• University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Leeds Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of London International Programmes Featured Masters Courses
University of Reading Featured Masters Courses
University of Cambridge Featured Masters Courses
Durham University Featured Masters Courses
University of London International Programmes Featured Masters Courses
"systems" AND "engineerin…×
0 miles

Masters Degrees (Systems Engineering Management)

We have 1,405 Masters Degrees (Systems Engineering Management)

  • "systems" AND "engineering" AND "management" ×
  • clear all
Showing 1 to 15 of 1,405
Order by 
The Systems Engineering Management MSc has been specifically designed for the needs of engineering professionals working in the field of complex systems development. Read more

The Systems Engineering Management MSc has been specifically designed for the needs of engineering professionals working in the field of complex systems development. The programme encompasses not only the technical tools and approaches needed to build success in this area, but also the management dimension of the relevant processes.

About this degree

Students gain an integrated, interdisciplinary view of complex systems and an advanced understanding of the systems engineering process. They gain the ability to apply this process to a variety of real-world situations and the management skills necessary to facilitate the development of complex systems on time and within budget.

Students undertake modules to the value of 180 credits.

The programme consists of four core taught modules (60 credits) two optional taught modules (30 credits) and three research modules (90 credits). Modules are generally taught as intensive five-day 'block weeks' to minimise time away from the office.

A Postgraduate Diploma (120 credits, full-time one academic year, or flexible study up to five years) is offered.

A Postgraduate Certificate (60 credits, full-time 12 weeks, or flexible study up to three years) is offered.

Core modules

  • Systems Thinking and Engineering Management
  • The Business Environment
  • Risk, Reliability, Resilience
  • Lifecycle Management

Optional modules

Students choose two of the following:

  • Systems Design
  • Technology Strategy
  • Project Management (leading to Association for Project Management exam)
  • Delivering Complex Projects
  • Defence and Security Systems
  • Rail Systems
  • Space Systems

Research modules

All MSc students undertake a structured research programme comprising the following mandatory modules:

  • Systems Engineering in Practice (15 credits)
  • Systems Engineering Project Concept (15 credits)
  • Systems Engineering Research Project (60 credits)

Teaching and learning

The programme is delivered through a combination of lectures, discussion sessions, workshop activity, and project work. Each taught course will be separately assessed through a combination of course work and a written examination. The project will be assessed through written dissertation and subsequent oral examination.

Further information on modules and degree structure is available on the department website: Systems Engineering Management MSc

Careers

Complex systems are commonplace in many branches of UK industry including rail, aerospace, defence, and manufacturing. The ability to create such systems effectively is crucial to the competitiveness of these industries and has a direct bearing on the wealth of the nation.

Recent career destinations for this degree

  • Engineering Manager, BAE Systems
  • Systems Engineer, BIG
  • Analyst, Accenture
  • Proposals engineer, Invensys PLC

Why study this degree at UCL?

This MSc combines academic rigour with the practical expertise exemplified by our collaborators in UK industry and government. The flexible programme enables participants to structure their studies to suit their own career goals, and is accredited by the Institution of Engineering and Technology (IET) as a programme of further learning for registration as a Chartered Engineer.

The programme combines interactive lectures, group exercises and case studies to reinforce key points. Lecturers are experts in the field, many of whom have engaged in the practice of systems engineering in industry, and all of whom oversee research across a broad range of subjects relating to systems engineering, project management and technology management.

Industry is operating in an environment where technology changes rapidly, and where global competition grows ever more intensive. The challenge to remain competitive means we must make the right thing at the right price. Our MSc equips graduates with the skills to meet this challenge.



Read less
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different. Read more
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different.

The Master of Advanced Engineering is the key transitional stage in your career, transforming you into a global leader. Gain a depth of knowledge, mastering the crucial skills to become a leading contributor in your field.

Customise your degree - the Master of Advanced Engineering offers flexibility to complete your Master degree in just one year, or you can choose a two year option.

This course is designed to extend your knowledge in your chosen specialisation area and advance your leadership and complex problem-solving skills in a cross cultural environment.

Understand, reflect critically upon and apply methods in at least one specialist engineering area to design solutions to complex, multifaceted engineering problems.

Common core units will develop crucial skills in areas such as data analysis and entrepreneurship, translating theory into engineering practice. In discipline core units you will identify, interpret and critically appraise current developments and technologies within your specialisation.

Enhancement units are designed to provide breadth and are taken from either another engineering specialisation or in complementary areas such as information technology and business.

In addition, the two year version of the program offers a range of technical electives that will deepen your understanding of a specific topic, and two, year- long engineering project units. You will work closely with an academic on a topic of your choice and immerse yourself in a multidisciplinary design project.

The Master of Advanced Engineering could also be your stepping stone to a research degree. All of this in highly interactive, expert led classes.

Visit the website http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true

Overview

Please select a specialisation for more details:

Chemical engineering

Your qualification will be a Master of Advanced Chemical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Chemical Engineering allows you to engage in the areas of study including advanced reaction engineering, process design and optimization, conversion of bioresources into fuel, materials and specialty chemicals, and nanostructured membranes for sustainable separations and energy production with an emphasis on the latest developments in the field. In this course, you will develop specialised knowledge and skills that are important to Chemical Engineers in industry and research. This course provides graduates with enhanced opportunities for advancement in their careers.

Civil engineering (Infrastructure systems)

Your qualification will be a Master of Advanced Civil Engineering (Infrastructure Systems)

The Master of Advanced Civil Engineering (Infrastructure Systems) will equip graduates to work with in the area of infrastructure engineering and management. It will provide the fundamental knowledge associated with interfacing both structural and geotechnical designs for infrastructure systems. The program is designed to equip you with advanced skills necessary for managing the challenges posed by ageing and leading designs of new complex infrastructure systems. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills, as well as to develop theoretical and applied knowledge in the area of infrastructure engineering and management.

Civil engineering (Transport)

Your qualification will be a Master of Advanced Civil Engineering (Transport)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Transport) program deals with the fundamental knowledge associated with transport engineering and management, traffic engineering, intelligent transport systems and transport planning. The program in is a response to the growing need for engineers with broad awareness of the characteristics and significance of transport, including its technological, economic and social impact. At the same time, the program outlines the state-of-the-art of transport engineering, as it may be applied to the solution of real problems in the planning, design, management and operation of transport facilities. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of transport engineering and management.

Civil engineering (Water)

Your qualification will be a Master of Advanced Civil Engineering (Water)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Water) allows you to major in water resources engineering and management. This program deals with the fundamental knowledge associated with surface and ground water flow, stormwater management, water quality, flood forecasting and mitigation. The program is designed to equip you with advanced skills necessary for managing the challenges posed by changing climatic condition on water resource management. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of water resources engineering and management.

Electrical engineering

Your qualification will be a Master of Advanced Electrical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Electrical Engineering will give you a broad introduction to advanced techniques in signal processing, communications, digital systems and electronics. The units have been chosen around the common theme of embedded systems: special purpose computing systems designed for specific applications. They are found just about everywhere including in consumer electronics, transportation systems, medical equipment and sensor networks. The course will mix theory and practice and will contain a significant amount of hands-on learning in laboratories and team-based design projects.

Energy and sustainability engineering

Your qualification will be a Master of Advanced Engineering (Energy and Sustainability)

Please note that this specialisation is available only in Malaysia.

The Master of Advanced Engineering (Energy and Sustainability) is designed for qualified engineers keen to deepen their knowledge in the energy and sustainability area. The course provides foundations in general engineering through engineering analysis and entrepreneurship units. Students can major in this program by examining energy and sustainability area from a multi-disciplinary perspective. Students can also choose elective units such as environment and air pollution control and smart grids to further enhance their knowledge in this area or undertake a minor research work to pursue a topic of interest related to this area.

Materials engineering

Your qualification will be a Master of Advanced Materials Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Materials Engineering encompasses practical aspects of the key classes of materials such as metals, polymers, biomaterials, nanomaterials and energy-related materials. This program particularly focuses on the most up-to-date aspects of the field, along with the utilisation of materials and their electronic, chemical and mechanical properties as underpinned by the microstructures that are revealed by modern characterisation techniques. This program is designed to prepare students to appreciate and exploit the central role of materials in addressing the present technical, economic and environmental problems involved in the design and construction of engineering structures, processes and devices. This course is ideally suited for new graduates as well as professional engineers who are eager to advance their applied knowledge in the area of Materials Engineering.

