• Leeds Beckett University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of Southampton Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
University of Birmingham Featured Masters Courses
Coventry University Featured Masters Courses
"systems" AND "control"×
0 miles

Masters Degrees (Systems And Control)

  • "systems" AND "control" ×
  • clear all
Showing 1 to 15 of 786
Order by 
This Systems and Control MSc degree aims to develop a sound understanding and knowledge of systems and control, and offers a wide choice of modules to suit your individual needs. Read more
This Systems and Control MSc degree aims to develop a sound understanding and knowledge of systems and control, and offers a wide choice of modules to suit your individual needs. You will learn the combined skills in your chosen area including artificial intelligence for control, image and signal processing, data acquisition and embedded control.

The European Systems and Control course option, requires students to study for modules in a partner EU institution.

WHY CHOOSE THIS COURSE?

Job satisfaction and remuneration prospects are excellent, with employer demand for those with a supply chain background outstripping the supply of suitably qualified applicants.

Enhance your qualifications and release your potential to improve yourself and move your organisation forward.

Classes are taught by academics with a long track record of working with industry and who bring in leading industry experts wherever that is possible.

This Course has been awarded accreditations from the IET and InstMC.

WHAT WILL I LEARN?

Topics: The course has the following six core taught modules:
-Maths and Computing for Control
-Linear Control Engineering
-Digital Computer Control Systems
-Artificial Intelligence for Control
-Control Systems Engineering Project

Option Topics: To complete the programme students should add a further 60 credits from below:
-Non-Linear Control engineering
-System Identification, Parameter Estimation and Filtering
-Self-Tuning and Adaptive Control
-Simulation of Systems
-Data Acquisition and Embedded Control
-Signal and Image Processing
-Single Independent Study

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

Graduates may apply for membership of the Institution of Electrical Engineers and the Institute of Measurement and Control. Career opportunities range from project engineers, systems and control engineers, and computer systems integrators across a wide range of industrial sectors.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
The MSc Embedded Systems and Control aims to provide the knowledge and skills required of a professional engineer to design embedded systems for use in control, diagnostics, monitoring and communications. Read more
The MSc Embedded Systems and Control aims to provide the knowledge and skills required of a professional engineer to design embedded systems for use in control, diagnostics, monitoring and communications. State-of-the-art techniques in control system design, signal processing and software design will be core elements of the course.

Read less
The overall objective of this course is to add value to your first degree and previous relevant experience by developing a focused, integrated and critically aware understanding of underlying theory and current policy and practice in the field of control systems engineering. Read more
The overall objective of this course is to add value to your first degree and previous relevant experience by developing a focused, integrated and critically aware understanding of underlying theory and current policy and practice in the field of control systems engineering.

The course is control systems focused, with the emphasis on control systems theory together with a range of control applications including industrial control (SCADA), intelligent control, flight control and robotic control. The control systems approach provides continuity in learning throughout the one year of study.

Key benefits:

• Emphasis on feedback control, robotics, flight control and discrete event manufacturing control
• Real opportunities for career progression in to the automation industry
• Programme designed using Engineering Council benchmarks

Visit the website: http://www.salford.ac.uk/pgt-courses/advanced-control-systems

Suitable for

This course is suitable for engineering graduates seeking employment in the automation and control sector, and, in part-time mode, for practising engineers from the control systems area who wish to extend and update their skills.

Programme details

On completion of the course you should have a critical awareness and understanding of current problems in control engineering, techniques applicable to research in the field of control systems and how established techniques of research and enquiry are used to create and interpret knowledge in the field of control systems. You should also be able to deal with complex issues both systematically and creatively, make sound judgments in the absence of complete data, and communicate your conclusions clearly to specialist and non-specialists.

Format

Teaching will be delivered through a combination of lectures, tutorials, computer workshops and laboratory activities.

Module titles

• Automation and Robotics
• Instrumentation and Control
• Artificial Intelligence
• Flight Dynamics and Control
• Operations Techniques and Management
• MSc Project and Dissertation

Assessment

• 35% examinations
• 65% coursework (labs, reports, dissertation)

Career potential

The course could lead to control and automation opportunities in manufacturing and engineering companies, plus careers in the aerospace sector. There are also opportunities to pursue further research within our CASE control and Intelligent Systems Research Centre.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less
The graduate in Automation and Control Engineering is an expert who can actively participate and take the lead in the executive design and development of products and systems. Read more

