five month research project gives you a real opportunity to develop your knowledge and skills in depth in Systems Biology. You have the opportunity to work closely with a leading research team in the School and there are opportunities to work on industry lead projects. You will have one-to-one supervision from an experienced member of the faculty, supported with supervision from associated senior researchers and industry partners as required.

The project can be carried out:

-With a research group at Newcastle University

-With an industrial sponsor

-With a research institute

-At your place of work

Placements

Students have a unique opportunity to complete a work placement with one of our industrial partners as part of their projects.

Previous students have found placements with organisations including:

-NHS Business Services Authority

-Waterstons

-Metropolitan Police

-Accenture

-IBM

-Network Rail

-Nissan

-GSK

Accreditation

We have a policy of seeking British Computer Society (BCS) accreditation for all of our degrees, so you can be assured that you will graduate with a degree that meets the standards set out by the IT industry. Studying a BCS-accredited degree provides the foundation for professional membership of the BCS on graduation and is the first step to becoming a chartered IT professional.

The School of Computing Science at Newcastle University is an accredited and a recognised Partner in the Network of Teaching Excellence in Computer Science.

Facilities

Facilities

You will have dedicated computing facilities in the School of Computing. You will have access to the latest tools for system analysis and development. For certain projects, special facilities for networking can be set up.

You will enjoy access to specialist IT facilities to support your studies, including:

  • a dedicated virtual Linux workstation
  • a dedicated virtual Windows workstation
  • high specification computers only for postgrduates
  • over 300 PC's running Windows, 120 just for postgraduates
  • over 300 Raspberry Pi devices 
  • high-performance supercomputers
  • the latest Windows operating system and development tools
  • 27" monitors with high resolution (2560X1440) display
  • high-capacity database servers
  • motion capture facilities
  • 3D printing facilities

You will have access to a Linux based website that you can customise with PHP hosting services.

We have moved to the new £58m purpose-built Urban Sciences Building. Our new building offers fantastic new facilities for our students and academic community. The building is part of Science Central, a £350 million project bringing together:

  • academia
  • the public sector
  • communities
  • business and industry.


Read less
Trains you for further research and study. Receive training in neurobiological and psychological aspects of cognitive neuroscience. Read more
  • Trains you for further research and study
  • Receive training in neurobiological and psychological aspects of cognitive neuroscience
  • Develop analytical skills
  • Have the chance to get involved with research from the Centre for Integrative Neuroscience and Neurodynamics
  • Use facilities including brain imaging systems, and eye-tracking, psychophysiology, nutritional testing, and VR and haptic laboratories

What will you study?

Sample modules:

  • Topics in cognitive neuroscience
  • Programming in behavioural and cognitive neuroscience
  • Principles of neurobiology
  • fMRI data analysis
  • Methods in neuroscience

Please note that all modules are subject to change. Please see our modules disclaimer for more information.

What career can you have?

All of our MSc programmes are research intensive, providing essential training in analytical ability, methods awareness and critical thinking, among other fundamental transferable skills.

The MSc Cognitive Neuroscience is designed to train you for further research and study, ideally for a doctoral programme in psychology, neuroscience, clinical psychology, or a related field. Our students regularly move on to PhD positions, applied and clinical psychology posts in the NHS and private sector, as well as research-based positions in industry.



Read less
This research-based course has a taught component that is the same as an MSc. It provides a springboard into a career that involves a working knowledge of scientific research. Read more

This research-based course has a taught component that is the same as an MSc. It provides a springboard into a career that involves a working knowledge of scientific research.

The course is designed for graduates with a BSc in the life sciences or other science disciplines, and for intercalating and fully qualified MBBS or BDS students. It can be taken either as a stand-alone qualification or as an entry route onto a PhD or MD.

What you'll learn

The taught component of the course includes subject-specific content in the area of systems biology. You have the flexibility to develop your own bespoke course by selecting additional, complementary modules. You will also participate in training in general research principles, and other professional and key skills.

Subject-based modules aim to develop a new generation of creative, innovative scientists and engineers, whose expertise spans the biological and physical domains. It introduces you to systems biology approaches that enable you to understand and manipulate complex biological systems, particularly the vulnerability of such systems to stress.

Your project

Your research project comprises the major element of the course. This project will involve 24 weeks of research in an area of systems biology under the supervision of an expert academic researcher in the field.

The course allows you to experience an internationally competitive research area, predominantly in academia but also potentially in industry.

Our MRes courses

Systems Biology MRes is closely linked to a suite of MRes courses that you may also be interested in:

Faculty of Medical Sciences Graduate School

Our Medical Sciences Graduate School is dedicated to providing you with information, support and advice throughout your research degree studies. We can help and advise you on a variety of queries relating to your studies, funding or welfare.

