• University of Derby Online Learning Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Aberystwyth University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University College London Featured Masters Courses
Southampton Solent University Featured Masters Courses
FindA University Ltd Featured Masters Courses
Durham University Featured Masters Courses
London School of Economics and Political Science Featured Masters Courses
"systems" AND "analysis" …×
0 miles

Masters Degrees (Systems Analysis And Design)

We have 955 Masters Degrees (Systems Analysis And Design)

  • "systems" AND "analysis" AND "design" ×
  • clear all
Showing 1 to 15 of 955
Order by 
The Systems Analysis and Design pathway gives students an understanding of how technological information systems work, enabling them to deliver IT-based solutions, such as enterprise systems to business and organisations. You’ll learn how to manage data to deliver actionable business insight using creative, sophisticated techniques to solve complex business issues. . Read more

The Systems Analysis and Design pathway gives students an understanding of how technological information systems work, enabling them to deliver IT-based solutions, such as enterprise systems to business and organisations. You’ll learn how to manage data to deliver actionable business insight using creative, sophisticated techniques to solve complex business issues. 

Commercial focus

Students will learn how systems ‘think’ and be able to apply their understanding to systems analysis and design methodology to enable them to plan, manage and design and implement information management projects.

After you’ve graduated

Our graduates leave us prepared to take on a range of jobs in the digital economy, from systems analysis and design, to product development and management consulting. Among other organisations, our alumni join financial services firms, IT companies, consulting firms, software houses, healthcare and the public sector.

Not sure which pathway to choose from 3 choices? Apply for the one that you feel fits you better and you will be able to change the pathway within the first few weeks from your arrival to the university.

Why Henley?

  • Consistently maintain highest standards: Henley is in top 1% of business schools worldwide to hold accreditation from all three bodies in the UK, Europe and US
  • Excellent networking potential : 72,000 Henley alumni members in 150 countries
  • High calibre students: always oversubscribed, 1,000 ambitious new Masters students join Henley each year
  • Award winning campus: beautiful, green, 134 hectares, with state of the art facilities
  • World-leading faculty: widely published, frequently asked for expert comment by media and to speak at events
  • Henley is proud to be part of the University of Reading. The University is ranked within the top 200 universities worldwide (Times Higher Education World University Rankings 2016/17 and QS World University Rankings 2018) and 98% of the research is rated as being of international standard.

Course content

Compulsory modules

Optional modules

In addition students must choose two optional module from the list below.

Please note there is no guarantee that in any one year all modules will be available. 

How we teach you

A holistic approach

Effective leadership requires more than first-class business acumen. It also requires a degree of self-awareness and sensitivity. Henley is renowned for its well-researched, professional approach to this aspect of business education and all our postgraduate programmes examine this aspect of leadership - helping to create emotionally intelligent graduates who can be fully effective in their chosen careers.

How you will learn

Henley Business School enjoys a strong reputation for the practical application of business ideas and concepts, underpinned by academic excellence and the strength of our research. We offer high-quality technical skills training as well as a deep understanding of the importance of personal development for leaders, a thread that runs through all of our Masters programmes.

Our postgraduate masters programmes feature a mix of core and optional modules, allowing you to tailor your degree towards your individual personal development needs and career ambitions. You will complete up to 10 taught modules during your programme, totalling 180 credits. One module usually equates to 20 credits or 10 hours of work per week. Your week will include lectures, tutorials, workshops and personal study, with each accounting for 25% of your time on average. This stimulating mix of lectures and interactive tutorials provides you with the opportunity to discuss and explore the subject material in depth with your lecturers and fellow students. You will be introduced to the latest thinking and research findings and be able to challenge some of those that have created it. You will also explore real-world issues and tackle current business challenges, and interact with guest lectures and speakers from industry, giving you the opportunity to test, extend and refine your knowledge and skills.

How we assess you

You will learn and be assessed through a wide variety of teaching methods which vary depending on your chosen Masters programme. These include online materials and multimedia content, guest lectures, individual and group assignments, case studies, field visits, dealing room simulations, presentations, applied projects, consultancy work and examinations.

On average examinations form around 70% of the assessed work with the remaining 30% coming from coursework, including a written dissertation or project depending on your chosen programme. The exam period falls between April and June in the summer term, with students taking an average of 5 or 6 exams. Graduation normally takes place in December.