Mechanical engineering

Your qualification will be a Master of Advanced Mechanical Engineering

Please note that this specialisation is available only in Clayton.

Most modern engineering projects are multidisciplinary in nature and require a broad range of skills, proficiencies and perspectives to accomplish the task. The Master of Advanced Mechanical Engineering takes a systems approach to the design, monitoring and performance of complex mechanical engineering systems in the fields of renewable energy, aerospace, buildings, transportation, and biomedical devices. The systems approach also permeates the design of the course: four discipline-based core units are vertically integrated so that common problems are examined from different perspectives, culminating in a sustainable systems unit.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/engineering

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true#making-the-application

Read less
The Masters in Civil Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen civil engineering speciality. Read more
The Masters in Civil Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen civil engineering speciality.

Why this programme

◾Civil engineering at the University of Glasgow is ranked 4th in the UK and 1st in Scotland (Guardian University Guide 2017).
◾With a 93% overall student satisfaction in the National Student Survey 2016, Civil Engineering at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.
◾The University has a long history of research in Civil Engineering. The UK's first Chair of Civil Engineering was established at the University in 1840 and early occupants such as William J. M. Rankine set a research ethos that has endured.
◾You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾If you are a graduate engineer looking to broaden your knowledge of management while also furthering your knowledge of civil engineering, this innovative programme is designed for you.
◾You will gain first-hand experience of managing an engineering project through the integrated systems design project, allowing development of skills in project management, quality management and costing.
◾You will be able to apply management to engineering projects, allowing you to gain an advantage in today’s competitive job market and advance to the most senior positions within an engineering organisation.
◾This programme has a September and January intake.

Programme structure

There are two semesters of taught material and a summer session during which you will work on an individual supervised project and write a dissertation on its outcomes. Students entering the programme in January are restricted to civil engineering (i.e. excluding management) topics only.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.
◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen civil engineering subjects.
◾Integrated systems design project.

Optional courses

Select a total of 4 courses from Lists A and B, at least 1 must be from List A:

List A

◾Advanced soil mechanics 5
◾Advanced structural analysis and dynamics 5
◾Computational modelling of non-linear problems 5
◾Introduction to wind engineering
◾Principles of GIS.

List B

◾Geotechnical engineering 3
◾Ground engineering 4
◾Recycling urban land
◾Structural analysis 4
◾Transportation systems engineering 4.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to civil engineering projects, and January entry students have a choice of civil engineering projects.

Projects

There are two semesters of taught material and a summer session during which you will work on an individual supervised project and write a dissertation on its outcomes. Students entering the programme in January are restricted to civil engineering (i.e. excluding management) topics only.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.
◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen civil engineering subjects.
◾Integrated systems design project.

Optional courses

Select a total of 4 courses from Lists A and B, at least 1 must be from List A:

List A
◾Advanced soil mechanics 5
◾Advanced structural analysis and dynamics 5
◾Computational modelling of non-linear problems 5
◾Introduction to wind engineering
◾Principles of GIS.

List B
◾Geotechnical engineering 3
◾Ground engineering 4
◾Recycling urban land
◾Structural analysis 4
◾Transportation systems engineering 4.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to civil engineering projects, and January entry students have a choice of civil engineering projects.

Industry links and employability

◾The programme makes use of the combined resources and complementary expertise of the civil engineering and business school staff to deliver a curriculum which is relevant to the needs of industry.
◾You, as a graduate of this programme, will be capable of applying the extremely important aspect of management to engineering projects allowing you to gain an advantage in today’s competitive job market and advance to the most senior positions within an engineering organisation.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributions in Civil Engineering include: Arup and Mott MacDonald.
◾During the programme students have an opportunity to develop and practice relevant professional and transferable skills, and to meet and learn from employers about working in the civil engineering industry.

Read less
Are you keen to develop your existing engineering skills and knowledge to master’s level?. The MSc Engineering Management course has been specifically designed to allow you to update, extend and deepen your understanding of engineering and management. Read more
Are you keen to develop your existing engineering skills and knowledge to master’s level?

The MSc Engineering Management course has been specifically designed to allow you to update, extend and deepen your understanding of engineering and management.

You will build on your current knowledge of subjects such as solid modelling and prototyping, computer aided design and engineering data analysis, whilst developing management and entrepreneurial skills that will enhance your career opportunities within engineering and the broader business environment.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

Internship

This option offers the opportunity to spend three months working full-time in one of the many companies/industries with which we have close links. You may be able to extend this over more than one semester in cases where it is adjacent to a vacation period. We will endeavour to help those who prefer this option to find and secure a suitable position but ultimately we are in the hands of the employers who are free to decide who they take into their organisation.

Research

If you take this option, you will be assigned to our Engineering, Physics and Materials Research Group. There is every possibility that you may contribute to published research and therefore you may be named as part of the research team, which would be a great start to a research career.

Study Abroad

We have exchange agreements with universities all over the world, including partners in Europe, Asia, the Americas and Oceania. If you take the Study Abroad option you will spend a semester at one of these partners, continuing your studies in English but in a new cultural and learning environment. Please note that this option may require you to obtain a visa for study in the other country.

With the increasing complexity of the engineering sector there is a requirement for engineering managers to be specialised not just in engineering, but also in wider business and management. This course has been specifically designed to meet the demands of today’s employers and provide a solid foundation for you to progress to management level.

Learn From The Best

You’ll be taught by tutors who have many years of experience in the various aspects of the engineering industry. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent. (Research Excellence Framework 2014.)

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. We’ve built up numerous industrial links during the 50+ years that we’ve been offering engineering courses. These links help ensure high quality placements and collaborative projects.

Northumbria has the advantage of being located in the North East of England, which is a centre of manufacturing and technical innovation. As well as Nissan, the region’s #1 company, there is a strong concentration of automotive, engineering, chemicals, construction and manufacturing companies.

Teaching And Assessment

The structure of this course has been designed to focus on engineering issues and processes, and how they apply to those in management positions.

This course incorporates six taught modules: research methods, project, programme and portfolio management; project change, risk and opportunities management; technology entrepreneurship and product development; engineering management data analysis and sustainable development for engineering practitioners.

Throughout the duration of this course you will build core skills in key areas such as management, business, finance and computing, providing you with a strong understanding of the day-to-day processes that underpin the smooth running of a successful organisation.

This course is primarily delivered by lectures and supporting seminars such as guided laboratory workshops or staffed tutorials. Assessments are undertaken in the form of exams, assignments, technical reports, presentations and project work. The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

On completion of all taught modules you will undertake a substantial piece of research around a subject of particular interest to you and your own career aspirations.

Module Overview
Year One
KB7030 - Research Methods (Core, 20 Credits)
KB7031 - Project, Programme and Portfolio Management (Core, 20 Credits)
KB7033 - Project change, risk and opportunities management (Core, 20 Credits)
KB7040 - Sustainable Development for Engineering Practitioners (Core, 20 Credits)
KB7044 - Engineering Management Data Analysis (Core, 20 Credits)
KB7046 - Technology Entrepreneurship & Product Development (Core, 20 Credits)

Year Two
KB7052 - Research Project (Core, 60 Credits)
KF7005 - Engineering and Environment Advanced Practice (Core, 60 Credits)

Learning Environment

Throughout the duration of your course you will have access to our dedicated engineering laboratories that are continuously updated to reflect real-time industry practice.

Our facilities include mechanical and energy systems experimentation labs, rapid product development and performance analysis, materials testing and characterisation, 3D digital design and manufacturing process performance.

You will be given the opportunity to get hands-on with testing, materials processing, moulding, thermal analysis and 3D rapid manufacture to help you create the products and systems required for the projects you will work on during your course.

Your learning journey will also be supported by technology such as discussion boards and video tutorials. You will also participate in IT workshops where you will learn how to use the latest industry-standard software.

