• Leeds Beckett University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of York Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
De Montfort University Featured Masters Courses
University of Birmingham Featured Masters Courses
University of Kent Featured Masters Courses
University of Sussex Featured Masters Courses
University of London International Programmes Featured Masters Courses
"systems" AND "neuroscien…×
0 miles

Masters Degrees (Systems Neuroscience)

  • "systems" AND "neuroscience" ×
  • clear all
Showing 1 to 15 of 78
Order by 
The MRes in Neuroscience is designed to provide advanced training in neuroscience research. Students conduct a year-long research project and learn relevant techniques and skills through course work. Read more
The MRes in Neuroscience is designed to provide advanced training in neuroscience research. Students conduct a year-long research project and learn relevant techniques and skills through course work. The overall aim is to give students the necessary skill set to succeed as independent research scientists.

Course information

The MRes in Neuroscience is a full-time taught postgraduate programme run by the School of Psychology and Neuroscience.

Highlights

- Intensive week-long introductory module prepares students for the course before the start of Semester 1.
- The course includes a streamlined taught component.
- Students have the opportunity to conduct a year-long project in a single laboratory.

Teaching format

The course begins with a week-long intensive module which continues during Semester 1 with a weekly seminar series. Over two semesters, students will also complete two additional Honours-level modules.

Teaching methods include lectures, seminars, practicals and guided independent study. The modules are assessed principally by written work and oral presentations.

During Semester 1 and 2, and during the summer months, students will conduct an original research project culminating in a written thesis, which forms the main component of assessed work.

Further particulars regarding curriculum development - http://www.st-andrews.ac.uk/study/pg/taught-programmes/neuroscience/#d.en.556406

Modules

The modules in this programme have varying methods of delivery and assessment. For more details of each module, including weekly contact hours, teaching methods and assessment, please see the latest module catalogue (https://portal.st-andrews.ac.uk/catalogue/) which is for the 2016–2017 academic year; some elements may be subject to change for 2017 entry.

Compulsory modules

- Research Design in Neuroscience: intensive week-long module provides an introduction to designing and carrying out neuroscience research at the postgraduate level.
- Techniques and Skills in Neuroscience Research: examines state-of-the-art neuroscience techniques through critical analysis of primary literature.

Optional modules

Students choose two optional modules (optional modules may vary from year to year; see the University’s position on curriculum development (http://www.st-andrews.ac.uk/study/pg/taught-programmes/neuroscience/#d.en.556406)). Examples of optional modules include:

- Neurodegeneration and Aging: develops a detailed understanding of molecular neuroscience at the biochemical and molecular level.
- Motoneurons: From Physiology to Pathology: provides an in-depth knowledge of key aspects of neuronal function and potential dysfunction by focusing on motoneurons.
- Behavioural Neuroscience: allows students to access current research in the area of behavioural neuroscience. Possible topics include motivation, learning and attention.
- Vision: from Neurons to Awareness: develops an advanced understanding of the psychological processes involved in visual perception.
- Neural Basis of Episodic Memory: examines how the brain enables us to remember information from our personal experience.
- Neuromodulation: explores the diverse range of neuromodulatory mechanisms and outlines their importance in information processing in the nervous system.
- Synaptic Transmission: covers recent progress in understanding the morphology and ultrastructure of synapses, neurotransmitter corelease and recycling mechanisms, retrograde signalling, synaptic plasticity, the role of glial cells and the development of neurotransmission.
- Mechanisms of Behaviour: Integrating Psychological and Neuroscience Perspectives: explores some of the many physiological and neural systems that modulate patterns of behaviour in a range of species, including humans.

Students on this course will have the opportunity to take new modules in the academic year 2017-2018. The modules listed here are indicative, and there is no guarantee they will run for 2017 entry. There is no guarantee that these modules will run for 2017 entry. Take a look at the most up-to-date modules in the module catalogue.

Research project and thesis

Students will spend one year conducting an original research project culminating in a data-based thesis of not more than 15,000 words. The thesis will describe the research results obtained from the year-long research project and must be submitted by a date specified in August.

If students choose not to complete the thesis requirement for the MRes, there is an exit award available that allows suitably qualified candidates to receive a Postgraduate Certificate. By choosing an exit award, you will finish your degree at the end of the second semester of study and receive a PG Cert instead of an MRes.

After the MRes

Research degrees:

Many of our graduates continue their education by enrolling in PhD programmes at St Andrews or elsewhere.

The School of Psychology and Neuroscience offers a Doctor of Philosophy degree. The PhD comprises three years of full-time study and the submission of an 80,000-word thesis.

The Medical Research Council (http://www.st-andrews.ac.uk/study/pg/fees-and-funding/scholarships/research-council/mrc/) and the Biotechnology and Biological Sciences Research Council (http://www.st-andrews.ac.uk/study/pg/fees-and-funding/scholarships/research-council/bbsrc/) offers studentships for PhD research in health, biological and related sciences covering up to four years of funding and, in some cases, accommodation fees.

Careers:

A large number of Psychology and Neuroscience postgraduates have gained postdoctoral and lecturing positions in universities across the world. The School provides opportunities for students to gain academic experience by being involved in tutorials, laboratory classes and through conducting independent research.

In addition to pursuing careers in academia, postgraduates within the School have gone on to pursue careers in a variety of fields including industry, education and medicine.

The Careers Centre (http://www.st-andrews.ac.uk/careers/) offers one-to-one advice to all students on a taught postgraduate course and provides resources specific for neuroscience students (https://www.st-andrews.ac.uk/careers/students/careerdecisions/usingmydegree/neuroscience/).