Our Research Student Development Programme supports and complements your research whilst developing your professional skills and confidence.

You will make an on-going assessment of your own development and training needs through personal development planning (PDP) in the ePortfolio system. Our organised external events and development programme have been mapped against the Vitae Researcher Development Framework to help you identify how best to meet your training and development needs.



Read less
Robotics requires a well-developed knowledge of areas ranging from computer science and artificial intelligence, to engineering and neuroscience, in order to produce hardware which can sense and manipulate the real world. Read more
Robotics requires a well-developed knowledge of areas ranging from computer science and artificial intelligence, to engineering and neuroscience, in order to produce hardware which can sense and manipulate the real world. This field has allowed us to develop everything from satellites and submarines, to racecars and robots.

Research carried out by our team has resulted in appearance in the Robot Soccer World Cup final, an autonomous robot fish in the London Aquarium, and a self-programming computer vision system.

Our course provides a comprehensive coverage of contemporary intelligent systems, with robots serving as a major example of the technology. Thanks to the leading research being undertaken in our School, you will gain a solid understanding of the foundations of this technology, exploring areas including:
-The principles by which sensed data are converted into useful information
-The practical aspects of developing intelligent and robotic systems
-Biologically-inspired robots
-Biometrics
-Computational intelligence

Our MSc Intelligent Systems and Robotics is delivered by our team of internationally recognised researchers, with expertise spanning the entire range of intelligent systems and experience of developing robots intended for land, under water and in the air.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Our recent graduates have progressed to a variety of senior positions in industry and academia. Some of the companies and organisations where our former graduates are now employed include:
-Electronic Data Systems
-Pfizer Pharmaceuticals
-Bank of Mexico
-Visa International
-Hyperknowledge (Cambridge)
-Hellenic Air Force
-ICSS (Beijing)
-United Microelectronic Corporation (Taiwan)

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-MSc Project and Dissertation
-Computer Vision
-Group Project
-Intelligent Systems and Robotics
-Machine Learning and Data Mining
-Professional Practice and Research Methodology
-Programming Embedded Systems
-Artificial Neural Networks (optional)
-Constraint Satisfaction for Decision Making (optional)
-Creating and Growing a New Business Venture (optional)
-Digital Signal Processing (optional)
-Electronic System Design & Integration (optional)
-Evolutionary Computation and Genetic Programming (optional)
-High Level Logic Design (optional)
-Game Artificial Intelligence (optional)
-Virtual Worlds (optional)
-Natural Language Engineering

Read less
This well-established and highly competitive MSc provides students with specialist training in the basic scientific principles of modern neuroscience, and in the application of these principles to the understanding of a wide variety of neurological disorders. Read more

This well-established and highly competitive MSc provides students with specialist training in the basic scientific principles of modern neuroscience, and in the application of these principles to the understanding of a wide variety of neurological disorders. Students benefit from studying in an internationally renowned and research-intensive environment at the UCL Institute of Neurology.

About this degree

Participants gain knowledge of the clinical features and scientific basis of both common and unusual neurological disorders including a study of: genetics of CNS disorders; brain metabolism, neurotransmitters and neurodegeneration; autoimmune disease and repair mechanisms; epilepsy; nociception and pain; motor control; basal ganglia/movement disorders; hearing, balance, vision and eye-movements; cognition and dementia.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (90 credits), either a library project or two optional modules (30 credits) and a research project (60 credits).

Core modules

  • Basic neuroscience and investigation of Nervous system
  • Epilepsy, Pain, Tumours and Special Senses
  • Research Methods: Critical Appraisal and Introduction to Statistics
  • Motor Systems and Disease
  • Higher Functions of the Brain

Optional modules

Students can choose to take two 15-credit options from the list below or the 30-credit Library Project

  • Library Project
  • Clinical neuroscience of neurodegenerative diseases
  • Skeletal Muscle and Associated Diseases
  • Peripheral Nerves and Associated Diseases
  • Clinical Manifestations of Stroke
  • Treatment (HASU and Service Delivery)
  • Neurorehabilitation

Dissertation/report

All students undertake an independent research project, which culminates in a dissertation of 10,000 words.

Teaching and learning

The programme is delivered through basic science and clinical lectures, and practical and interactive workshops. Lectures are supported by audio-visual aids and supplementary materials including handouts, reading lists and references to original papers. Assessment is through unseen and multiple-choice examination, essay, library project (if applicable), dissertation and oral examination.

Placement

All students will have the opportunity to attend lectures and meetings in the National Hospital for Neurology and Neurosurgery. Some students will have the opportunity to undertake clinical research projects.