Videos of lectures will on many occasions be made available through Panopto video software to further support teaching delivery.

You will also have access to all Northumbria University’s state-of-the-art general learning facilities such as dedicated IT suites and learning areas.

Research-Rich Learning

When studying at Northumbria University you will be taught by out team of specialist staff who boast a wealth of multi-dimensional expertise. The programme is designed to be research-led, delivering up-do-date teaching that is often based on current research undertaken by our team.

Our teaching team incorporates a dynamic mix of research-active industrial practitioners, renowned researchers and technologists, whose combined knowledge ensures you leave with an in-depth understanding of key engineering management practice and research.

You will be encouraged to undertake your own research–based learning, where you will evaluate and critique scientific papers and write research-based reports based on the information gathered.

The department of Mechanical and Construction Engineering is a top-35 Engineering research department with 79% of our outputs ranked world-leading or internationally excellent according to the latest UK-wide research assessment exercise (REF2014, UoA15). This places us in the top quartile for world-leading publications among UK universities in general engineering.

Give Your Career An Edge

With the increasing complexity of the engineering industry there is a requirement for managers to be specialised not just in engineering, but also the general business and management aspects of a company.

This course has been specifically designed to allow you to update, extend and deepen your knowledge to further enhance your career opportunities in both industry and entrepreneurship.

The MSc Engineering Management course will equip you with skills, tools, techniques and methods that are applicable to engineering companies and many other businesses in the UK and abroad.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

On completion of this course you will possess a deep understanding of engineering data analysis, research and project management, programme and portfolio management, project risk management and technology entrepreneurship.

Industry practice and subject benchmarking have strongly influenced the design of this course to ensure you will leave equipped with the skills that are required by today’s employers.

Your Future

The broad range of subjects covered on this course will prepare you for an array of careers within the engineering sector or a general business environment.

You may decide to pursue a career within general engineering, or a more specialised engineering sector.

This course emphasises entrepreneurship and enterprise, developing and enhancing the management and strategic skills that will prepare you for running your own business, should this be your aspiration. These core business skills will also prepare you for management jobs within engineering or another sector.

This course also sets a solid foundation for those wishing to pursue further study or a career within research or teaching.

Read less
Are you keen to develop your existing engineering skills and knowledge to master’s level?. The MSc Engineering Management course has been specifically designed to allow you to update, extend and deepen your understanding of engineering and management. Read more
Are you keen to develop your existing engineering skills and knowledge to master’s level?

The MSc Engineering Management course has been specifically designed to allow you to update, extend and deepen your understanding of engineering and management.

You will build on your current knowledge of subjects such as solid modelling and prototyping, computer aided design and engineering data analysis, whilst developing management and entrepreneurial skills that will enhance your career opportunities within engineering and the broader business environment.

With the increasing complexity of the engineering sector there is a requirement for engineering managers to be specialised not just in engineering, but also in wider business and management. This course has been specifically designed to meet the demands of today’s employers and provide a solid foundation for you to progress to management level.

This course can also be started in January - for more information, please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/engineering-management-msc-ft-dtfegx6/

Learn From The Best

You’ll be taught by tutors who have many years of experience in the various aspects of the engineering industry. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent. (Research Excellence Framework 2014.)

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. We’ve built up numerous industrial links during the 50+ years that we’ve been offering engineering courses. These links help ensure high quality placements and collaborative projects.

Northumbria has the advantage of being located in the North East of England, which is a centre of manufacturing and technical innovation. As well as Nissan, the region’s #1 company, there is a strong concentration of automotive, engineering, chemicals, construction and manufacturing companies.

Teaching And Assessment

The structure of this course has been designed to focus on engineering issues and processes, and how they apply to those in management positions.

This course incorporates six taught modules: research methods, project, programme and portfolio management; project change, risk and opportunities management; technology entrepreneurship and product development; engineering management data analysis and sustainable development for engineering practitioners.

Throughout the duration of this course you will build core skills in key areas such as management, business, finance and computing, providing you with a strong understanding of the day-to-day processes that underpin the smooth running of a successful organisation.

This course is primarily delivered by lectures and supporting seminars such as guided laboratory workshops or staffed tutorials. Assessments are undertaken in the form of exams, assignments, technical reports, presentations and project work.

On completion of all taught modules you will undertake a substantial piece of research around a subject of particular interest to you and your own career aspirations.

Learning Environment

Throughout the duration of your course you will have access to our dedicated engineering laboratories that are continuously updated to reflect real-time industry practice.

Our facilities include mechanical and energy systems experimentation labs, rapid product development and performance analysis, materials testing and characterisation, 3D digital design and manufacturing process performance.

You will be given the opportunity to get hands-on with testing, materials processing, moulding, thermal analysis and 3D rapid manufacture to help you create the products and systems required for the projects you will work on during your course.

Your learning journey will also be supported by technology such as discussion boards and video tutorials. You will also participate in IT workshops where you will learn how to use the latest industry-standard software.

Videos of lectures will on many occasions be made available through Panopto video software to further support teaching delivery.

You will also have access to all Northumbria University’s state-of-the-art general learning facilities such as dedicated IT suites and learning areas.

Research-Rich Learning

When studying at Northumbria University you will be taught by out team of specialist staff who boast a wealth of multi-dimensional expertise. The programme is designed to be research-led, delivering up-do-date teaching that is often based on current research undertaken by our team.

Our teaching team incorporates a dynamic mix of research-active industrial practitioners, renowned researchers and technologists, whose combined knowledge ensures you leave with an in-depth understanding of key engineering management practice and research.

You will be encouraged to undertake your own research–based learning, where you will evaluate and critique scientific papers and write research-based reports based on the information gathered.

The department of Mechanical and Construction Engineering is a top-35 Engineering research department with 79% of our outputs ranked world-leading or internationally excellent according to the latest UK-wide research assessment exercise (REF2014, UoA15). This places us in the top quartile for world-leading publications among UK universities in general engineering.

Give Your Career An Edge

With the increasing complexity of the engineering industry there is a requirement for managers to be specialised not just in engineering, but also the general business and management aspects of a company.

This course has been specifically designed to allow you to update, extend and deepen your knowledge to further enhance your career opportunities in both industry and entrepreneurship.

The MSc Engineering Management course will equip you with skills, tools, techniques and methods that are applicable to engineering companies and many other businesses in the UK and abroad.

On completion of this course you will possess a deep understanding of engineering data analysis, research and project management, programme and portfolio management, project risk management and technology entrepreneurship.

Industry practice and subject benchmarking have strongly influenced the design of this course to ensure you will leave equipped with the skills that are required by today’s employers.

Your Future

The broad range of subjects covered on this course will prepare you for an array of careers within the engineering sector or a general business environment.

You may decide to pursue a career within general engineering, or a more specialised engineering sector.

This programme emphasises entrepreneurship and enterprise, developing and enhancing the management and strategic skills that will prepare you for running your own business, should this be your aspiration. These core business skills will also prepare you for management jobs within engineering or another sector.

This course also sets a solid foundation for those wishing to pursue further study or a career within research or teaching.

Read less
The Masters in Mechanical Engineering & Management offers you the opportunity to develop the knowledge and skills needed for modern engineering or technology management. Read more

The Masters in Mechanical Engineering & Management offers you the opportunity to develop the knowledge and skills needed for modern engineering or technology management. The programme content includes design engineering and other mechanical engineering disciplines.

Why this programme

  • The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
  • You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
  • Mechanical Engineering is a core engineering discipline that has a long history in the University of Glasgow, dating back to the 1760’s and includes famous people as James Watt.
  • If you have a mechanical engineering background, but with little management experience and are wanting to develop your knowledge of management while also furthering your knowledge of mechanical engineering, this programme is designed for you.
  • You will learn to understand management principles and practices in an engineering environment, evaluate engineering information, and apply business and management tools. You will combine engineering and management knowledge and skills in projects and problem solving.
  • The programme is split into two semesters and a summer session. One semester will be based in the Adam Smith Business School and is aimed at developing knowledge and skills of management principles and techniques. An applied approach is adopted, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.
  • During the other semester there will be a combination of compulsory and optional courses that will combine to provide the required credits in Mechanical Engineering.
  • In the summer session, a project will be undertaken by MSc students. The topic of the project can be either in Management, or Mechanical Engineering, in which case the topic will usually be closely allied with the research interests of the Discipline.
  • This programme has a September and January intake.