Mission and goals

The graduate in Automation and Control Engineering is an expert who can actively participate and take the lead in the executive design and development of products and systems. She/he may take on full responsibility for designing, installing, testing and maintaining complex machines and systems. The goal of the Automation and Control Engineering programme is to provide the graduate with a strong background in fundamental scientific disciplines, such as mathematics and physics, in classical engineering fields, such as thermodynamics, mechanics, electric drives, automatic control, and in the disciplines of the information and telecommunication technology, like computer science, electronics, communication networks. Thanks to the interdisciplinary nature of her/his background, the graduate has all the necessary skills to design or manage systems resulting from the integration of highly diverse components and technologies. This flexibility both in the attitude and in the competences is a significant asset of the Automation and Control Engineer, in view of the large variety of possible applications, of the continuous and rapid evolution of the technologies, as well as of the dynamics of the job market.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

Career opportunities

Automation and Control Engineering offers challenging and fulfilling careers for engineering technologists in design, research and development, and technical support, in many fields where automation and control are of paramount importance, such as: (a) industry producing manufacturing systems, automatic machines, robotic systems, mechatronic systems; (b) process industry (pulp and paper, energy production and conversion, chemical and petrochemical industry, etc.); (c) transportation systems (ground, marine and aerospace), concerning both the development of vehicles (cars, boats, helicopters, aircrafts, satellites), and the design, management and control of infrastructures; (d) transportation and distribution networks; (e) food industry; (f) electrical appliances and domotics; (g) environmental resources.

Typical companies where the automation and control engineers may operate include those producing and selling automation systems (both hardware and software); companies that use automated production plants or that manage highly complex services; engineering and consulting firms that design and project complex, economically challenging and technologically advanced plants and systems.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Automation_Engineering.pdf
This programme aims at providing the graduates with sound engineering skills to design, develop, implement and manage automation systems for manufacturing plants, industrial processes, mechatronic devices, distribution networks and environmental systems. Graduates have a strong background in the classical engineering fields and in the information and telecommunication technology. The interdisciplinary nature of this programme provides the graduates with all the skills to design/manage systems resulting from the integration of highly diverse technologies.
Graduates will have wide employment opportunities in many fields: industry producing manufacturing systems, automatic machines, robotic systems, mechatronic systems, process industry, transportation systems, transportation and distribution networks, food industry, electrical appliances, home automation and environmental resources.
The programme is taught in English.

Subjects

The mandatory courses are:
- Advanced and multivariable control
- Automation and control laboratory
- Computer aided manufacturing
- Dynamics of electrical machines and drives
- Dynamics of mechanical systems
- Model identification and data analysis
- Software engineering

Among the optional courses:
- Automation and control in vehicles
- Automation of energy systems
- Control of industrial robots
- Production systems control
- Safety in automation systems
- Thesis and final exam

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Technical systems, be they consumer products or industrial systems for process and production control, have an increasing need for intelligent control. Read more
Technical systems, be they consumer products or industrial systems for process and production control, have an increasing need for intelligent control.

By extending mechanical solutions with sensors and electronics there are ample possibilities to create not only new functions, but also make these new solutions effective and apply to quality and safety requirements, cost reductions and environmental demands.

The challenge lies in making the control of these systems accurate (precise), fast and yet robust and flexible.

Programme aim

The aim of the programme is to prepare the students for a professional career by providing a broad systems engineering
base, suited to the engineering of complex, computer-controlled (embedded) products and systems, and offering course packages toward subtopics (e.g. control; automation; mechatronics) and/or fields of application.

Applications span a wide spectrum, from small consumer devices and medical equipment to large systems for process and production control.

A basic idea behind the programme is the systems perspective and the general systems engineering skills. The elective part of the programme can be tailored towards an application area or to more fundamental topics in control, automation or mechatronics.

Programme description

A striking example of the current development can be found in the automotive area, where modern passenger cars increasingly depend on the integration of the car’s mechanical subsystems with a substantial amount of embedded computers, sensors, actuators, and communication devices, making it possible to create cars with active safety functions and new propulsion systems. Other evolving fields of this discipline is HVDC power transmission to minimize loss in the grid and intelligent robots for households and industry, to name a few.

To ensure development within the field, all these systems depend on engineers making them precise, effective, flexible, fast and safe. As a student you will become able to contribute to the development that will lead to the integration of functions for sensing, monitoring and control with a wide range of products and systems.

We prepare you for a professional career by providing a broad systems engineering base. In the basic courses our focus lies in developing your engineering skills on a system level; Discrete event systems, Modelling and simulation, Linear control system design, Embedded control systems and Design project. In the elective part of the programme, we offer course packages toward subtopics e.g. control, automation and mechatronics and/or fields of application.

In collaboration with Universität Stuttgart, we also offer you a possibility to pursue a double degree.

Why apply

The programme leads to a wide range of career opportunities with emphasis on operation, design, development and research of complex technical systems within almost any branch of industry. In fact, the generality of many of the methods offers great opportunities in terms of choosing among many different application domains. The acquired skills are needed at manufacturing companies, supplier companies, consulting firms and utility companies.