Contact

School of Psychology and Neuroscience
St Mary's Quad
South Street
St Andrews
KY16 9JP

Phone: +44 (0)1334 46 2157
Email:

Read less
A flexible and interdisciplinary programme, which challenges you to use your specific knowledge to unravel the workings of the human brain. Read more
A flexible and interdisciplinary programme, which challenges you to use your specific knowledge to unravel the workings of the human brain.

Our brain contains many ingenious networks of millions of interconnected neurons. Together, they have a storage capacity and flexibility that far exceed modern supercomputers, or any artificial intelligent system. The Master’s specialisation in Neuroscience aims at unravelling the neuro-biological and neuro-computational mechanisms of this fascinating, complex system. We study the full spectrum from molecule to man, and from experiment to advanced theory and models.

The brain, as part of the human body, may at a first glance seem the exclusive domain of Biology. However, as the communication between neurons involves neurotransmitters and electrical ionic currents, understanding these mechanisms calls for knowledge of Chemistry and Physics. Moreover, studying mechanisms of coding and encoding of neural signals, requires advanced concepts from Mathematics and Informatics. By working together, our students learn to view complex issues from all these different sides.

Choose your own angle

Neuroscience at the Science Faculty ranges from biology to physics and mathematics, and will thus appeal to students from different Master’s programmes. The programme can be readily adapted to your individual academic background – whether that is in the field of Biology, Mathematics, Physics or Computing Science. Apart from fundamental knowledge of the brain, the Neuroscience specialisation also provides you with a general background in the principles of complex systems, and of intelligent behaviour of living and artificial systems.

Why study Neuroscience at Radboud University?

- Radboud University is the only university in the Netherlands that covers the complete research field of Neuroscience, from cognition to behaviour, and from sub-cellular processes, to single cell analysis and big data.
- The specialisation is closely connected to the world-renowned Donders Institute for Brain, Cognition and Behaviour (DI). You will get the chance to work with DI researchers during your internship, and build up a high profile network for your future career.
- The courses have a strong focus on research: they will cover the latest developments in brain research and technology, and train you the essential academic skills.
- You will work with students and researchers from different backgrounds in the natural sciences and become acquainted with a wide variety of research methods and scientific approaches.

Change perspective

The brain, as part of the human body, may at a first glance seem the exclusive domain of Biology. However, as the communication between neurons involves neurotransmitters and electrical ionic currents, understanding these mechanisms calls for knowledge of Chemistry and Physics. Moreover, studying mechanisms of coding and encoding of neural signals, requires advanced concepts from Mathematics and Informatics. By working together, our students learn to view complex issues from all these different sides.

Career prospects

Master’s specialisation in Neuroscience
The Master’s specialisation in Neuroscience gives you the chance to work at the Donders Institute for Brain, Cognition and Behaviour, and build up your own network of international renowned scientists who are working on the human brain: an excellent preparation for a future career in science. Neuroscience will also provide you with general skills that are required for any other job you aspire:
- the ability to structure complex problems
- excellent social skills for working in a multidisciplinary team
- extensive experience in presentations
- academic writing skills

Our approach to this field

At Radboud University, all branches of Neuroscience are accounted for, and strongly intertwined through the Donders Institute for Brain, Cognition and Behaviour (DI). This unique combination of expertises is a real advantage for Neuroscience students: it gives you absolute freedom to develop your knowledge in your field of interest and a high profile network for your future career.

- Science faculty
In this specialisation at the Science faculty, you will use your background in the natural sciences to unravel neurobiological processes. When completed, you will receive a Master’s degree in Medical Biology, Molecular Life Sciences, Physics & Astronomy or Science. For highly talented students it is possible to obtain a second Master’s degree at the selective Research Master’s in Cognitive Neuroscience of the DI, which has a more cognitive approach. This extra Master’s degree takes one additional year (60 EC) to complete.

- Themes
The Master’s specialisation in Neuroscience focuses on three of the four research themes of the Donders Institute for Brain, Cognition and Behaviour:

- Perception, Action and Control
Focus: Studying sensorimotor mechanisms, their cognitive and social components, their clinical implications, and their relevance for robotics.

Research: Researchers use theoretical analysis, psychophysical and behavioural studies, neurophysiological techniques, neuroimaging, clinical and pharmacological interventions, developmental and genetic approaches.

- Plasticity and Memory
Focus: The development and decay of the healthy and the maladaptive brain.

Research: Researchers in this field study the mechanistic underpinnings and behavioural consequences of long-term changes in neural structure and function. Genetic, molecular and cellular methods, animal models, as well as human neuroimaging and cognitive neuropsychology are used.

- Brain Networks and Neuronal Communication
Focus: Complex neural networks, ranging from the very smallest – communication between individual neurons – to the largest: communication between different brain areas and the outside world.

Research: The research groups combine the development of new techniques for measurements of connectivity and activation, with the experimental application of these techniques in studies of cognition in humans, non-human primates and rodents. Computational modelling is an important component.

- Custom approach
The specialisation programme depends on the Master’s programme that you will follow. In this way, it will perfectly fit to your current knowledge and practical skills. However, as all neuroscience research topics are interdisciplinary, you will become acquainted with other disciplines as well. This will help you to develop a common ground that is necessary to communicate in a multi-faceted (research) team.