Aims of the programme:

  • To understand management principles and practices in an engineering environment.
  • To evaluate engineering information, and subsequent application of business and management.
  • To combine engineering and management knowledge and skills in projects and problem solving.

Programme structure

There are two semesters of taught material and a summer session working on a project or dissertation for MSc students. September entry students start with management courses and January entry students with engineering courses.

Semester 1   

You will be based in the Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

  • Contemporary issues in human resource management 
  • Managing creativity and innovation 
  • Managing innovative change 
  • Marketing management 
  • Operations management 
  • Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen mechanical engineering subjects.

Core course

  • Integrated systems design project.

Optional courses

  • Desalination technology
  • Dynamics
  • Materials engineering
  • Vibration.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to mechanical engineering projects, and January entry students have a choice of mechanical engineering projects.

Career prospects

Career opportunities include positions in project management, engineering design, materials & mechanics, dynamics, control and desalination technology.

Graduates of this programme have gone on to positions such as:

Technology Engineer at Procter and Gamble

Quality Engineer at Worcester Bosch.



Read less
The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. Read more

The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. This interdisciplinary Master's programme presents environmental issues and technologies within a systems engineering context. Graduates will understand interactions between the natural environment, people, processes and technologies to develop sustainable solutions.

About this degree

Students will develop an understanding of systems engineering and environmental engineering. Environmental engineering is a multidisciplinary branch of engineering concerned with devising, implementing and managing solutions to protect and restore the environment within an overall framework of sustainable development. Systems engineering is the branch of engineering concerned with the development and management of large complex systems.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), a collaborative environmental systems project (30 credits), two optional modules (30 credits) and an individual environmental systems dissertation (60 credits).

A Postgraduate Diploma (120 credits) is offered.

Core modules

  • Collaborative Environmental Systems Project
  • Environmental Systems
  • Systems Engineering and Management
  • Systems Society and Sustainability
  • Environmental Modelling

Optional modules

Options may include the following:

  • Engineering and International Development
  • Industrial Symbiosis
  • Politics of Climate Change
  • Project Management
  • Water and Wastewater Treatment
  • Urban Flooding and Drainage
  • Offshore and Coastal Engineering
  • Natural and Environmental Disasters
  • Energy Systems Modelling
  • Smart Energy Systems: Theory, Practice and Implementation
  • Indoor Air Quality in Buildings
  • Light, Lighting and Wellbeing in Buildings
  • Building Acoustics
  • Science, Technology and Engineering Advice in Practice
  • Energy Systems and Sustainability
  • Waste and Resource Efficiency

Dissertation/report

All MSc students undertake an independent research project addressing a problem of systems research, design or analysis, which culminates in a dissertation of 10,000 words.

Teaching and learning

The programme is delivered through lectures, seminars, tutorials, laboratory classes and projects. The individual and group projects in the synthesis element involve interaction with industrial partners, giving students real-life experience and contacts for the future. Assessment is through written examination, coursework, presentations, and group and individual projects.

Further information on modules and degree structure is available on the department website: Environmental Systems Engineering MSc

Careers

Career paths for environmental systems engineers are diverse, expanding and challenging, with the pressures of increasing population, desire for improved standards of living and the need to protect the environmental systems. There are local UK and international opportunities in all areas of industry: in government planning and regulation, with regional and municipal authorities, consultants and contracting engineers, research and development organisations, and in education and technology transfer. Example of recent career destinations include Ford, KPMG, EDF Energy, Brookfield Multiplex, and the Thames Tideway Tunnel Project.

Recent career destinations for this degree

  • Air Quality Engineer, National Environment Agency
  • Environmental Engineering Consultant, DOGO
  • Nuclear Analyst, EDF Energy
  • Graduate Flood Risk Engineer, Pell Frischmann
  • Project Manager, Veolia Environmental Services

Employability

The discipline of environmental systems engineering is growing rapidly with international demand for multi-skilled, solutions-focussed professionals who can take an integrated approach to complex problems.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The discipline of environmental systems engineering is growing rapidly with an international demand for multi-skilled professionals who can take an integrated approach to solving complex environmental problems (e.g. urban water systems, technologies to minimise industrial pollution). Environmental engineers work closely with a range of other environmental professionals, and the community.

Skills may be used to:

  • design, construct and operate urban water systems
  • develop and implement cleaner production technologies to minimise industrial pollution
  • recycle waste materials into new products and generate energy
  • evaluate and minimise the environmental impact of engineering projects
  • develop and implement sound environmental management strategies and procedures.

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting environment in which to explore environmental systems engineering. Students have the advantages of studying in a multi-faculty institution with a long tradition of excellence in teaching and research, situated at the heart of one of the world's greatest cities.

Accreditation

The progamme is accredited by the Joint Boad of Moderators, which is made up of the Institution of Civil Engineers, The Institution of Structural Engineers, the Chartered Institutions of Highways and Transportation, and the Institute of Highway Engineers.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The global shortage of qualified civil engineers includes specialists in water engineering and this MSc programme helps redress this imbalance by providing graduates with an advanced knowledge and skill base to equip them for senior industry roles. Read more

About the course

The global shortage of qualified civil engineers includes specialists in water engineering and this MSc programme helps redress this imbalance by providing graduates with an advanced knowledge and skill base to equip them for senior industry roles.

Brunel’s MSc in Water Engineering is unique in providing specialist knowledge on the critical sub-topics of water and wastewater management and engineering, desalination systems, building water services engineering, industrial waste water management, and water in health care.

The programme demonstrates the links between theory and practice by including input from our industrial partners and through site visits. This is a key aspect for establishing a competitive and high added value course that provides adequate links with industry.

Features of the course include:

Students’ skills in gathering and understanding complex information from a variety of sources (including engineering, scientific and socio-economic information) will be developed in an advanced research methods module. 

Issues relating to risk and health and safety will be introduced in the research methods module and built on in specialist modules. 

Generic modules in financial and project management will underpin specialist modules focusing on water engineering topics.

Real problem-solving examples – starting from basic principles, to the identified problem, the solution, the implementation process and was implemented and the end result. 

Real case studies – demonstrating how environmental and economic sustainability is considered within civil engineering, particularly in water resources management.

Aims

Problems associated with water resources, access, distribution and quality are amongst the most important global issues in this century. Water quality and scarcity issues are being exacerbated by rising populations, economic growth and climate change*.

Brunel's programme in Water Engineering aims to develop world class and leading edge experts on water sustainability who are able to tackle the industry’s complex challenges at a senior level. During the programme you will also learn about the development and application of models that estimate the carbon and water footprint within the energy and food sector.

The MSc is delivered by experienced industry professionals who bring significant practical experience to the course – and the University’s complete suite of engineering facilities and world-class research experience are set up for development and engineering of advanced systems, testing a variety of processes, designs and software tools.

*Recent figures indicate that 1.1 billion people worldwide do not have access to clean drinking water, while 2.6 billion do not have adequate sanitation (source: WHO/UNICEF 2005). 

Course Content

The primary aim of this programme is to create master’s degree graduates with qualities and transferable skills for demanding employment in the water engineering sector. Graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Specific aims are as follows:

- To provide education at postgraduate level in civil engineering. 
- To develop the versatility and depth to deal with new, complex and unusual challenges across a range of water engineering issues, drawing on an understanding of all aspects of water engineering principles. 
- To develop imagination, initiative and creativity to enable graduates to follow a successful engineering career with national and international companies and organisations. 
- To provide a pathway that will prepare graduates for successful careers including, where appropriate, progression to Chartered Engineer status.

The programme will provide opportunities for students to develop and demonstrate knowledge and understanding, qualities, skills and other attributes in the following areas:

Knowledge and understanding of:

- The principles of water engineering, including fluid mechanics, hydrology, and sustainable design. 
- Specialist areas that impact on the successful application of water engineering knowledge projects, e.g. sustainable construction management, financial management and risk analysis. 
- The interplay between engineering and sustainability in complex, real-world situations.