Job roles range from applied research to product and system development and operation, as well as extend to sales support and product planning. In addition, other career opportunities may arise as academic researchers, technical advisors, project managers and teachers at different levels.

Read less
This new course will not only teach you about the fundamental and advanced concepts of modelling, simulation, control, optimisation and systems engineering, but also provides you with a range of management techniques, including. Read more

About the course

This new course will not only teach you about the fundamental and advanced concepts of modelling, simulation, control, optimisation and systems engineering, but also provides you with a range of management techniques, including: project management, risk management, professional skills and effective management of innovative development.

Our world-leading research and our partnerships with industry give you an advantage in a competitive careers market. You’ll learn about the very latest developments in systems, control, computational intelligence and robotics – effectively preparing you for a future in engineering.

[Push yourself further]]

We have cutting edge facilities and technology, including: advanced control and systems software, modelling, simulation and controller design tools, robotics and a flexible manufacturing systems laboratory, evolutionary computing laboratory and clean facilities for the assembly of satellite instrumentation.

Make your mark

You could pursue a career with a large international organisation or government department. Our graduates work in sectors such as manufacturing, power generation and sustainable energy, with companies including British Airways, Jaguar Land Rover, NASA, IBM, Rolls-Royce and Unilever.

A masters from Sheffield is the mark of someone with the skills to apply their knowledge in industry, anywhere in the world. Our MSc in Advanced Control and Systems Engineering is accredited by the Engineering Council UK, IET and InstMC. These marks of assurance mean our degrees meet the high standards set by the engineering profession.

A Sheffield masters is a strong foundation for a career in industry or research.

Industry links

We have strong links with industrial partners such as Rolls-Royce and BAE Systems. Our industrial partners help us to design our courses, making sure you learn the right skills.

Rolls-Royce has a research and development centre here, using our expertise to explore today’s challenges. Our masters students often work side by side with researchers at these facilities.

A stimulating environment

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research output, ahead of Oxford and Cambridge, and No 3 for overall research excellence. Our world-class reputation attracts highly motivated staff and students.

You’ll be taught by staff who work on real-world projects, developing new ideas – for submarines, robots, Formula One and even space exploration. Their approach to teaching is just as innovative: ideas like the award-winning take-home lab kit and e-puck mobile robotics activities help you develop the problem-solving skills you need for a trailblazing career.

Core Modules

Foundations of Control Systems; State-Space, Optimal Control and Nonlinear Systems; Signal Processing and Estimation; Embedded Systems and Rapid Control Prototyping; Managing Engineering Projects and Risk; Design Innovation Toolbox; Professional Responsibilities of the Engineer; Control Systems Project and Dissertation.

Examples of optional modules

Advanced Industrial Control; Robotic and Autonomous Systems; Intelligent and Vision Systems; Multisensor and Decision Systems; Nonlinear and Hybrid Systems.

Teaching and Assessment

There are lectures, tutorials, laboratory work and individual assignments. You will be assessed on examinations, coursework assignments and a project dissertation.

Read less
If you wish to embark on an exciting career in the area of control systems and engineering or are a practising engineer who wishes to update their skills then this is the course for you. Read more
If you wish to embark on an exciting career in the area of control systems and engineering or are a practising engineer who wishes to update their skills then this is the course for you.

This is a challenging course which covers all the major aspects of automatic control systems engineering.

WHY CHOOSE THIS COURSE?

This course covers all the major aspects of automatic control systems engineering, with modules ranging from classical control system design to optimal, adaptive and intelligent control systems, including an introduction to artificial neural networks and evolutionary computing.

This Course has been awarded accreditations from the IET and InstMC.

WHAT WILL I LEARN?

All students study Seven fundamental modules which serve to underpin the remainder of the course:
-Maths & Computing for Control
-Linear Control Engineering
-Digital Computer Control Systems
-Non-Linear Control engineering
-System Identification, Parameter Estimation & Filtering
-Self-Tuning and Adaptive Control
-Control Systems Engineering Project

The remaining Option Topics on the course are:
-Digital Computer Control Systems;
-Simulation of Systems
-Data Acquisition and Embedded Control
-Signal and Image Processing
-Artificial Intelligence for Control
-Single Independent Study

(Students are required to select from the modules above to complete a total of 30 credits.)

In addition, the masters project can be tailored to suit the interests of each individual, and have included in the past: Adaptive model based control of a hot steel rolling mill; Comparison of rule-based and model based control systems; Identification of diesel engine characteristics from operating records and Development of a fuzzy logic gas engine speed controller.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

On completion of this course you can expect to pursue a career in the area of control and systems engineering.

The course also provides the necessary groundwork for a career in research in academia or another such research organisation, including our own Control Theory and Applications Centre (CTAC) and Applied Mathematics Research Group (AMRC).