See the website http://www.ru.nl/masters/medicalbiology/neuro

Read less
Learn how to create artificial information systems that mimic biological systems as well as how to use theoretical insights from AI to better understand cognitive processing in humans. Read more
Learn how to create artificial information systems that mimic biological systems as well as how to use theoretical insights from AI to better understand cognitive processing in humans.
The human brain is a hugely complex machine that is able to perform tasks that are vastly beyond current capabilities of artificial systems. Understanding the brain has always been a source of inspiration for developing artificially intelligent agents and has led to some of the defining moments in the history of AI. At the same time, theoretical insights from artificial intelligence provide new ways to understand and probe neural information processing in biological systems.
On the one hand, the Master’s in Computation in Neural and Artificial Systems addresses how models based on neural information processing can be used to develop artificial systems, probing of human information processing in closed-loop online settings, as well as the development of new machine learning techniques to better understand human brain function.
On the other hand it addresses various ways of modelling and understanding cognitive processing in humans. These range from abstract mathematical models of learning that are derived from Bayesian statistics, complexity theory and optimal control theory to neural information processing systems such as neural networks that simulate particular cognitive functions in a biologically inspired manner. We also look at new groundbreaking areas in the field of AI, like brain computer interfacing and deep learning.

See the website http://www.ru.nl/masters/ai/computation

Why study Computation in Neural and Artificial Systems at Radboud University?
- Our cognitive focus leads to a highly interdisciplinary AI programme where students gain skills and knowledge from a number of different areas such as mathematics, computer science, psychology and neuroscience combined with a core foundation of artificial intelligence.

- Together with the world-renowned Donders Institute, the Behavioural Science Institute and various other leading research centres in Nijmegen, we train our students to become excellent researchers in AI.

- Master’s students are free to use the state-of-the-art facilities available on campus, like equipment for brain imaging as EEG, fMRI and MEG.

- Exceptional students who choose this specialisation have the opportunity to study for a double degree in Artificial Intelligence together with the specialisation in Brain Network and Neuronal Communication. This will take three instead of two years.

- This specialisation offers plenty of room to create a programme that meets your own academic and professional interests.

- To help you decide on a research topic there is a semi-annual Thesis Fair where academics and companies present possible project ideas. Often there are more project proposals than students to accept them, giving you ample choice. We are also open to any of you own ideas for research.

- Our AI students are a close-knit group; they have their own room in which they often get together to interact, debate and develop their ideas. Every student also receives personal guidance and supervision from a member of our expert staff.

Our research in this field

The programme is closely related to the research carried out in the internationally renowned Donders Institute for Brain, Cognition and Behaviour. This institute has several unique facilities for brain imaging using EEG, fMRI and MEG. You will be able to use these facilities for developing new experimental research techniques, as well as for developing new machine learning algorithms to analyse the brain data and integrate them with brain-computer interfacing systems.

Some examples of possible thesis subjects:
- Deep learning
Recent breakthroughs in AI have led to the development of artificial neural networks that achieve human level performance in object recognition. This has led companies like Google and Facebook to invest a lot of research in this technology. Within the AI department you can do research on this topic. This can range from developing deep neural networks to map and decode thoughts from human brain activity to the development of speech recognition systems or neural networks that can play arcade games.

- Brain Computer Interfacing
Brain computer interfaces are systems which decode a users mental state online in real-time for the purpose of communication or control. An effective BCI requires both neuro-scientific insight (which mental states should we decode?) and technical expertise (which measurement systems and decoding algorithms should be used?). A project could be to develop new mental tasks that induce stronger/easier to decode signals, such as using broadband stimuli. Another project could be to develop new decoding methods better able to tease a weak signal from the background noise, such as adaptive-beam forming. Results for both would assessed by performing empirical studies with target users in one of the EEG/MEG/fMRI labs available in the institute.

Career prospects

Our Artificial Intelligence graduates have excellent job prospects and are often offered a job before they have actually graduated. Many of our graduates go on to do a PhD either at a major research institute or university with an AI department. Other graduates work for companies interested in cognitive design and research. Examples of companies looking for AI experts with this specialisation: Google, Facebook, IBM, Philips and the Brain Foundation. Some students have even gone on to start their own companies.

Job positions

Examples of jobs that a graduate of the specialisation in Computation in Neural and Artificial Systems could get:
- PhD researcher on bio-inspired computing
- PhD researcher on neural decoding
- PhD researcher on neural information processing
- Machine learning expert in a software company
- Company founder for brain-based computer games
- Hospital-based designer of assistive technology for patients
- Policy advisor on new developments in neurotechnology
- Software developer for analysis and online visual displays of brain activity

Internship

Half of your second year consists of an internship, giving you plenty of hands-on experience. We encourage students to do this internship abroad, although this is not mandatory. We do have connections with companies abroad, for example in China, Sweden and the United States.

See the website http://www.ru.nl/masters/ai/computation

Read less
This cutting-edge programme offers an exciting opportunity to study modern neuroscience with a focus on clinical implications. You will gain a strong foundation in understanding the mechanisms and treatments of neurological and neuropsychiatric diseases. Read more

Summary

This cutting-edge programme offers an exciting opportunity to study modern neuroscience with a focus on clinical implications. You will gain a strong foundation in understanding the mechanisms and treatments of neurological and neuropsychiatric diseases.

This course is designed for students from a range of backgrounds, who are interested in pursuing a career in neuroscience. You will develop a detailed understanding of modern theory and concepts relating to brain research and neuroscience and the application of these principles in the treatment of brain disorders. This course places emphasis on the clinical relevance of recent developments in neuroscience.

The development of your research methods skills is an integral part of the course. You will further your understanding of applied neuroscience with a research project which will develop your data handling and analysis skills, use of applied theory and statistics.