At the cognitive level students will be able to:

- Select, use and evaluate appropriate investigative techniques.
- Assemble and critically analyse relevant primary and secondary data.
- Recognise and assess the problems and critically evaluate solutions to challenges in managing water engineering projects.
- Evaluate the environmental and financial sustainability of current and potential civil engineering activities.

Personal and transferable skills that students develop will allow them to:

- Define and organise a substantial advanced investigation. 
- Select and employ appropriate advanced research methods. 
- Organise technical information into a concise, coherent document.
- Effectively employ a variety of communication styles aimed at different audiences. 
- Plan, manage, evaluate and orally-presented personal projects. 
- Work as part of, and lead, a team.

Typical Modules

Each taught module will count for 15 credits, approximating to 150 learning hours. The Master's programme can be taken full time, over 12 months. The first eight months of the full time course will eight taught modules. For the final four months, students will complete a dissertation counting for 60 credits. Modules cover:

Sustainable Project Management
GIS and Data Analysis
Water Infrastructure Engineering
Risk and Financial Management
Hydrology & Hydraulics
Water Treatment Engineering
Water Process Engineering
Research Methods
Civil Engineering Dissertation

Teaching

Our philosophy is to underpin theoretical aspects of the subject with hands-on experience in applying water engineering techniques. Although you may move on to project management and supervision roles, we feel it important that your knowledge is firmly based on an understanding of how things are done. To this end, industrial partners will provide guest lectures on specialist topics.

In addition to teaching, water engineering staff at Brunel are active researchers. This keeps us at the cutting edge of developments and, we hope, allows us to pass on our enthusiasm for the subject.

How many hours of study are involved?

Contact between students and academic staff is relatively high at around 20 hours per week to assist you in adjusting to university life. As the course progresses the number of contact hours is steadily reduced as you undertake more project-based work.

How will I be taught?

Lectures:
These provide a broad overview of the main concepts and ideas you need to understand and give you a framework on which to expand your knowledge by private study.
Laboratories:
Practicals are generally two- or three-hour sessions in which you can practise your observational and analytical skills, and develop a deeper understanding of theoretical concepts.
Design Studios:
In a studio you will work on individual and group projects with guidance from members of staff. You may be required to produce a design or develop a solution to an engineering problem. These sessions allow you to develop your intellectual ability and practice your teamwork skills.
Site visits:
Learning from real-world examples in an important part of the course. You will visit sites featuring a range of water engineering approaches and asked to evaluate what you see.
One-to-one:
On registration for the course you will be allocated a personal tutor who will be available to provide academic and pastoral support during your time at university. You will get one-to-one supervision on all project work.

Assessment

Several methods of assessment are employed on the course. There are written examinations and coursework. You will undertake projects, assignments, essays, laboratory work and short tests.

Project work is commonplace and is usually completed in groups to imitate the everyday experience in an engineering firm, where specialists must pool their talents to design a solution to a problem.

In this situation you can develop your management and leadership skills and ensure that all members of the group deliver their best. Group members share the mark gained, so it is up to each individual to get the most out of everyone else.

Special Features

Extensive facilities
Students can make the most of laboratory facilities which are extensive, modern and well equipped. We have recently made a major investment in our Joseph Bazalgette Laboratories which includes hydraulic testing laboratory equipment and facilities such as our open channel flow flumes.

Personal tutors
Although we recruit a large number of highly qualified students to our undergraduate, postgraduate and research degrees each year, we don’t forget that you are an individual. From the beginning of your time here, you are allocated a personal tutor who will guide you through academic and pastoral issues.

World-class research
The College is 'research intensive' – most of our academics are actively involved in cutting-edge research. Much of this research is undertaken with collaborators outside the University, including construction companies, water utilities, and other leading industrial firms. We work with universities in China, Poland, Egypt, Turkey, Italy, Denmark and Japan. This research is fed directly into our courses, providing a challenging investigative culture and ensuring that you are exposed to up-to-date and relevant material throughout your time at Brunel.

Strong industry links
We have excellent links with business and industry in the UK and overseas. This means:
Your degree is designed to meet the needs of industry and the marketplace.
The latest developments in the commercial world feed into your course.
You have greater choice and quality of professional placements.
We have more contacts to help you find a job when you graduate.

Visting Professors 
The Royal Academy of Engineering - UK’s national academy for engineering has appointed senior industrial engineers as visiting professors at Brunel University London.
The Visting Professors Scheme provides financial support for experienced industrial engineers to deliver face-to-face teaching and mentoring at a host of institutions. Our engineering undergraduates will benefit from an enhanced understanding of the role of engineering and the way it is practised, along with its challenges and demands. 

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course has been designed in close consultation with the industry and is accredited as a designated 'technical' MSc degree by the Join Board of Moderators (JBM). The JBM is made up of Institution of Highways and Transport and the Institution of Highway Engineeres respectively.

1. This means this course provides Further Learning for a Chartered Engineer who holds a CEng accredited first degree (full JBM listing of accredited degrees).
2. As a designated ‘technical’ MSc, it will also allow suitable holders of an IEng accredited first degree to meet the educational base for a Chartered Engineer.

Read less
The Engineering Management MSc programme helps you master current and emerging engineering management issues and the management principles that underpin effective strategies and outcomes. Read more

About the course

The Engineering Management MSc programme helps you master current and emerging engineering management issues and the management principles that underpin effective strategies and outcomes.

Balancing academic theory with practical opportunities, it equips you to handle the diverse management responsibilities that require knowledge in finance, systems thinking, operations, human resources and the design and management of the supply chain.

You will understand the way in which finance and assets are managed within the business, appreciate the concepts and principles of marketing and customer care and learn effective team working and motivation techniques – as well as a range of transferable skills.

Aims

Studying management within the MSc Engineering Management programme allows you to obtain an understanding of how an engineering organisation is managed internally and operates from a corporate perspective.

Increasingly employers are looking for students who can demonstrate a strong understanding, not just in the technical (your first degree), but also in managing people, processes, understanding business models especially in relation to the supply chain, and corporate strategy.

Most students choosing this programme are looking to demonstrate a broad range of management knowledge and skills that can be used together with their technical background to obtain management positions in their careers.

The course is intended to benefit a wide range of participants, in particular:

Engineering and technology graduates who aspire to management positions.
Established engineers working in industry and faced with the challenge of new areas of responsibility following promotion to management positions.
Managers working in engineering organisations who have the technical knowledge and skills but need to broaden their experience and update their expertise.
Others with engineering, technology or appropriate business backgrounds, working in advisory, consultancy or research roles, who need to familiarise themselves with engineering management principles and practices.
European and other overseas engineers who wish to broaden their education in the United Kingdom.

Course Content

Modes of Study

1 Year Full-Time: The taught element of the course (September to April) includes eight modules; delivery will be by a combination of lectures, tutorials and group/seminar work. A further four months (May to September) is spent undertaking the dissertation.

3-5 Years by Distance Learning: The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace. For more information regarding distance learning please see website

http://www.brunel.ac.uk/study/postgraduate/Engineering-Management-MSc

Typical Modules

Compulsory Modules

Logistics and Global Supply Chain Management
Manufacturing Systems Design and Economics
Quality Management and Reliability
Managing People and Organisations
Project Management
Dissertation
Systems Modelling and Simulation

Optional Modules (choose two)

Advanced Manufacturing Measurement
Sustainable Design and Manufacture
Global Manufacturing
Robotics and Manufacturing Automation
Financial Management

Special Features

Research

The course is underpinned by the current research still being carried out by the staff in the former academic unit Advanced Manufacturing and Enterprise Engineering which promotes manufacturing as a discipline.  Thus the academics teaching on the Engineering Management MSc which were part of this unit have strong research portfolios in manufacturing. This research has been judged world leading.  In the 2014 Research Excellence Framework, academics teaching on the course were involved with Brunel’s General engineering submission, one of one of the largest in the UK. The area’s percentage of world leading research doubled, with a significant increase in our research judged as internationally excellent as well. The impact of over 75% of this research was judged to be world leading or internationally excellent. This placed the discipline in the top 20% in the UK terms of research power.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The MSc Engineering Management is accredited by both the Institution of Mechanical Engineering (IMechE) and the Institution of Engineering and Technology (IET). This will provide a route to Chartered Engineer status in the UK.