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
This version of our flagship course includes a 12-month work placement. In the first year, you’ll take basic and advanced modules. Read more

About the course

This version of our flagship course includes a 12-month work placement. In the first year, you’ll take basic and advanced modules. In the second year, you’ll put your knowledge and skills to work.

We’ll give you training in research skills. You’ll carry out an extended research project with a dissertation. You’ll also write a report and give a presentation based on your work placement.

Push yourself further

We have cutting edge facilities and technology, including: advanced control
and systems software, modelling, simulation and controller design tools, robotics and a flexible manufacturing systems laboratory, evolutionary computing laboratory and clean facilities for the assembly of satellite instrumentation.

Make your mark

You could pursue a career with a large international organisation or government department. Our graduates work in sectors such as manufacturing, power generation and sustainable energy, with companies including British Airways, Jaguar Land Rover, NASA, IBM, Rolls-Royce and Unilever.

A masters from Sheffield is the mark of someone with the skills to apply their knowledge in industry, anywhere in the world. Our MSc in Advanced Control and Systems Engineering is accredited by the Engineering Council UK, IET and InstMC. These marks of assurance mean our degrees meet the high standards set by the engineering profession.

A Sheffield masters is a strong foundation for a career in industry or research.

Industry links

We have strong links with industrial partners such as Rolls-Royce and BAE Systems. Our industrial partners help us to design our courses, making sure you learn the right skills.

Rolls-Royce has a research and development centre here, using our expertise to explore today’s challenges. Our masters students often work side by side with researchers at these facilities.

A stimulating environment

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research output, ahead of Oxford and Cambridge, and No 3 for overall research excellence. Our world-class reputation attracts highly motivated staff and students.

You’ll be taught by staff who work on real-world projects, developing new ideas – for submarines, robots, Formula One and even space exploration. Their approach to teaching is just as innovative: ideas like the award-winning take-home lab kit and e-puck mobile robotics activities help you develop the problem-solving skills you need for a trailblazing career.

Core Modules

Foundations of Control Systems; State-Space, Optimal Control and Nonlinear Systems; Signal Processing and Estimation; Embedded Systems and Rapid Control Prototyping; Managing Engineering Projects and Risk; Design Innovation Toolbox; Professional Responsibilities of the Engineer; Control Systems Project and Dissertation.

Examples of optional modules

Advanced Industrial Control; Robotic and Autonomous Systems; Intelligent and Vision Systems; Multisensor and Decision Systems; Nonlinear and Hybrid Systems.

Teaching and Assessment

There are lectures, tutorials, laboratory work and individual assignments. You will be assessed on examinations, coursework assignments and a project dissertation.

Read less
The MSc/PgDip programme in Food Safety and Control addresses the key issues of food control, from both the food producers and food law enforcement points of view, recognising the equally important needs of distributors, retailers and of course, consumers. Read more
The MSc/PgDip programme in Food Safety and Control addresses the key issues of food control, from both the food producers and food law enforcement points of view, recognising the equally important needs of distributors, retailers and of course, consumers.

The course covers the knowledge and skills required for the successful introduction and implementation of systems of control, such as those based on the accepted principles of Good Manufacturing Practice (GMP), and other international quality management standards.

The responsibility of assuring the safety of food lies primarily with government and the industry. In today's food industry, all aspects of the production, storage and distribution of food must be effectively controlled, not only to assure safety and wholesomeness, but also to ensure efficient and consistent manufacture at the lowest possible cost. Consumers are demanding a greater assurance of safety as well as more information on which to base their choices. Students are expected to take on demanding roles in a wide range of food control activities in both the private and public sectors upon graduation, while gaining an internationally recognized qualification.

EU study opportunity

EU study opportunities exist with the University of deLorraine Nancy, France, and Universidad Politécnica deValencia (UPV), Valencia, Spain.

Excellent scholarship opportunity

Students who have accepted an offer for a place on this course are encouraged to apply for LSBU's Frank Brake scholarship. Find out more about the Frank Brake scholarship:
http://www.lsbu.ac.uk/courses/postgraduate/fees-and-funding/scholarships/frank-brake-scholarship

See the website http://www.lsbu.ac.uk/courses/course-finder/food-safety-control-msc

Modules

Year 1:
All modules are assessed through a mix of formal examination and coursework. Each module represents 200 hours of learning time with up to 40 hours of class contact time.

- Food regulation and sustainability
Food legislation is an essential element for an effective food safety and control. The module deals with legislative control at various levels, embracing national and European Union legislation and also international approaches to harmonisation. It also provides an awareness of the different types of food standards, and their implications for manufacturers, retailers and consumers. It also addresses the policy issues in sustainable food production and management.

- Food composition and safety
This module comprises of selected topics that are directly relevant to food safety and control. It considers the complex chemical composition of foods, the chemical safety of foods, quality parameters, and develops the skills to interpret and use data. The common themes throughout the module are the choice of suitable, appropriate and cost effective analytical methodology, and the correct interpretation of analytical results.