International Students will bear any costs incurred in acquiring certification equivalent to DBS in their home country.

Further information on modules and degree structure is available on the department website: Clinical Neuroscience MSc

Careers

This programme offers an established entry route into both PhD studies in the UK and internationally, and to medicine at both undergraduate and graduate level.

Recent career destinations for this degree

  • Clinical Research Assistant, NHS National Institute for Health Research
  • PhD in Clinical Medicine, University of Oxford
  • MBBS (Bachelor of Medicine, Bachelor of Surgery) Graduate Entry, University of Warwick
  • PhD in Clinical Neuroscience, UCL

Employability

Students are given the opportunity to take an original research project in a world-renowned centre of excellence. Publications routinely result from the best MSc projects.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The mission of the UCL Institute of Neurology is to carry out high-quality research, teaching and training in basic and clinical neurosciences. Together with our associated hospital, the National Hospital for Neurology and Neurosurgery, the institute promotes the translation of research that is of direct clinical relevance to improved patient care and treatment.

With its concentration of clinical and applied scientific activity the institute is a unique national resource for postgraduate training in neuroscience, and this MSc enhances the scientific skills of clinicians and provides non-clinical graduates with insight into clinical problems that will allow them to work alongside clinicians in clinical research projects.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Institute of Neurology

83% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Institute for Neuroscience has clinicians and scientists working together to understand the brain and behaviour. Read more
The Institute for Neuroscience has clinicians and scientists working together to understand the brain and behaviour. From the basic biology of neurons through to complex processes of perception and decision-making behaviour, we address how the mind, brain, and body work together and translate this knowledge into clinical applications for patient benefit.

We offer MPhil supervision in the following research areas:

Motor systems development, plasticity and function

We conduct clinical and preclinical studies of normal and abnormal development and plasticity of the motor system. We run functional studies and computer modelling of motor system activity throughout the neuraxis. We also research the development and assessment of novel therapies for motor disorders/lesions including stem cell and brain-machine interface.

Visual system development, plasticity and repair]]
We research the development and assessment of novel neuro-technological approaches to retinal dystrophy repair including brain-machine interface and stem cells. We use in vitro approaches to look at retinal development and visual system wiring.

[[Neural computation and network systems
We conduct experimental and theoretical (computational) studies aimed at understanding how neurones throughout the brain interact in localised networks to compute complex tasks. Our research looks at the role of network activity in a wide range of neurological, neurodegenerative and psychiatric disorders.

Auditory neuroscience

We conduct clinical and preclinical studies aimed at understanding the brain mechanisms involved in detection, discrimination and perception of sound. We are interested in how these mechanisms are affected in individuals with brain disorders, including dementia, autism and stroke.

Pain

Our research focuses on:
-Understanding mechanisms underlying pain, analgesia, and anaesthesia
-The development of methods to assess pain and to alleviate pain in animals and humans

Psychobiology

We conduct studies in laboratory animals, healthy volunteers and patient populations investigating the mechanisms underlying mood, anxiety and addiction disorders and their treatment. Allied research looks at normal neuropsychology, and the physiology and pharmacology of neurotransmitter and endocrine systems implicated in psychiatric disorders.

Neurotoxicology

Our research focuses on delineating the effects and understanding the mechanisms of action of established and putative neurotoxins, including environmental and endogenous chemicals, and naturally occurring toxins.

Forensic psychiatry and clinical psychology

Our research covers:
-The assessment, treatment and management of sex offender risk
-Development and assessment of cognitive models
-Cognitive behavioural therapy (CBT) treatment for bipolar disorder, psychosis, anxiety and developmental disorders
-Developmental disorders of perception and cognition

Systems and computational neuroscience

We conduct theoretical (computational) and experimental studies aimed at understanding the neuroanatomy, neuropharmacology of vision, visual attention and episodic memory.

Behaviour and evolution

Many research groups take an evolutionary and comparative approach to the study of brain and/or behaviour, comparing brain function and behaviour among such disparate groups as insects, birds and mammals, and studying the ecological and evolutionary functions of behaviour. Much of our work is at the forefront of the fields of neuroethology, behavioural ecology and comparative cognition, and has important implications for the study and practice of animal welfare.

Visual perception and human cognition

We research:
-Colour and depth perception - perception of natural scenes
-Psychophysics and attention - memory
-Word learning in children
-Body image dysfunction
-Visual social cognition and face processing
-Advertising and consumer behaviour

Pharmacy

Our new School of Pharmacy has scientists and clinicians working together on all aspects of pharmaceutical sciences and clinical pharmacy.

Read less

Show 10 15 30 per page



Cookie Policy    X