You will join the Health Sciences Research Centre whose academics are currently investigating a range of topical issues such as the addictive nature of new psychoactive substances, effects of stress on the brain regulatory systems and the mechanisms of brain cell death and repair using neural stem cells. You will be welcome to attend research seminars and discussions on topical developments in neuroscience and health sciences, led by experts.

MSc Clinical Neuroscience is recognised by the Federation of Neuroscience Societies (FENS) and included in the Network of European Neuroscience Schools (NENS), which is the highest accolade in European neuroscience teaching.

Content

In this postgraduate programme, you will develop an integrated overview of contemporary neuroscience as a rapidly developing discipline with multiple links with molecular biology, genetics, pharmacology and medical sciences.

You will be introduced to a diverse range of topics and will have the chance to focus on areas that interest you. Examples of topics that you might cover include: clinical relevance of recent developments in neuroscience, brain imaging techniques and their applications in neurology and psychiatry, neurobiological mechanisms of human brain disorders, effects of nutrition and addiction on brain function, and research methods.

You will discuss ethical issues in clinical neuroscience and develop your ability to critically evaluate current developments in clinical brain research, which are relevant to healthcare.

This course can accommodate students from a range of backgrounds including new graduates from life sciences or psychology as well as health professionals who hold non-traditional qualifications. The programme options of PG Diploma or PG Certificate can be useful to health professionals who wish to refresh update theory knowledge without the commitment of conducting a research project (MSc). It is also suitable for applicants from the NHS, for example neuro-nurses or therapists.

Read less
The Sensory Systems, Technologies & Therapies (SenSyT) MRes programme was devised in consultation with industry partners developing treatments for sensory disorders. Read more
The Sensory Systems, Technologies & Therapies (SenSyT) MRes programme was devised in consultation with industry partners developing treatments for sensory disorders. It is an innovative biomedical and translational sciences programme intended for students aiming to pursue a career in academia or to work in the pharmaceutical and biotechnology industrial sectors.

Degree information

Through a major year-long research project and supplemental coursework, students will learn to conduct cutting-edge research aimed at understanding fundamental principles of sensory systems function and/or developing novel technologies and therapies for sensory disorders, such as deafness and blindness.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), one optional module (15 credits) and a research project with dissertation/report (120 credits).

Core modules
-Introduction to Sensory Systems, Technologies & Therapies
-Research in Practice
-Translating Science into the Clinic

Optional modules - one optional module can be chosen from a group of appropriate modules currently offered at the UCL Ear Institute or at the UCL Institute of Ophthalmology, to provide more in-depth knowledge and understanding of particular issues in sensory systems research. Examples include:
-Anatomy and Physiology of the Audiovestibular System
-Auditory Biophysics and Electroacoustics
-Ocular Cell Biology, Genetics and Epidemiology of Ocular Disease
-Ocular Development in Health and Disease
-Visual Neuroscience

Students may choose an alternative optional module from across UCL with prior approval of the Programme Director, provided that it aligns with the topic of the extended research project.

Dissertation/report
All students undertake a year-long independent research project which culminates in a dissertation of 15,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, practicals, seminars, workshops, journal clubs, and an extended research project. Assessment is through coursework, oral presentations, essays, practicals, unseen written examinations, and research dissertation.

Careers

The Sensory Systems, Technologies and Therapies MRes was devised in consultation not only with academic scientists pursuing cutting-edge research in sensory systems and therapies, but also with representatives from industries interested in developing new treatments for sensory disorders. The programme has therefore been designed with the intention of ensuring that successful graduates will be attractive candidates either for further PhD research or for jobs in the commercial sector (for example, in companies developing or marketing novel treatments for visual impairment or hearing loss).

Employability
Students will graduate with interdisciplinary training in sensory systems science; a good understanding of the clinical and commercial context for development of sensory systems technologies and therapies; and substantive experience with a cutting-edge research project.

Why study this degree at UCL?

UCL is among the world's top universities for biomedical research, with particular strength in neuroscience, sensory systems research, and translational studies. Students taking the Sensory Systems, Technologies and Therapies MRes will be based at the UCL Ear Institute, an internationally recognised centre for auditory research, and will also take core modules at the UCL Institute of Ophthalmology, one of the world's major centres for vision research.

MRes students will have access to potential research supervisors from across all UCL, and will benefit from interaction with students on the Sensory Systems, Technologies and Therapies MPhil/PhD introduced in 2014. The Sensory Systems, Technologies and Therapies MRes will therefore provide students with outstanding opportunities to learn from and network with scientists, engineers, clinicians and students throughout the UCL community.

Read less
The MSc by Research in Integrative Neuroscience is a one-year, full-time research programme covering all levels of modern neuroscience, which makes it an ideal programme to prepare you for a PhD. Read more

Research profile

The MSc by Research in Integrative Neuroscience is a one-year, full-time research programme covering all levels of modern neuroscience, which makes it an ideal programme to prepare you for a PhD.

We include molecular, cellular, systems, regenerative, cognitive, clinical and computational neuroscience. We also allow you to choose your specialty right from the start, allowing you to shape your learning around your interests and career goals.

Programme structure

You start with a taught component in the first 12 weeks, and attend ‘themed weeks’ which run in parallel with elective from which you choose your optional courses. The Elective optional courses include:

-Developmental Neurobiology
-Neural Circuits
-Neurodegeneration and Regeneration

The elective courses run during the first 12 weeks on two half days per week. These will give you a deeper insight into the concepts and methodology of a specific field of interest.