- Food microbiology and hygiene
This module is designed to help you develop an understanding of food microbiology, to appreciate the principles of food microbiology and explore both microbial food spoilage and food borne microorganisms. You'll be able to critically analyse the means by which food can be processed safely from a microbiological standpoint, and the methodology that is applied to achieve this. Emphasis will be given to the development, application and use of microbiological criteria for foods and their limitations.

- Food quality management
This module introduces the principles behind all effective quality management systems (QMSs) employed in the modern food industry. Quality of product or service does not just happen; it has to be planned and managed. Systems used by small as well as large companies are covered.

- Food product development management
This module examines the management processes involved in the design and development of new safe food products. Students work together in small groups and adopt an allocated role within the group. The groups respond to a product development brief by designing and developing a new food product or an extension of an existing product. You'll prepare an individual portfolio describing your experience and contribution and make a group presentation of your product to a panel of external guests as a 'commercial pitch'.

- Food control operations
This module outlines the rationale, philosophy and concepts of modern food control, introducing the precautionary principle, the scope ranging from 'farm to fork', and the requirement of risk assessment. The principles of control based on prevention rather than detection and self-regulation are underlined throughout. Modern tools, techniques and procedures in food control are also introduced, illustrating the scope, applications and potential benefits of effective food control. You'll learn how to draw up specifications, identify safety hazards, conduct risk assessments, determine product shelf life, apply the commonly used statistical quality control techniques as well as use basic sensory evaluation methods. In the end, you'll have a broad and comprehensive grounding in modern food control operations.

- Research methods
This module aims to equip you with the knowledge and skills required for scientific research and systematic investigation. You'll learn how to ask the right questions, develop meaningful research proposals and evaluate objectively and independently research findings. Emphasis will be given to ethics, background information search, planning, experimental design, data collection and analysis. Principles of scientific methods, objective reasoning, idea formulation and model building will also be included. In data analysis, you'll be introduced to the most common statistical techniques covering both parametric and non-parametric tests.

- Project
The Project forms the climax of the MSc Food Safety and Control programme. It's the opportunity for you to demonstrate your grasp of food control in its widest sense, and produce documentary evidence of that grasp. The project provides the opportunity for you to apply your knowledge in an integrated fashion to a particular challenge in the management and control of food safety. We always try to help you match your project intention with your career aspirations and where possible use our networks to enable you to work on real commercial problems within an industrial placement.

The course has been developed to provide:
- A thorough understanding of the scientific principles on which both the safe handling of food and food control procedures are based

- An appreciation of the importance of the proper control of manufacture, storage and distribution, and the means by which it is achieved in the production and sale of safe food

- An understanding of the food industry's responsibilities to the interests and welfare of the consumer

- Opportunities to consider the social and economic contexts in which the industry operates

- An intellectually stimulating and coherent programme relevant to both your needs and those of the food industry

- A detailed understanding of the philosophy and methodology of research

- The best possible opportunity to develop personally and professionally

- The knowledge and skills necessary to enhance your career prospects.

Employability

The programme covers the knowledge and skills required for the successful introduction and implementation of systems of control such as those based on the accepted principles of Good Manufacturing Practice (GMP), and other international quality management standards. This opens up numerous and diverse opportunities in food safety and control.

You'll study all areas of food safety, ranging from microbiological, chemical and physical safety in the different modulesand throughout the programme.

The course will open up a wide range of career opportunities including roles in: product development; quality control; food safety and quality management; catering and retailing; technical auditing; and food law enforcement. Some of our graduates have gone on to PhD degrees.

Recent employers include Kerry Foods, Leathams, Bakkaver, Kraft Foods, Tesco, Asda, Marks and Spencer, Harrods and local authorities.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Placements

You'll be encouraged to undertake a work-based project or dissertation.

Teaching and learning

You'll make extensive use of the Virtual Learning Environment, so materials are available whenever you need them. Personal tutoring support, extraclinics offering support outside lecture and tutorial sessions are available.There's a major focus on the practical applications of knowledge, supported byhands-on laboratory exercises. Various assessment methods are used in modules across the course.

Read less
The course will provide you with a detailed understanding of advanced control engineering and the essential role that it plays in a broad range of industries. Read more
The course will provide you with a detailed understanding of advanced control engineering and the essential role that it plays in a broad range of industries.

It provides the foundations necessary to understand the principles of control systems technology and also the knowledge required to apply the latest control techniques to problems encountered in a variety of engineering sectors, including the petrochemical, aerospace, robotic and automotive industries.

In completing the course you will become highly employable in an area of engineering that is rapidly growing in importance. Furthermore, the course will provide you with all the necessary skills required if you wish to continue to study for a PhD and contribute your own ideas to advance this most exciting of technlogies.