Teaching

Students are supplied with a study pack in the form of text books and CD-ROMs which are supported by e-learning web based lecture materials.

Students can take between three and five years to complete the course, it is entirely up to you how long you take but usually the minimum is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

Assessment

Assessment is by a combination of assignments and examinations. Examinations can be taken either at Brunel University or in the country you are resident in (the latter on the Distance Learning mode only). We have an extensive network of organisations (universities, colleges and British Council Offices) throughout the world that will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. The exams are held in May and September each year.


 

Read less
This course has been designed with industry to meet the challenge of interdependence between sophisticated engineered systems of all kinds. Read more
This course has been designed with industry to meet the challenge of interdependence between sophisticated engineered systems of all kinds. It is often taken in its part-time format.

It is aimed at engineers who have specialised in a traditional discipline but are now expected to understand, operate in, develop and integrate entire systems that are not only increasingly complex but rapidly changing.

The block taught format of the programme and the option to elect assessment by coursework rather than exam makes it a popular part time course and a CPD option.

Core study areas include systems thinking, systems architecture, systems design, verification and validation, and an individual project.

Optional study areas include enterprise systems management, holistic engineering (industry-led module), sensors and actuators for control, imagineering technologies, engineering and management of capability and understanding complexity.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/systems-engineering/

Programme modules

Compulsory Modules:
• Systems Thinking
• Systems Architecture
• Systems Design
• Validation & Verification
• Individual Project

Optional Modules (choose four):
• Enterprise Systems Engineering
• Holistic Engineering (industry-led module)
• Sensors and Actuators for Control
• Imagineering Technologies
• Engineering and Management of Capability
• Understanding Complexity

Block taught, individual modules are also highly suitable as CPD for professional engineers working onsystems engineering projects and challenges.

How you will learn

The curriculum stimulates thinking and extends the capabilities of technical managers and engineers to handle complexity, enabling them to remain effective in the workplace by providing:
- an integrated systems engineering view of inter-related technologies, processes, tools, techniques and their effective use;

- essential systems skills such as model-based systems architecture and design, against a background of the need for traceability in managing complex projects;

- knowledge and technical expertise in a range of systems technologies;

- experience of the importance to ultimate success of effective, integrated, multi-skilled project teams working in extended enterprises beyond the confines of any particular organisation;

- increased depth of technical and management knowledge through elective modules; and

- the ability to transfer systems skills and knowledge into the workplace through the individual master’s project.

Teaching staff comprise a varied skill set of international expertise to give the broadest perspectives and modules frequently feature master classes from industry practitioners.

- Assessment
There is the option to complete without written examinations as all compulsory modules are assessed by coursework. Where examinations are taken these are in January and May.

Facilities

We employ advanced modelling, simulation and interactive visualisation tools and techniques to enable you to gain greater understanding of the performance, behaviour and emergent properties of advanced technology and complex systems.

Many of these facilities are part of the Advanced VR Research Centre ( AVRRC) http://www.lboro.ac.uk/research/avrrc/facilities/

Careers and further study

Graduates of this course gain capabilities that are in global demand across a range of sectors and which can be applied to the challenges and issues posed by any complex system design and operation.

Promotion within their company for sponsored students is common since the course enables them to match higher job expectations and demands. Employed students often bring a work-relevant topic to their individual project giving the opportunity to display newly acquired skills.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/systems-engineering/

Read less
All those involved in the wider defence enterprise, across government, military, industry, science and technology have changing needs and aspirations for defence. Read more

Course Description

All those involved in the wider defence enterprise, across government, military, industry, science and technology have changing needs and aspirations for defence. Agility, resilience, continuity of supply, skills and innovation now complement the continuing need to balance cost, time and performance in everything we do.

The Centre for Systems Engineering has been at the forefront of developing systems engineering education for the past fifteen years, blending the breadth of systems thinking with the rigour of systems engineering and closely integrating this within acquisition management.

You will develop knowledge and skills in understanding the wider context of defence capability and guiding the development of operational, support and enabling business solutions which both deliver cost effective outcomes and contribute to the attributes of defence as a whole.

Course overview

The course is modular and you will accumulate credits for each module you successfully complete:

- Full modules are each worth 10 credits.
- The Advanced Systems Engineering Workshop is worth 20 credits.

The course structure has been devised to give the maximum amount of flexibility for you to create your own learning pathway whilst ensuring that the fundamental principles of systems engineering are compulsory.

- The PgCert comprises 60 credits of which 40 are for compulsory modules and 20 are for elective modules.
- The PgDip comprises 120 credits of which 70 are for compulsory modules and 50 are for elective modules.
- The MSc comprises 200 credits of which 70 are for compulsory modules, 50 credits are for elective modules and 80 are for the thesis associated with the Individual Project.

Full-time MSc - one year, Part-time MSc - up to three years, Full-time PgCert - one year, Part-time PgCert - two years, Full-time PgDip - one year, Part-time PgDip - two years

(For MOD status students the duration may vary, subject to annual review.)

Individual Project

The Individual Project provides you with an opportunity to undertake an in-depth study of an area of particular interest to you or your sponsor which is written up as a thesis or dissertation. The study might include, for example:

- Application of Systems Engineering tools and techniques to a real world problem.
- Analysis of underpinning Systems Engineering theory and practice.
- Development of new or tailored Systems Engineering processes.

Modules

The Compulsory and Elective Modules below are as for the MSc and PgDip. For PgCert students Capability Context and Advanced Systems Engineering Workshop are Elective.

Core -

Advanced Systems Engineering Workshop (ASEW)
Applied Systems Thinking
Capability Context
Lifecycle Processes Introduction
Lifecycle Processes Advanced
Systems Approach to Engineering

Elective -

Availability, Reliability, Maintainability and Support Strategy (ARMSS)
Decision Analysis, Modelling and Support (DAMS)
Human Centric Systems Engineering (HCSE)
Introduction to Defence Capability
Model Based Systems Engineering
Simulation and Synthetic Environments
System of Systems Engineering
Thesis Selection Workshop
- Systems Engineering and Software
- Systems Engineering Workshop
- Networked and Distributed Simulation Exercise

Assessment

Coursework, written examinations, oral examinations, portfolio and, for the MSc only, an individual thesis.

Funding

Funding is available to MoD students. For more information contact MoD Enquiries by calling 01793 314485 (Option 4) or Mil: 96161 4485.

For more information on funding for non-MoD students please contact

Career opportunities

Takes you on to impressive career prospects across a range of roles commensurate with your experience. This includes membership of multidisciplinary teams in acquisition, supply or research organisations. This could be in both general systems engineering roles or as a focal point for specific skills such as availability, reliability and maintenance (ARM), human factors, requirements, architecture test and evaluation, etc. It is also applicable to key roles in MoD acquisition such as Project Team leader, capability manager and requirements manager.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/Systems-Engineering-for-Defence-Capability

Read less
Competency in project management has become a key part of the skills-set of every construction professional and executive, with many construction project managers functioning in a strategic and co-ordinating role in the delivery of the client’s physical development and investment programme. Read more
Competency in project management has become a key part of the skills-set of every construction professional and executive, with many construction project managers functioning in a strategic and co-ordinating role in the delivery of the client’s physical development and investment programme.

Society continues to value and shape the built environment resulting in both public and private investment in construction assets and the successful completion of construction projects. As these projects become more socially and technically complex in a changing world dominated by a concern for sustainability, there has been a growing challenge to develop existing and new skills and expertise in construction project management. This challenge is not only national but global as the need for construction project management skills continues to grow internationally. Indeed, our student cohorts reflect this global challenge with students from across multiple continents.