For your research you can choose available projects or contact principal investigators from more than 120 groups in the Edinburgh Neuroscience community to develop your own project, which can range from psychology to nanoscience. Examples of completed projects are:

- Axon Initial Segment plasticity in a mouse model of Fragile X Syndrome (Peter Kind)

- Cognitive and motor functions in neurodegenerative diseases (Thomas Bak)

- Interactions of amyloid beta and tau in causing cognitive decline in a novel Alzheimer’s disease model (Tara Spires-Jones)

- Role of primary cilia in the development of stem cells during development of the cerebral cortex (Thomas Theil)

Career opportunities

This programme is designed to help you in your research career. Over 90% of students on the MSc by Research in Integrative Neuroscience have positive next destinations, including PhD, research or clinical career paths.

Read less
This MSc course aims to integrate two active and rapidly developing fields, computational neuroscience and cognitive robotics, to generate innovative strategies and solutions for scientific problems and technological limitations. Read more
This MSc course aims to integrate two active and rapidly developing fields, computational neuroscience and cognitive robotics, to generate innovative strategies and solutions for scientific problems and technological limitations.

From modelling human cognition to programming robots to act in their environment, this course crosses the boundary between several disciplines, including biology, neuroscience, psychology, and computer science.

The CNCR MSc course is highly interdisciplinary encompassing psychology, cognitive science, neuroscience, computational modelling, neuroimaging, robotics, and patient rehabilitation. The Course is designed for those who are interested in applying knowledge of neural systems, brain function, and modeling to research in human cognition, perception, sensory and motor systems as well as the design of bio-inspired and biologically plausible robotic systems. It has a strong research focus with hands-on modules and practical applications. The course is aimed at both students from psychology/neuroscience with a strong quantitative background and at students from computer science and physics that want to apply their knowledge to neuroscience.

Employability

You will receive training in computational and research methods, and will gain an overview of current research in neuroscience and robotics. The programme will prepare you to go onto high quality PhD programmes, leading to work in a range of fields from advanced robotics to cognitive neuroscience.

Many of our students receive job offers before they graduate. Recent students have found employment working and training in an IT consultancy; software engineering at Google; and setting up startup companies to develop IT products inspired by human cognition.

Several of our students receive PhD offers before completing the course; one of our recent students will be studying for a PhD in computational neuroscience at University College Dublin with funding secured via a postgraduate award from the Irish Research Council. Others choose to stay at Birmingham for PhD study. The course gives you an opportunity to showcase your talent in the School of Psychology and the School of Computer Science, and to increase your chances of pursuing an academic career within the University of Birmingham.

About the School of Psychology

The School of Psychology is one of the strongest and most active psychology departments in the country. We are ranked among the top five psychology departments for research and have a reputation for excellent teaching.

With around 800 undergraduates, 250 postgraduates including 100 PhD students, and 140 research and teaching staff we are one of the largest psychology departments in the UK.

The School currently has a live research grant portfolio of £14.1m generating an annual income of around £3.8m. Of our 140 staff, 63% are core funded, and 37% are research funded.

The School hosts four specialist research centres:

- Centre for Human Brain Health
- Centre for Applied Psychology
- The Cerebra Centre for Neurodevelopmental Disorders
- Centre for Computational Neuroscience and Cognitive Robotics

Staff and students benefit from our extensive links with local hospitals and clinics, other universities, schools and nurseries, industrial companies and local and national government departments.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Overview. The MRes courses are designed to provide students with intensive laboratory-based training in research methods, supported by in-depth understanding. Read more
Overview
The MRes courses are designed to provide students with intensive laboratory-based training in research methods, supported by in-depth understanding. The aim is to prepare graduates to make contributions, as individuals and members of a team, to research-oriented activities in the biomedical industries and related service sectors, or academia. The courses are also well-suited to students wishing to upgrade a first degree, change field, or gain valuable laboratory experience before employment or a PhD. The Strathclyde Institute of Pharmacy and Biomedical Sciences represents the largest Pharmacy research group in the UK, with 55% of its staff rated as either world-leading or internationally excellent in terms of originality, significance and rigour (data: Research Assessment Exercise 2008). The University of Strathclyde has invested £30M in a world-class, pioneering centre for biomedical and pharmaceutical sciences teaching and research, opened Aug 2010. Students will find themselves in stimulating, unique environment on account of the strongly multidisciplinary nature of the Institute. Combining fundamental and applied research across the areas of bioscience and pharmacy, SIPBS builds on its record of success in drug and vaccine discovery and development. The Institute engages with industry and the health services, ensuring that its excellent fundamental research is translated into products that are of benefit to health and society. For more information on SIPBS go to http://www.strath.ac.uk/sipbs

Course outline

An MRes degree is focussed on research and students will spend 8 months undertaking a laboratory-based project.
To support their chosen research project, students choose advanced-level taught courses in a named specialisation, from the following areas:

Taught classes delivered through lectures, workshops and practical classes in four areas:
1. Transferable skills training in data mining, interpretation and presentation; experimental planning, personal effectiveness, ethics in research
2. Commercialisation and entrepreneurship
3. MRes-specific classes relevant to subject area

Biomedical Sciences

Example research projects:
1. Antileishmanial activity of extracts and compounds from Monodora myristica
2. Imaging and modelling of cancer development
3. Endothelial progenitor cell expression and differentiation
4. Targeted radiotherapy for cancer
5. The involvement of pulmonary veins in atrial fibrillation: electrical properties
6. Reducing bacterial resistance to antibiotics
7. Development of neural stem cells with increased levels of the autophagy cell survival pathway
8. Investigating the role of Sigma 54 in Pseudomonas aeruginosa virulence
9. Transcriptional network analysis of the Escherichia coli core stress response.
10. Identification of novel anti-microbial compounds targeted at biofilm formation