The aims of the course are to:

Provide an advanced education in control and systems engineering, emphasising modern theoretical developments and their practical application

Give a sound fundamental understanding of the principles underlying the operation of control systems

Enable students to apply modern control principles in various areas of industry

Students acquire a range of intellectual skills that cover the design, analysis and simulation of control systems. A strong emphasis is placed on practical and transferable skills through laboratory exercises and the use of software packages.

Module details

Typical course units include Control and Computer Laboratory, Linear Optimal Control, Intelligent Systems, Non-linear Controllers & Systems, Self-tuning and Adaptive Systems, Manufacturing Automation and Data Engineering, Fault Detection and Diagnosis, and Process Control Systems.

Further information about this course can be found on the Advanced Control & Systems Engineering web pages using the link button.

Read less
This course is designed in collaboration with transport industry partners to equip you to meet the needs of the rail and road industries. Read more
This course is designed in collaboration with transport industry partners to equip you to meet the needs of the rail and road industries. There is an increased demand for advancements in electrical, electronic, control and communication systems for transport, with a particular focus on themes like higher efficiency and sustainability, safety and driving assistance, position and traffic control for smart transport planning.

Modern electrical, electronic, control and communication systems for intelligent transport require today engineers with a combination of skills and solutions from cross-disciplinary abilities spanning electrical, electronic, control and communications. In this context, the overall aim of this Conversion Masters is to provide you with an enriching learning experience, and to enhance your knowledge and skill-base in the area of modern road vehicle and rail transport systems design.

This conversion course is intended both for engineers in current practice and for fresh honours graduates to facilitate their professional development, mobility and employability.

Course content

This course aims to enhance your knowledge and skills in the area of intelligent and efficient transport systems design. You will develop advanced practical skills that will help you determine system requirements, select and deploy suitable design processes and use the latest specialist tool chains to test and/or prototype a device or algorithm. The programme will help you acquire the cross-disciplinary skills and abilities that today are vital to be able to implement effective solutions for modern electrical, electronic and communication systems applied to intelligent transport. The broad range of disciplines covered by the course will enable you to enter a career that requires a cross-disciplinary approach with a practical skillset.

The subject areas covered within the course offer you an excellent launch pad which will enable you to enter into this ever expanding, fast growing and dominant area within the electrical engineering sector, and particularly in the area of intelligent and efficient transport systems. Furthermore, the course will provide the foundations required to re-focus existing knowledge and enter the world of multi-disciplined jobs.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-Electric Motors and Control for Transport Systems
-Power Conversion and Drives for Transport Systems
-Project
-Sensor, Data Acquisition and Communication for Transport Systems

Associated careers

The course provides the foundations required to re-focus existing knowledge and enter the world of multi-disciplined jobs. Graduates can expect to find employment, for example, as Electrical systems design engineers; Control systems engineers, Transport systems engineers; Plant control engineers; Electronic systems design engineer; Communication systems design engineers; Sensor systems engineers; Computer systems engineer. Examples of typical industries of employment can be: Transport; Automobile; Aviation; Electrical systems; Electronic systems; Assembly line manufacturers; Robotics and home help; Toy; Communication systems; Logistics and distribution; Consumer industry; Life-style industry; Security and surveillance; Petro-chemical.

Professional recognition

This course will be seeking accreditation from the IET.

Read less
This course has been designed with industry to meet the challenge of interdependence between sophisticated engineered systems of all kinds. Read more
This course has been designed with industry to meet the challenge of interdependence between sophisticated engineered systems of all kinds. It is often taken in its part-time format.

It is aimed at engineers who have specialised in a traditional discipline but are now expected to understand, operate in, develop and integrate entire systems that are not only increasingly complex but rapidly changing.

The block taught format of the programme and the option to elect assessment by coursework rather than exam makes it a popular part time course and a CPD option.

Core study areas include systems thinking, systems architecture, systems design, verification and validation, and an individual project.

Optional study areas include enterprise systems management, holistic engineering (industry-led module), sensors and actuators for control, imagineering technologies, engineering and management of capability and understanding complexity.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/systems-engineering/

Programme modules

Compulsory Modules:
• Systems Thinking
• Systems Architecture
• Systems Design
• Validation & Verification
• Individual Project

Optional Modules (choose four):
• Enterprise Systems Engineering
• Holistic Engineering (industry-led module)
• Sensors and Actuators for Control
• Imagineering Technologies
• Engineering and Management of Capability
• Understanding Complexity

Block taught, individual modules are also highly suitable as CPD for professional engineers working onsystems engineering projects and challenges.