We have been running programmes in MSc Construction Project Management for nearly 20 years. This arose from the need to extend the managerial remit to those activities that fall outside the construction phase to include areas such as financing, design and hand-over. The programme is therefore tailored for construction professionals looking for a more holistic perspective of construction project processes and the challenge of project management in complex building and infrastructure projects.

Accreditation of the programme is provided by the UK’s Royal Institution of Chartered Surveyors (RICS), the Engineering Council and The Chartered Institute of Building (CIOB).

Core study areas include: Building Information Modelling, Design Management and Sustainability in the Built Environment.

Key facts

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015
- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.
- Fully accredited by the UK's Royal Institution of Chartered Surveyors (RICS), the Engineering Council and The Chartered Institute of Building (CIOB).

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/construction-project-management/

Programme modules

- ICT for Construction Projects
This module introduces managers to a wide range of tools and technologies appropriate for their role and projects. The module covers a range of topics including project information flows, e-business, database technologies, emerging technologies, building information modelling technologies, groupware and collaborative systems.

- Research and Communication
The aims of this module are to provide the student with an overview of sources of information in construction; to explain to students how to conduct a literature review and introduce students to the principal methods of investigation in construction research; and provide an opportunity for each student to develop professional and academic skills in oral and written communication.

- Principles of Design and Construction
This module teaches students the fundamental principles of managing a project during the design and construction phases. The module develops knowledge and understanding of the role and principles of the estimating, tendering and planning of construction projects and the importance of health and safety in relation to design and construction activities.

- Principles of Project Management
Students will gain an understanding of construction project management principles and theory. Specific areas covered include management responsibility for running construction projects; contemporary issues facing the construction industry; cultural complexity and the impact of behaviour and motivation on performance; and applying appropriate project management techniques for the different project phases.

- Design Management
This module introduces various Design Management techniques and approaches. These include process mapping techniques for design; ways to analyse and optimise the design process; and students will gain an understanding of the internal workings of a design office and their relationship with the construction team.

- Sustainability and the Built Environment
Students will gain an understanding of sustainability issues that relate to the built environment; ways in which these issues can be managed and effective communication of both strategic and technical information.

- Management of Construction Processes
This module introduces students to cutting edge contemporary management concepts and innovations; complexities of setting up and managing logistics on large construction sites; and essential project management techniques such as risk management.

- Postgraduate Research Project
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to Construction Project Management.

Option Module (part-time students only)
- Management and Professional Development 1
The aim of this module is to enable students to plan, develop and demonstrate progress against a suitable professional development framework, such that they become equipped with a range of transferable management and professional development skills.

Option Modules One
Choose one from
- Strategic Management in Construction
The aim of this module is to introduce students to the fundamental concepts of strategic management and the tools for formulating and implementing strategies within the construction sector. The application of strategic management tools to develop appropriate change strategies will be explored and fundamental skills in communication, negotiation and leadership will be developed.

- People and Teams
Students will gain a knowledge and understanding of the key fundamental management principles and theory (such as motivation, teamwork, leadership, task management) and how they can be applied to managing people within the context of the construction project environment. Students will also be able to analyse current theoretical approaches to people management, appreciate importance of ethics and cultural issues and evaluate the key factors driving HRM systems.

- Procurement and Contract Procedure
This module aims to develop students understanding of procurement methods, different forms of contract and contract practice. The module is designed to give students key practical skills including advising clients on appropriate procurement and tendering methods; selecting the most appropriate form of construction contract; and manage a construction contract effectively.

- Business Economics and Finance
Students will gain a sound understanding of macro, meso and micro economics and types, sources and management of finance relating to construction organisations and projects. This will allow students to analyse the policies and operations of construction organisations and projects from an economic perspective to determine likely performance consequences and analyse corporate financial data for investment prospects and business management decisions.

- Federated 3D Building Information Modelling (BIM)
The creation, deployment and use of aggregated and integrated models are key goals of collaboration through BIM. This module aims to deliver hands-on practical skills on the use of BIM technologies (i.e. design software and collaboration tools) for real-time co-creation and data sharing of federated/aggregated 3D BIM models. The concept of shared situational awareness within design teams/processes will be explored.

Careers and further study

Previous students have gone on to work for a variety of organisations nationally and internationally. These include Arup, Atkins, BAM Nuttall Ltd, Balfour Beatty, Kier Group, Morgan Sindall, Skanska and Transport for London. Many of these organisations engage with the University in both collaborative research and in delivering lectures on the courses. This provides an ideal opportunity for students to engage in discussions about employment opportunities.

Scholarships and bursaries

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Accreditation

This degree is accredited as meeting the requirements for further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree.
The course is also accredited by the UK's Royal Institution of Chartered Surveyors (RICS), the Engineering Council and The Chartered Institute of Building (CIOB).

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/construction-project-management/

Read less
This Master's degree is designed for students who wish to practice across a broad range environmental engineering and apply new sustainable risk management strategies for complex environmental problems. Read more
This Master's degree is designed for students who wish to practice across a broad range environmental engineering and apply new sustainable risk management strategies for complex environmental problems. Water, Waste and Environmental Engineering has been traditionally referred to as public health engineering in the United Kingdom. In this postgraduate course, the technical aspects of both natural and engineering environmental systems will be covered. There will be broad interdisciplinary subjects synthesizing knowledge from a wide spectrum of science and engineering, expanding the content of public health engineering, which in the UK has traditionally been responsible for developing the infrastructure for managing water and waste.

Students will develop engineering skills and be able to design, develop and apply concepts for water and waste as a resource based on environmental sensitivity and be competent in planning, modelling, design, construction, operations, maintenance and control of both engineered and natural water and earth resources.

Students who select this postgraduate programme will gain a skill set that will enable them to progress in the fields of:

- Environmental engineering
- Desalination and water reuse
- Water resources engineering
- Hydraulics and hydrology
- Environmental fluid hydraulics
- Environmental remediation
- Waste management
- Other specialities valued in both the private and public sectors.

The MSc in Water, Waste and Environmental Engineering will incorporate solid waste management, contaminated land treatment and the use of geographic information systems (GIS) with emphasis on management of the earth's resources.

The programme will explain the relationship between different earth resources including hydrosystems, both 'engineered' - hydro-power plants, water/wastewater treatment plants, sewers - and 'natural' - rivers, lakes, wetlands, irrigation districts, reservoirs etc., solid wastes, brownfield land, and geo-derived primary resources and their sustainable management.

The aims of the programme are:

- To show you how to design, implement and manage sustainable, risk-reduced eco-friendly solutions for reducing the environmental impact of exploitation of earth's resources in the context of environmental engineering-related issues facing global societies

- To provide you with the skills to further your careers in these areas

- To support you in understanding the innovative and pioneering approaches in this field and to be able to apply them to the solution of real-world problems in developing novel industrially-relevant solutions.

Visit the website http://www2.gre.ac.uk/study/courses/pg/enggen/wwee

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

Environmental Engineering and Sustainability (15 credits)
Hydrosystems Engineering and Management (15 credits)
Individual Research Project for Civil and Environmental Engineering (60 credits)
Information Technologies for Environmental Engineering (15 credits)
Research, Planning and Communication (15 credits)
Waste Management and Remediation Technology (15 credits)
Desalination and Water Reuse (15 credits)
Water and Sanitation for Developing Countries (15 credits)
Water and Wastewater Engineering (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Environmental Engineering and Sustainability (15 credits)
Information Technologies for Environmental Engineering (15 credits)
Waste Management and Remediation Technology (15 credits)
Desalination and Water Reuse (15 credits)

-Year 2:
Students are required to study the following compulsory courses.

Hydrosystems Engineering and Management (15 credits)
Individual Research Project for Civil and Environmental Engineering (60 credits)
Research, Planning and Communication (15 credits)
Water and Sanitation for Developing Countries (15 credits)
Water and Wastewater Engineering (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Teaching and learning

The number of contact hours (e.g. lectures, seminars and feedback on assignments) per module/course ranges from 50-75 hours for the one year full time programme or roughly equivalent to four hours per week per module. The expected self-study time is approximately 80-90 hours per module per year (roughly equivalent to four hours per week per module).

You will be taught by academics with a range of industrial and academia experience for each module.