Drug Delivery systems

Example research projects
1. Nanoparticulate formulations of insulin and their analysis
2. Mesoporous silicas for oral delivery of cyclosporine
3. Bioprocessing of biopharmaceuticals
4. Modified and time-delayed oral solid-dose release formulations
5. Nasal formulations of poorly soluble compounds
6. Reducing bacterial resistance to antibiotics: establishing, optimising and implementing a high throughput assay to discover natural product derived inhibitors of metallo beta-lactamase.
7. Imaging of dermal formulations using Raman microscopy techniques
8. Antileishmanial activity of extracts and compounds from Monodora myristica
9. Anti-trypanosomal active triterpenoids from some African Propolis
10. Investigation into the potential therapeutic properties of marine organisms
11. Photo-triggered adhesion of mammalian cells

Drug Discovery

Projects in the areas of :
1. Drug Delivery
2. Molecular Biology
3. Pharmacology
4. Pharmaceutical Materials and Formulation
5. Toxicology

Neuroscience

Projects in the areas of:
1. Electrophysiology
2. Stem cell biology for regenerative purposes
3. Cell biology
4. Inflammation
5. In vitro culture systems
6. Functional genetics

How to Apply
Applicants should apply through the University of Strathclyde on-line application form: http://pgr.strath.ac.uk indicating "Masters by Research", and named specialisation as appropriate. Applicants are not required to submit a detailed research proposal at this stage.

Read less
The Institute for Neuroscience has clinicians and scientists working together to understand the brain and behaviour. Read more

Course Overview

The Institute for Neuroscience has clinicians and scientists working together to understand the brain and behaviour. From the basic biology of neurons through to complex processes of perception and decision-making behaviour, we address how the mind, brain, and body work together and translate this knowledge into clinical applications for patient benefit.

We offer MPhil, PhD and MD supervision in the following research areas: Motor systems development, plasticity and function; Visual system development, plasticity and repair; Neural computation and network systems; Auditory neuroscience; Pain; Psychobiology; Neurotoxicology; Forensic psychology and clinical psychology; Systems and computational neuroscience; Behaviour and evolution; Visual perception and human cognition.

For more information on these research areas see http://www.ncl.ac.uk/postgraduate/courses/degrees/neuroscience-mphil-phd-md/#profile

Training and Skills

As a research student you will receive a tailored package of academic and support elements to ensure you maximise your research and future career. The academic information is in the programme profile and you will be supported by our Faculty of Medical Sciences Graduate School.

For further information see http://www.ncl.ac.uk/postgraduate/courses/degrees/neuroscience-mphil-phd-md/#training&skills

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/neuroscience-mphil-phd-md/#howtoapply

Read less
About the course. -Trains you for further research and study. -Receive training in neurobiological and psychological aspects of cognitive neuroscience. Read more
About the course:
-Trains you for further research and study
-Receive training in neurobiological and psychological aspects of cognitive neuroscience
-Develop analytical skills
-Have the chance to get involved with research from the Centre for Integrative Neuroscience and Neurodynamics
-Use facilities including brain imaging systems, and eye-tracking, psychophysiology, nutritional testing, and VR and haptic laboratories

WHAT WILL YOU STUDY?

Sample modules:
-Topics in cognitive neuroscience
-Programming in behavioural and cognitive neuroscience
-Principles of neurobiology
-fMRI data analysis
-Methods in neuroscience

Please note that all modules are subject to change.

EMPLOYABILITY

All of our MSc programmes are research intensive, providing essential training in analytical ability, methods awareness and critical thinking, among other fundamental transferable skills.

The MSc Cognitive Neuroscience is designed to train you for further research and study, ideally for a doctoral programme in psychology, neuroscience, clinical psychology, or a related field. Our students regularly move on to PhD positions, applied and clinical psychology posts in the NHS and private sector, as well as research-based positions in industry.

Read less
Robotics requires a well-developed knowledge of areas ranging from computer science and artificial intelligence, to engineering and neuroscience, in order to produce hardware which can sense and manipulate the real world. Read more
Robotics requires a well-developed knowledge of areas ranging from computer science and artificial intelligence, to engineering and neuroscience, in order to produce hardware which can sense and manipulate the real world. This field has allowed us to develop everything from satellites and submarines, to racecars and robots.

Research carried out by our team has resulted in appearance in the Robot Soccer World Cup final, an autonomous robot fish in the London Aquarium, and a self-programming computer vision system.

Our course provides a comprehensive coverage of contemporary intelligent systems, with robots serving as a major example of the technology. Thanks to the leading research being undertaken in our School, you will gain a solid understanding of the foundations of this technology, exploring areas including:
-The principles by which sensed data are converted into useful information
-The practical aspects of developing intelligent and robotic systems
-Biologically-inspired robots
-Biometrics
-Computational intelligence

Our MSc Intelligent Systems and Robotics is delivered by our team of internationally recognised researchers, with expertise spanning the entire range of intelligent systems and experience of developing robots intended for land, under water and in the air.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Our recent graduates have progressed to a variety of senior positions in industry and academia. Some of the companies and organisations where our former graduates are now employed include:
-Electronic Data Systems
-Pfizer Pharmaceuticals
-Bank of Mexico
-Visa International
-Hyperknowledge (Cambridge)
-Hellenic Air Force
-ICSS (Beijing)
-United Microelectronic Corporation (Taiwan)