How you will learn

The curriculum stimulates thinking and extends the capabilities of technical managers and engineers to handle complexity, enabling them to remain effective in the workplace by providing:
- an integrated systems engineering view of inter-related technologies, processes, tools, techniques and their effective use;

- essential systems skills such as model-based systems architecture and design, against a background of the need for traceability in managing complex projects;

- knowledge and technical expertise in a range of systems technologies;

- experience of the importance to ultimate success of effective, integrated, multi-skilled project teams working in extended enterprises beyond the confines of any particular organisation;

- increased depth of technical and management knowledge through elective modules; and

- the ability to transfer systems skills and knowledge into the workplace through the individual master’s project.

Teaching staff comprise a varied skill set of international expertise to give the broadest perspectives and modules frequently feature master classes from industry practitioners.

- Assessment
There is the option to complete without written examinations as all compulsory modules are assessed by coursework. Where examinations are taken these are in January and May.

Facilities

We employ advanced modelling, simulation and interactive visualisation tools and techniques to enable you to gain greater understanding of the performance, behaviour and emergent properties of advanced technology and complex systems.

Many of these facilities are part of the Advanced VR Research Centre ( AVRRC) http://www.lboro.ac.uk/research/avrrc/facilities/

Careers and further study

Graduates of this course gain capabilities that are in global demand across a range of sectors and which can be applied to the challenges and issues posed by any complex system design and operation.

Promotion within their company for sponsored students is common since the course enables them to match higher job expectations and demands. Employed students often bring a work-relevant topic to their individual project giving the opportunity to display newly acquired skills.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/systems-engineering/

Read less
The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. Read more
The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. This interdisciplinary Master's programme presents environmental issues and technologies within a systems engineering context. Graduates will understand interactions between the natural environment, people, processes and technologies to develop sustainable solutions.

Degree information

Students will develop an understanding of systems engineering and environmental engineering. Environmental engineering is a multidisciplinary branch of engineering concerned with devising, implementing and managing solutions to protect and restore the environment within an overall framework of sustainable development. Systems engineering is the branch of engineering concerned with the development and management of large complex systems.

Students undertake modules to the value of 180 credits. The programme consists of four core modules (60 credits), a collaborative environmental systems project (30 credits), two optional modules (30 credits) and an individual environmental systems dissertation (60 credits). A Postgraduate Diploma (120 credits) is offered.

Core modules
-Collaborative Environmental Systems Project
-Environmental Systems
-Systems Engineering and Management
-Systems Society and Sustainability
-Environmental Modelling

Optional modules - options may include the following:
-Urban Flooding and Drainage
-Coastal Engineering
-Water and Wastewater Treatment
-Natural Environmental Disasters
-The Control of Noise
-Industrial Symbiosis
-Environmental Masterplanning
-Energy Systems Modelling
-Smart Energy Systems
-Low Carbon Energy Supply System Design for Buildings and Neighbourhoods
-Energy Systems & Sustainability
-Politics of Climate Change
-Natural Environmental Disasters
-Engineering and International Development
-Waste and Resource Efficiency
-Project Management for Engineers

Dissertation/report
All MSc students undertake an independent research project addressing a problem of systems research, design or analysis, which culminates in a dissertation of 10,000.

Teaching and learning
The programme is delivered through lectures, seminars, tutorials, laboratory classes and projects. The individual and group projects in the synthesis element involve interaction with industrial partners, giving students real-life experience and contacts for the future. Assessment is through written examination, coursework, presentations, and group and individual projects.

Careers

Career paths for environmental systems engineers are diverse, expanding and challenging, with the pressures of increasing population, desire for improved standards of living and the need to protect the environmental systems. There are local UK and international opportunities in all areas of industry: in government planning and regulation, with regional and municipal authorities, consultants and contracting engineers, research and development organisations, and in education and technology transfer. Example of recent career destinations include Ford, KPMG, EDF Energy, Brookfield Multiplex, and the Thames Tideway Tunnel Project.

Top career destinations for this degree:
-Environmental Specialist, BHP Billiton
-Project Engineer, Alberta WaterSMART
-Project Manager, Veolia Environmental Services
-MSc Business Management, Imperial College Business School, Imperial College
-PhD Environmental Research, Imperial College London

Employability
The discipline of environmental systems engineering is growing rapidly with international demand for multi-skilled, solutions-focussed professionals who can take an integrated approach to complex problems.

Why study this degree at UCL?

The discipline of environmental systems engineering is growing rapidly with an international demand for multi-skilled professionals who can take an integrated approach to solving complex environmental problems (e.g. urban water systems, technologies to minimise industrial pollution). Environmental engineers work closely with a range of other environmental professionals, and the community.

Skills may be used to:
-Design, construct and operate urban water systems.
-Develop and implement cleaner production technologies to minimise industrial pollution.
-Recycle waste materials into new products and generate energy.
-Evaluate and minimise the environmental impact of engineering projects.
-Develop and implement sound environmental management strategies and procedures.