Ongoing support

While postgraduate students are self-motivated and determined individuals, study at this level can present additional pressures which we take seriously. Lecturers are available to discuss the content of each module and your personal tutor can meet with you regularly to discuss any additional issues. Full-time support staff are also available to help with any questions or issues that may arise during your time at Henley

Careers and accreditations

Each pathway of our MSc Information Management is designed to give a rigorous academic understanding of real-life and current business issues. Graduates of the Systems Analysis and Design pathway will be equipped to manage and utilize information resources in various business fields including business & management, construction management and healthcare through a thorough understanding of systems analysis and design methodology.

A number of our students join our PhD programmes each year.

Students who pass the module INMR66 – Business Domain and Requirements Analysis with a mark of 60 or above will be eligible for the British Computer Society Professional Certificate in Business Analysis Practice. 



Read less
With the MSc Business Systems Analysis and Design course at City you can unravel a business system and prepare to work as an analyst within the industry. Read more
With the MSc Business Systems Analysis and Design course at City you can unravel a business system and prepare to work as an analyst within the industry.

Who is it for?

The course is for motivated students who enjoy working within high-pressure environments often to tight deadlines. You will need a good undergraduate degree as well as the tenacity and patience to understand business systems and the ability to adapt to constant change.

Objectives

There is a common misconception in building business systems: that users know their requirements. Often they don’t. This postgraduate Business Systems Analysis programme has been designed to address this problem.

The MSc in Business Systems Analysis and Design is not about developing algorithms and coding. We work with technology but we are not technicians because we know that to become an IT consultant or business analyst, you need to understand the disparate areas that make up the discipline. This is a Masters degree where you will design a business system; in order to do this you will unpick the information infrastructure to find out if the system works.

Analysing a business system is a process that demands constant re-evaluation. By investigating system requirements, considering how information flows through it, and exploring the pitfalls that emerge within user hierarchies, at City we examine the business system as a whole. This approach is essential to respond to rapid business change.

These are some of the questions the course poses:
-What is the right system to address the problem?
-Does the system meet the needs of the business now and will it be able to adapt in the future?
-How is information flowing within the system?
-How will users interact with the system throughout the project life cycle?

Placements

As a student on this programme you can undertake an internship in the July to December period, for up to six months. You can work under a client’s direction for all or part of this time. Many students use the internship as an opportunity to carry out a specific project which forms the context for their final dissertation.

One current student is working within a user experience design company to investigate how scents affect the emotional perception of digital fruit images displayed on a desktop service.

Academic facilities

As a student on the MSc Business Systems Analysis and Design course you will have access to dedicated labs and use specialist software such as SAP. At City we also have access to Microsoft Dynamics ERP software to support the enterprise information system module. Microsoft Dynamics is an industry-based CRM system. As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

We provide a diversity of teaching approaches so you get a diversity of learning experiences in the form of traditional lectures, live classroom demonstrations, tutorials, laboratories, and TV studio role-playing. We encourage you to engage with the material in an active way. As a postgraduate student, we expect you to take responsibility for your own learning and use non-timetabled hours for your own private study or group interactions.

You will be assessed in a variety of ways from coursework and laboratory work to presentations, examinations and a project dissertation. By successfully completing eight taught modules and the research project you will be awarded a Master of Science (MSc) degree. All modules in this course are supported by Moodle, City's online learning environment.

The course is available full time (12 months) and part time (up to 28 months - two days a week). The Department is aware that this involves considerable commitment from part-time students, and we try to be as flexible as we can so you can successfully combine your work and study.

By completing eight modules and the dissertation you will be awarded 180 credits and a Masters level qualification. Alternatively, if you do not complete the dissertation but have successfully completed the eight modules, you will be awarded 120 credits and a postgraduate diploma. If you successfully complete four modules (60 credits) you will be awarded a postgraduate certificate.

Modules

There are six core modules and four electives from which you can choose two topics. Practical work is emphasised throughout the degree programme to develop your understanding and skills, which is strengthened by interactive teamwork. The course has an excellent track record in producing employable hybrid IT/business professionals.

In the industry you need to communicate your expertise in lay terms. The modules give you experience in working on group projects so you can manage roles and responsibilities and build a set of professional values. The core content will also give you the ability to set strategies, manage information flows and deal with problems such as overload and risk.

The course develops:
-Skills in business awareness, design and consultancy to facilitate the alignment of IT systems and services to business objectives
-The specialist understanding of theoretical principles in business systems analysis and design.
-Technical skills, through practical laboratory work, so you can apply your knowledge of IT and how it affects business competitiveness.