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-MSc Project and Dissertation
-Computer Vision
-Group Project
-Intelligent Systems and Robotics
-Machine Learning and Data Mining
-Professional Practice and Research Methodology
-Programming Embedded Systems
-Artificial Neural Networks (optional)
-Constraint Satisfaction for Decision Making (optional)
-Creating and Growing a New Business Venture (optional)
-Digital Signal Processing (optional)
-Electronic System Design & Integration (optional)
-Evolutionary Computation and Genetic Programming (optional)
-High Level Logic Design (optional)
-Game Artificial Intelligence (optional)
-Virtual Worlds (optional)
-Natural Language Engineering

Read less
Our department is home to a world-renowned sensory neuroscience research group. Their projects provide the basis for teaching and research training on this MSc. Read more

About the course

Our department is home to a world-renowned sensory neuroscience research group. Their projects provide the basis for teaching and research training on this MSc.

The course covers molecular, cell and developmental biology of auditory and visual systems. Advanced imaging and behavioural analysis focus on information processing: from sensory transduction to the central nervous system and behaviour. You’ll also study animal models of sensory deficits and the development of therapeutic treatments for hearing loss and blindness.

Where your masters can take you

Graduates with skills in stem cell and regenerative medicine are in demand. Your degree will prepare you for a career in research in academia or industry, or in a clinical-related field. Our graduates are working all over the world – from the UK to China, India and the USA – and over half go on to doctoral study.

Learn from the experts

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research in this field. Our international reputation attracts highly motivated staff and students. Sheffield is a vibrant place to take a masters based on pioneering research.

Regular seminars from distinguished international experts help you to connect your studies to the latest developments. We’re also part of collaborative research groups for developmental biology, cell biology, physiology, pharmacology, neuroscience, models of human disease, stem cell science and regenerative medicine.

Our three research centres focus on translating laboratory research to the clinical environment: Bateson Centre, the Centre for Stem Cell Biology, and the Centre for Membrane Interactions and Dynamics.

Leaders in our field

We have a long track record of groundbreaking discoveries. These include breakthroughs in human stem cells for hearing repair, and the generation of animal models for Parkinson’s disease, schizophrenia, muscular dystrophies and their use for therapeutic studies.

Labs and equipment

We have purpose-built facilities for drosophila, zebrafish, chick and mouse genetics and for molecular physiology. Other facilities provide all the tools you’ll need to examine and analyse a range of cellular structures. We have an electron and a light microscopy centre, a PCR robotics facility, a flow cytometry unit and an RNAi screening facility.

Teaching and assessment

There are lectures, practical classes, tutorials and seminars. In small group teaching classes you’ll discuss, debate and present on scientific and ethical topics. Laboratory placements within the department provide you with one-to-one attention, training and support to do your individual research project. Assessment is by formal examinations, coursework assignments, debates, poster presentations and a dissertation.

Our teaching covers ethics, practical scientific skills and an overview of the current literature. You’ll also develop useful career skills such as presentation, communication and time management.

Core modules

Literature Review; Practical Research Project; Analysis of Current Science; Ethics and Public Understanding.

Examples of optional modules

Integrated Mammalian Biology; Practical Developmental Genetics; Neuroscience Techniques; Sensory Neuroscience; Developmental Neurobiology; Computational Neuroscience.

Read less
Bristol, and the surrounding area, hosts a thriving and world-leading semiconductor design industry. Read more
Bristol, and the surrounding area, hosts a thriving and world-leading semiconductor design industry. The Microelectronics group at the University of Bristol has many collaborative links with multinational companies in the microelectronics industry that have identified a shortfall in graduates with the necessary qualifications and professional skills to work in the sector. This programme has been designed to meet this need.

A range of taught subjects cover core topics such as advanced architectures and system design using FPGA and DSP platforms, before progressing into more specialised areas such as digital and analogue ASIC design, integrated sensors and actuators and mixed-signal design. Changes are made periodically to reflect important emerging disciplines, such as electronics for internet of things, bio-medical applications and neuromorphic computing.

The programme offers you the opportunity to learn from experts in micro- and nanoelectronics and computer science, to allow you to start working straight after your degree or continue your studies via a PhD. Special emphasis is put on providing you with a range of contemporary design skills to supplement theoretical knowledge. Lectures are accompanied by lab exercises in state-of-the-art industrial EDA software to give you experience of a professional environment.

Programme structure

The course consists of 120 credits of taught units and an individual research project worth 60 credits. The following core subjects, each worth 10 credit points (100 learning hours), are taken over autumn and spring:
-Design Verification
-Analogue Integrated Circuit Design
-Integrated Circuit Electronics
-Digital Filters and Spectral Analysis (M)
-Advanced DSP & FPGA Implementation
-VLSI Design M
-Embedded and Real-Time Systems
-Wireless Networking and Sensing in e-Healthcare

Additionally students are able to choose any two out of the following four 10-credit units (some combinations may not be possible due to timetabling constraints).

-Device Interconnect - Principles and Practice
-Advanced Computer Architecture
-Sustainability, Technology and Business
-Computational Neuroscience
-Bio Sensors

In the spring term, students also take Engineering Research Skills, a 20-credit unit designed to introduce the fundamental skills necessary to carry out the MSc project.

After completing the taught units satisfactorily, all students undertake a final project which involves researching, planning and implementing a major piece of work relating to microelectronics systems design. The project must have a significant scientific or technical component and may involve on-site collaboration with an industrial partner. The thesis is normally submitted by the end of September.