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting environment in which to explore environmental systems engineering. Students have the advantages of studying in a multi-faculty institution with a long tradition of excellence in teaching and research, situated at the heart of one of the world's greatest cities.

Read less
This programme will not have a 2016 intake as the content is being extensively improved. The programme aims to offer a rational, flexibly structured. Read more

NOTE

This programme will not have a 2016 intake as the content is being extensively improved.

OVERVIEW

The programme aims to offer a rational, flexibly structured
and coherent postgraduate study in Automatic Control. While
providing advanced general knowledge in Electronic Engineering, the programme is specifically focussed on nonlinear control principles, measurement instrumentation, simulations and implementation of feedback control.
The programme is designed to provide specific skills for individuals who wish to become a control engineer in manufacturing or research and development in industry sectors, or to pursue a PhD in control engineering.

With a track record of 20 years, the research group Control & Intelligent Control Systems Engineering at the University of Hull has an international reputation for its initiatives in the field of fault diagnostics of dynamic systems. This expertise along with its staff’s teaching experience in control engineering supports the masters programme.

OBJECTIVES

The course will provide students with:
• advanced knowledge of control principles including
multivariable feedback control and nonlinear control
systems,
• essential knowledge of control systems configuration,
algorithm design and evaluation,
• a general knowledge of advanced computer simulation
and measurement instrumentation,
• skills in the software and hardware implementation of
control the latest computer modelling and simulation
techniques,
• research experience in control applications in the
engineering field,
• experience of undertaking a significant relevant
research project

SUBJECTS COVERED

• Multivariable feedback control
• Robotic manipulator control
• Machine vision
• Applied Optoelectronics
• Time Signal Processing and Integrated Circuit Design
• Low Power/Voltage Design and VHDL
• Advanced Digital Systems Design
• Microwave Devices, Techniques and Measurements
• Communication Systems
• Intellectual property rights
• Research skills and project planning

Read less
Automation, control and robotics are pervasive enabling technologies found in almost every modern technical system, particularly in manufacturing and production. Read more
Automation, control and robotics are pervasive enabling technologies found in almost every modern technical system, particularly in manufacturing and production. They combine the diverse and rapidly expanding disciplines of automation, control, mechanics, software and signal processing.

This course is ideal if you wish to develop comprehensive knowledge and understanding of
-Classical and modern control theory.
-Industrial automation.
-Systems analysis.
-Design and simulation.
-Robotics.

You gain the ability to apply principles of modelling, classical and modern control concepts and controller design packages in various areas of industry. You also learn how to design and exploit automation and robotic systems in a range of manufacturing and industrial applications.

The course has six core modules which cover the major aspects of industrial automation and control systems engineering and robotics, ranging from classical linear control system design to non-linear, optimal and intelligent control systems, including distributed control systems, robotics, computer networks and artificial intelligence.

You also choose two optional modules relevant to automation and control to suit your interests. For example, if you wish to work in the manufacturing industry you can choose manufacturing systems or machine vision. There is the opportunity to study one or two management modules if you wish to apply yourself to a more managerial role.

To gain the masters you complete a major research-based project, which can be focused on an area of your particular interest or career need.

You work alongside staff from the Electrical, Electronic and Control Engineering Group and the Centre for Automation and Robotics Research (CARR) at Sheffield Hallam. This provides the opportunity to work with active researchers.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/msc-automation-control-and-robotics

Professional recognition

This course is seeking accreditation by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council for the purposes of fully meeting the academic requirements for registration as a Chartered Engineer. The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer; graduates who have a BEng (Hons) accredited for CEng will be able to show that they have satisfied the further learning requirement for CEng accreditation.

Course structure

Full time – 12 to 18 months.
Part time – 3 years.
Start dates September and January.

Core modules
-Industrial automation
-Control of linear systems
-Advanced control methods
-Robotics
-Computer networks
-Applicable artificial intelligence

Options
Choose two from:
-Software engineering
-Project and quality management
-Sustainability, energy and environmental management
-Machine vision
-Digital signals processing
-Manufacturing systems

MSc
-Project and dissertation

Assessment: coursework, examination, presentation, MSc project report.

Other admission requirements

International students
India: a first class BE in a relevant discipline, or a good second class BE with a strong performance in mechanical and manufacturing subjects.

China: a four year Bachelors degree in a relevant discipline, with an overall average of at least 80 per cent or equivalent.

Other countries: a good honours degree or equivalent in a relevant subject.

Overseas applicants from countries whose first language is not English must normally produce evidence of competence in English. An IELTS score of 6.0 with 5.5 in all skills (or equivalent) is the standard for non-native speakers of English. If your English language skill is currently below an IELTS score of 6.0 with a minimum of 5.5 in all skills we recommend you consider a Sheffield Hallam University Pre-sessional English course which will enable you to achieve an equivalent English level.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X