The course will give you specialist knowledge ranging from business systems requirements analysis and design, software systems engineering, data modelling to business intelligence, project management and business engineering with ERP solutions.

Core modules
-Business engineering with ERP solutions INM342 (15 credits)
-Business intelligence & analytics INM451 (15 credits)
-Practical business systems consultancy INM353 (15 credits)
-Project management INM372 (15 credits)
-Research methods and professional issues INM373 (15 credits)
-Systems specification INM312 (15 credits)

Elective modules - choose from one module in the first term from the following:
-User-centred design INM355 (15 credits)
-Information and knowledge management INM351 (15 credits)

Choose from one module in the second term from the following:*
-Databases INM343 (15 credits)
-Information Retrieval (IR) INM351 (15 credits)

*Note: Databases is compulsory for students who do not have prior knowledge at the discretion of the programme director.

Career prospects

As a City graduate you leave with front-line knowledge. With insight from major areas of research including software engineering, human-computer interaction and artificial intelligence, you will be able to assimilate your skills within the industry and offer a future-focused mindset.

From Unilever to HMV and from Accenture to ITN, City graduates are employed across sectors in consultancy companies, software houses, the public services, telecommunications, multinational manufacturers, and large retailers. The programme will help you build a strong peer network as well as a solid network of contacts for your continued career development.

Read less
With increasing traffic density of civil aircraft, and the need for increased military precision in conflicts around the world, safer aircraft operations require more sophisticated avionic systems. Read more
With increasing traffic density of civil aircraft, and the need for increased military precision in conflicts around the world, safer aircraft operations require more sophisticated avionic systems.

This specialist option of the MSc Aerospace Vehicle Design (http://www.cranfield.ac.uk/courses/taught/aerospace-vehicle-design) provides you with an understanding of avionic systems design, analysis, development, test and airframe integration.

Who is it for?

This course is suitable for students with a background in aeronautical or mechanical engineering or those with relevant industrial experience. It provides a taught engineering programme with a focus on the technical, business and management aspects of aircraft design in the civil and military aerospace sectors.

Why this course?

The Avionic Systems Design option aims to provide an understanding of avionic systems design, analysis, development, test and airframe integration. This includes a detailed look at robust and fault-tolerant flight control, advanced 4D flight management and RNP navigation, self-separation and collision avoidance and advanced digital data communications systems, as well as pilot-friendly and intelligent cockpit displays and situation awareness.

We have been at the forefront of postgraduate education in aerospace engineering since 1946. Aerospace Vehicle Design at Cranfield University was one of the original foundation courses of the College of Aeronautics. Graduates of this course are eligible to join the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which hold a number of networking and social events throughout the year.

Cranfield University is well located for students from all over the world, and offers a range of library and support facilities to support your studies. This enables students from all over the world to complete this qualification whilst balancing work/life commitments.

Informed by Industry

The course has an Industrial Advisory Committee with senior members from major UK aerospace companies, government bodies, and the military services. The committee meets twice a year to review and advise on course content, acquisition skills and other attributes are desirable from graduates of the course. Panel members include:

- BAE Systems
- Airbus
- Royal Air Force
- Department for Business, Enterprise and Regulatory Reform
- Royal Australian Air Force
- Messier-Dowty
- Department of National Defence and the Canadian Armed Forces.

We also arrange visits to sites such as BAE Systems, Thales, GKN and RAF bases which specialise in the maintenance of military aircraft. This allows you to get up close to the aircraft and components to help with ideas for the group project

Accreditation

Royal Aeronautical Society (RAeS) - http://aerosociety.com/
Institution of Mechanical Engineers (IMechE) - http://www.imeche.org/

Course details

This option is comprised of 14 compulsory modules and a minimum of 60 hours of optional modules, selected from a list of 10 options. You are also required to complete a group design project and an individual research project. Delivered via a combination of structured lectures, industry guest lectures, computer based workshops and private study.

A unique feature of the course is that we have four external examiners; two from industry who assess the group design project and two from academia who assess the individual research project.

Group project

The extensive group design project is a distinctive and unique feature of this course. This teamwork project takes place over six months, usually between October and March; and recreates a virtual industrial environment bringing together students with various experience levels and different nationalities into one integrated design team.