The programme structure is under continual discussion with the National Microelectronics Institute and our industrial advisory board in order that it remains at the cutting edge of the semiconductor industry. It is therefore subject to small changes on an ongoing basis to generally improve the programme and recognise important emerging disciplines.

Careers

This course gives graduating students the background to go on to a career in a variety of disciplines in the IT sector, due to the core and specialist units that cover key foundational concepts as well as advanced topics related to hardware design, programming and embedded systems and system-level integration.

Typical careers are in soft fabrication facilities and design houses in the semiconductor industry, electronic-design automation tool vendors, embedded systems specialists and software houses. The course also covers concepts and technologies related to emerging paradigms such as neuromorphic computing and the Internet of Things and prepares you for a career in academic research.

Read less
The MSc in Robotics will provide you with the ability to understand, design and implement modern robotic systems. Read more
The MSc in Robotics will provide you with the ability to understand, design and implement modern robotic systems. Robotics is increasingly prominent in a variety of sectors, from manufacturing and health to remote exploration of hostile environments such as space and the deep sea, and as autonomous and semi-autonomous systems that interact with people physically and socially.

This programme exposes you to a wide range of advanced engineering and computer science concepts, with the opportunity to carry out a practical robot project at the Bristol Robotics Laboratory, one of the UK's most comprehensive robotics innovation facilities and a leading centre of robotics research.

The programme is jointly awarded and jointly delivered by the University of Bristol and the University of the West of England, both based in Bristol, and therefore draws on the combined expertise, facilities and resources of the two universities. The Bristol Robotics Laboratory is a collaborative research partnership between the two universities with a vision to transform robotics by pioneering advances in autonomous robot systems that can behave intelligently with minimal human supervision.

Programme structure

Your course will cover the following core subjects:
-Robotics systems
-Robotic fundamentals
-Intelligent adaptive systems
-Robotics research preparation
-Image processing and computer vision
-Technology and context of robotics and autonomous systems
-Bio-inspired artificial intelligence

Typically you will be able to select from the following optional subjects:
-Computational neuroscience
-Uncertainty modelling for intelligent systems
-Introduction to artificial intelligence
-Learning in autonomous systems
-Design verification
-Animation production
-Advanced DSP and FPGA implementation
-Statistical pattern recognition
-Control theory
-Advanced techniques in multidisciplinary design
-Advanced dynamics
-Virtual product development
-Biomechanics
-Sensory ecology
-Transport modelling
-Electromechanical systems integration
-Advanced control and dynamics

Please note that your choice of optional units will be dependent on your academic background, agreement with the programme director and timetable availability.

Dissertation
During your second semester, you will start working on a substantial piece of research work that will make up one third of the overall MSc. It is possible to work on this project at Bristol Robotics Laboratory or in conjunction with one of our many industrial partners. Within the Bristol Robotics Laboratory, there are a number of themes from which projects may be chosen, including:
-Aerial robots
-Assisted living
-Bioenergy and self-sustainable systems
-Biomimetics and neuro-robotics
-Medical robotics
-Nonlinear robotics
-Robot vision
-Safe human-robot interaction
-Self-reparing robotic systems
-Smart automation
-Soft robotics
-Swarm robotics
-Tactile robotics
-Unconventional computation in robots
-Verification and validation for safety in robots

Further information is available from the Faculty of Engineering.

NB: Teaching for this programme is delivered at both the University of Bristol and the University of the West of England campuses. Students attending the programme will be given free transport passes to travel between the two universities.

Careers

Robotics is a huge field spanning areas such as electronics, mechanics, software engineering, mathematics, physics, chemistry, psychology and biology. Career opportunities include: automotive industry, aerospace industry, advanced manufacturing, deep sea exploration, space exploration, food manufacture, pharmaceutical production and industrial quality control.

Read less
We offer an opportunity to train in one of the newest areas of biology. the application of engineering principles to the understanding and design of biological networks. Read more

Programme description

We offer an opportunity to train in one of the newest areas of biology: the application of engineering principles to the understanding and design of biological networks. This new approach promises solutions to some of today’s most pressing challenges in environmental protection, human health and energy production.

This MSc will provide you with a thorough knowledge of the primary design principles and biotechnology tools being developed in systems and synthetic biology, ranging from understanding genome-wide data to designing and synthesising BioBricks.

You will learn quantitative methods of modelling and data analysis to inform and design new hypotheses based on experimental data. The University’s new centre, SynthSys, is a hub for world-leading research in both systems and synthetic biology.

Programme structure

The programme consists of two semesters of taught courses followed by a research project and dissertation, which can be either modelling-based or laboratory-based.

Compulsory courses:

Applications of Synthetic Biology
Dissertation project
Information Processing in Biological Cells
Practical Systems Biology
Social Dimensions of Systems and Synthetic Biology
Tools for Synthetic Biology

Option courses:

Biobusiness
Biochemistry
Bioinformatics Algorithms
Bioinformatics Programming & System Management
Biological Physics
Computational Cognitive Neuroscience
Drug Discovery
Economics & Innovation in the Biotechnology Industry
Environmental Gene Mining & Metagenomics
Functional Genomic Technologies
Gene Expression & Microbial Regulation
Industry & Entrepreneurship in Biotechnology
Introduction to Scientific Programming
Molecular Phylogenetics
Neural Computation
Next Generation Genomics
Practical Skills in Biochemistry
Probabilistic Modelling and Reasoning
Statistics and Data Analysis
Stem Cells & Regenerative Medicine

Career opportunities

The programme is designed to give you a good basis for managerial or technical roles in the pharmaceutical and biotech industries. It will also prepare you for entry into a PhD programme.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X