Assessment

Project work, assignments and laboratory exercises in addition to substantial written examination of course materials will occur in most modules. The Environmental Engineering Research Project will require submission of a substantial final report/dissertation. Assessment of this module will involve participation in a poster and seminar presentation and a final oral examination.

Professional recognition

Accreditation will be sought from the Chartered Institution of Water and Environmental Management (CIWEM) and The Joint Board of Moderators (JBM) including the Institution of Civil Engineers, The Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and Institute of Highway Engineers.

Career options

Postgraduate students from this programme will find such employment opportunities as engineers, scientist and technical managers in the private sector (engineering design firms, engineering consultancy, project management, risk management and waste management), in the public sector (environmental protection engineering, regulations and standards, local government) and in non-governmental sectors (NGOs, environmental advocacy) or may wish to pursue further qualifications such as a PhD within the Faculty of Engineering and Science at the University of Greenwich to become even more specialised. Employers of environmental engineers include engineering consultancies (such as AECOM, Atkins, Mott MacDonald Group, Hyder), government agencies (such as Environment Agency, Scottish Environment Protection Agency) and NGOs (such as Oxfam, Engineers without Boarders, Water Aid).

Careers and employability

FACULTY OF ENGINEERING & SCIENCE
We work with employers to ensure our degrees provide students with the skills and knowledge they need to succeed in the world of work. They also provide a range of work experience opportunities for undergraduates in areas such as civil engineering, manufacturing and business information technology.

Students also benefit from the services provided by the university’s Guidance and Employability Team, including ‘JobShop’, mentoring, volunteering and the student ambassador scheme.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
Your programme of study. A crucial part of the oil and gas industry, energy and marine based industries, Subsea Engineering is an essential and highly trained area of work involving all discipline areas within Engineering. Read more

Your programme of study

A crucial part of the oil and gas industry, energy and marine based industries, Subsea Engineering is an essential and highly trained area of work involving all discipline areas within Engineering. University of Aberdeen has gained an industry reputation in the energy industry which is located in the City due to extensive research and collaboration since the industry grew in the 1970s. This level of research and work within industry who also advise on many of the vocational/academic programmes at the University ensures a level of rigour which will carry you as a professional right throughout your career.

You combine technical knowledge with understanding of systems, types of risks, challenges in very hard to reach areas, integrity, inspection, maintenance, controls, flow assurance, reliability and mechanics of various structures and facilities. The industry continuously changes as more technology comes on board to support integrity and reliability issues, but the basics remain the same in requiring solid engineering skills, knowledge, analysis and problem solving ability.

Careers in this area can include: Analysis Engineer, Marine Contractor, Subsea Field Engineer, Subsea Installation Engineer, and similar positions in the energy industry. There are also other industries which involve Subsea Engineering and knowledge. You gain plenty of accreditations of professional standing as follows:

  • Institution of Structural Engineers
  • Institute of Mechanical Engineers
  • The Institute of Marine Engineering, Science and Technology
  • Institution of Civil Engineers
  • Institute of Highway Engineers
  • Chartered Institution of Highways and Transportation
  • Energy Institute

University of Aberdeen offers this programme on campus and online to allow some level of flexibility in studying from different locations. The University is highly regarded in the energy industry and offers programmes which are tailored to operations, facilities and professional management of the oil and gas industry. There are world renowned experts who teach on specific programmes at the University such as Energy Economics, MBA, Energy Law, Engineering, Geology and other subject areas such as strategic planning and risk management.

You can study both on campus or online.

Courses listed for the programme

Subsea Engineering (Campus)

Semester 1

  • Offshore Structures and Subsea Systems
  • Subsea Control
  • Subsea Integrity
  • Subsea Construction, Inspection and Maintenance

Semester 2

  • Pipelines and Soil Mechanics
  • Risers Systems and Hydrodynamics
  • Flow Assurance
  • Engineering Risk and Reliability Analysis

Semester 3

  • Subsea Engineering Individual Project

Find out more detail by visiting the programme web page

Campus programme

Subsea Engineering (Online)

Year 1

  • Offshore Structural and Subsea Systems
  • Subsea Construction, Inspection and Maintenance
  • Pipelines and Soil Mechanics
  • Engineering Risk and Reliability Analysis

Year 2

  • Subsea Control
  • Subsea Integrity
  • Risers Systems and Hydrodynamics
  • Flow Assurance

Year 3

  • Subsea Engineering Individual Project

Find out more detail by visiting the programme web page

Online programme

Why study at Aberdeen?

  • Aberdeen is recognised as a Global Centre of Excellence for Subsea development and operations. The programme is fully accredited professionally and overseen by an Industry Advisory Board
  • You learn from the industry and the university in the 'World Energy City' of Aberdeen getting the chance to visit industry relevant events, networking opportunities and events on campus

Where you study

International Student Fees 2017/2018

  • Scotland/EU £5500
  • Other UK £5500
  • International £20 000

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Find out more about fees

Scholarships

View all funding options on our funding database via the latest opportunities page

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and Living costs

Other engineering disciplines you may be interested in:



Read less
This course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility. Read more

About the course

This course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility.

It caters to the worldwide demand for building services engineering managers who have a sound knowledge of engineering and management principles – and the ability to apply this knowledge to complex situations.

Management modules cover engineering finance and accounting, people management, business organisation and facilities and contract management.

Aims

Building Service Engineers help buildings to deliver on their potential by working with architects and construction engineers to produce buildings that offer the functionality and comfort we expect, with the minimum impact on our environment. They design the lighting appropriate for the space, the heating, cooling, ventilation and all systems that ensure comfort, health and safety in all types of buildings, residential commercial and industrial.

Building services engineering is an interdisciplinary profession. It involves the specification, design, installation and management of all the engineering services associated with the built environment.

With the growing complexity of engineering services in modern buildings and the significance of energy conservation and pollution control, the role of the building services engineer is becoming increasingly important.

As an interdisciplinary profession that involves the specification, design, installation and management of all the engineering services associated with the built environment, comfort and function also need to be combined – which calls for engineers with a wide range of knowledge and skills.

This MSc programme is for:

Recent engineering and technology graduates, moving into building services and related disciplines.
Established engineers and technologists, working in building services and faced with the challenge of new areas of responsibility.
Engineers who want to develop technical understanding and expertise across the multi-disciplines of building services engineering.
Managers and designers, who need to broaden their experience and require updating.
Lecturers in higher education, moving into or requiring updating in building services engineering.
Others with engineering and technology backgrounds, perhaps working in advisory or consultancy roles, who wish to familiarise themselves with building services engineering. However, choice of course will be dependent upon the type and extent of knowledge and skills required.

Course Content

Modes of Study
3-5 Years Distance Learning

The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to suit yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.

Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Compulsory Modules

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Engineering Finance and Accounting
Management of People in Engineering Activities
Organisation of Engineering Business
Management of Facilities and Engineering Contracts
Dissertation

Students should choose one of the two themes below:

Theme A - Traditional

Energy Conversion Technologies
This element provides a broad introduction to the principles of energy conversion and thermodynamic machines and demonstrates their application to energy conversion and management in buildings. Emphasis is placed on refrigeration plant, energy conversion plant and energy management.
Refrigeration covers the basic principles and components of vapour compression systems, heat pumps and absorption systems.
Energy Conversion considers power cycles, combined heat and power, combustion processes, boiler plant, thermal energy storage and environmental impacts of plant operation.

Theme B - Renewable

Renewable Energy Technologies
This element includes: energy sources, economics and environmental impact, energy storage technologies, the role of renewables, solar thermal, solar electricity, wind power generation, hydro, tidal and wave power, biofuels, building integrated renewables.

Special Features

There are several advantages in choosing Brunel's Building Services programme:

Award-winning courses: Building Services Engineering courses at Brunel have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: it is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities

We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Accreditation

The course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng).

Teaching

Students are supplied with a study pack in the form of text books and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations are normally taken in May.
Successful completion of the taught modules allows the student to proceed to the dissertation stage. To qualify for the award of the MSc degree, the student must submit a satisfactory dissertation.

Read less

Show 10 15 30 per page



Cookie Policy    X