You will be given responsibility for the detailed design of a significant part of the aircraft, for example, forward fuselage, fuel system, or navigation system. The project will progress from the conceptual phase through to the preliminary and detail design phases. You are required to run project meetings, produce engineering drawings and detailed analyses of their design. Problem solving and project coordination must be undertaken on a team and individual basis. At the end of the project, groups are required to report and present findings to a panel of 200 senior engineers from industry.

This element of the course is both real and engaging, and places the student group in a professional role as aerospace design engineers. Students testify that working as an integrated team on real problems is invaluable and prepares them well for careers in a highly competitive industry.

Watch past presentation YouTube videos to give you a taster of our innovative and exciting group projects:

- Blended Wing Body Aircraft - https://www.youtube.com/watch?v=UfD0CIAscOI
- A9 Dragonfly Box Wing Aircraft - https://www.youtube.com/watch?v=C4LQzXBJInw
- MRT7 Tanker Aircraft - https://www.youtube.com/watch?v=bNfQM2ELXvg
- A-13 Voyager - https://www.youtube.com/watch?v=LS6Wq7lpmDw
- SL-12 Vimana - https://www.youtube.com/watch?v=HjEEazsVtSc

Individual project

The individual research project aims to provide the training necessary for you to apply knowledge from the taught element to research, and takes place over six months. The project may be theoretical and/or experimental and drawn from a range of topics related to the course and suggested by teaching staff, your employer or focused on your own area of interest.

Assessment

Taught modules 10%, Group project 50%, Individual research project 40%

Your career

The Avionic Systems Design option is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

This course prepares graduates for careers as project design engineers, systems design, structural design or avionic engineers in aerospace or related industries, with the aim of progressing to technical management/chief engineer. Graduates from the MSc in Avionic Systems Design can therefore look forward to a varied choice of challenging career opportunities in the above disciplines.

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Typical student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce plc

Read less
Structural Design aims to provide an understanding of aircraft structures, airworthiness requirements, design standards, stress analysis, fatigue and fracture (damage tolerance) and fundamentals of aerodynamics and loading. Read more

Course Description

Structural Design aims to provide an understanding of aircraft structures, airworthiness requirements, design standards, stress analysis, fatigue and fracture (damage tolerance) and fundamentals of aerodynamics and loading. The suitable selection of materials, both metallic and composite is also covered. Manufacturers of modern aircraft are demanding more lightweight and more durable structures. Structural integrity is a major consideration of today’s aircraft fleet. For an aircraft to economically achieve its design specification and satisfy airworthiness regulations, a number of structural challenges must be overcome. This course trains engineers to meet these challenges, and prepares them for careers in civil and military aviation.

Overview

This course is suitable for students with a background in aeronautical or mechanical engineering or those with relevant industrial experience.

The Structural Design option consists of a taught component and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:
- To build upon knowledge to enable students to enter a wide range of aerospace and related activities concerned with the design of flying vehicles such as aircraft, missiles, airships and spacecraft
- To ensure that the student is of immediate use to their employer and has sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression
- To provide teaching that integrates the range of disciplines required by modern aircraft design
- To provide the opportunity for students to be immersed in a 'Virtual Industrial Environment' giving them hands-on experience of interacting with and working on an aircraft design project.

English Language Requirements

If you are an international student you will need to provide evidence that you have achieved a satisfactory test result in an English qualification. The minimum standard expected from a number of accepted courses are as follows:

IELTS - 6.5
TOEFL - 92
Pearson PTE Academic - 65
Cambridge English Scale - 180
Cambridge English: Advanced - C
Cambridge English: Proficiency - C

In addition to these minimum scores you are also expected to achieve a balanced score across all elements of the test. We reserve the right to reject any test score if any one element of the test score is too low.

We can only accept tests taken within two years of your registration date (with the exception of Cambridge English tests which have no expiry date).

Core Modules

The taught programme for the Structural Design masters is generally delivered from October to March. After completion of the four compulsory taught modules, students have an extensive choice of optional modules to match specific interests.

Core:
- Fatigue Fracture Mechanics and Damage Tolerance
- Finite Element Analysis (including NASTRAN/PATRAN Workshops)
- Design and Analysis of Composite Structures
- Structural Stability

Optional:
- Loading Actions
- Computer Aided Design (CAD)
- Aircraft Aerodynamics
- Aircraft Stability and Control
- Aircraft Performance
- Detail Stressing
- Structural Dynamics
- Aeroelasticity
- Design for Manufacture and Operation
- Initial Aircraft Design (including Structural Layout)
- Airframe Systems
- Aircraft Accident Investigation
- Crashworthiness
- Aircraft Power Plant Installation
- Avionic System Design
- Flight Experimental Methods (Jetstream Flight Labs)
- Reliability, Safety Assessment and Certification
- Sustaining Design (Structural Durability)

Individual Project

The individual research project aims to provide the training necessary for you to apply knowledge from the taught element to research, and takes place from January to September.

Recent Individual Research Projects include:
- Review, Evaluation and Development of a Microlight Aircraft
- Investigation of the Fatigue Life of Hybrid Metal Composite Joints
- Design for Additive Layer Manufacture
- Rapid Prototyping for Wind Tunnel Model Manufacturing.

Group project

There is no group project for this option of the Aerospace Vehicle Design MSc.

Assessment

Taught modules (20%); Individual Research Project (80%)

Career opportunities

The AVD option in Structural Design is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

Graduates from the have gone onto pursue engineering careers in disciplines such as structural design, stress analysis or systems design. Many of our former graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry.

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Typical student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce.

For further information

On this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/AVD-Option-in-Structural-Design

Read less
This course provides education and training in selected weapons systems. The course is intended for officers of the armed forces and for scientists and technical officers in government defence establishments and the defence industry. Read more

Course Description

This course provides education and training in selected weapons systems. The course is intended for officers of the armed forces and for scientists and technical officers in government defence establishments and the defence industry. It is particularly suitable for those who, in their subsequent careers, will be involved with the specification, analysis, development, technical management or operation of weapons systems.

The course is accredited by the Institution of Mechanical Engineers and will contribute towards an application for chartered status.

Overview

The Gun System Design MSc is part of the Vehicle and Weapons Engineering Programme. The course is designed to provide an understanding of the technologies used in the design, development, test and evaluation of gun systems.

This course offers the underpinning knowledge and education to enhance the student’s suitability for senior positions within their organisation.

Each individual module is designed and offered as a standalone course which allows an individual to understand the fundamental technology required to efficiently perform the relevant, specific job responsibilities. The course provides students with the depth of knowledge to undertake engineering analysis or the evaluation of relevant sub systems.

Duration: Full-time MSc - one year, Part-time MSc - up to three years, Full-time PgCert - one year, Part-time PgCert - two years, Full-time PgDip - one year, Part-time PgDip - two years

English Language Requirements

If you are an international student you will need to provide evidence that you have achieved a satisfactory test result in an English qualification. The minimum standard expected from a number of accepted courses are as follows:

IELTS - 6.5
TOEFL - 92
Pearson PTE Academic - 65
Cambridge English Scale - 180
Cambridge English: Advanced - C
Cambridge English: Proficiency - C

In addition to these minimum scores you are also expected to achieve a balanced score across all elements of the test. We reserve the right to reject any test score if any one element of the test score is too low.

We can only accept tests taken within two years of your registration date (with the exception of Cambridge English tests which have no expiry date).

Course overview

This MSc course is made up of two essential components, the equivalent of 12 taught modules (including some double modules, typically of a two-week duration), and an individual project.

Modules

MSc and PGDip students take 11 compulsory modules and 1 optional module.
PGCert students take 4 compulsory modules and 2 optional modules.

Core:
- Element Design
- Fundamentals of Ballistics
- Finite Element Methods in Engineering
- Gun System Design
- Light Weapon Design
- Military Vehicle Propulsion and Dynamics
- Modelling, Simulation and Control
- Solid Modelling CAD
- Survivability
- Vehicle Systems Integration

Optional:
- Guided Weapons
- Military Vehicle Dynamics
- Reliability and System Effectiveness
- Uninhabited Military Vehicle Systems

Individual Project

In addition to the taught part of the course, students can opt either to undertake an individual project or participate in a group design project. The aim of the project phase is to enable students to develop expertise in engineering research, design or development. The project phase requires a thesis to be submitted and is worth 80 credit points.

Examples of recent titles are given below.
- Use of Vibration Absorber to help in Vibration
- Validated Model of Unmanned Ground Vehicle Power Usage
- Effect of Ceramic Tile Spacing in Lightweight Armour systems
- Investigation of Suspension System for Main Battle Tank
- An Experimental and Theoretical Investigation into a Pivot Adjustable Suspension System as a Low Cost Method of Adjusting for Payload
- Analysis of Amphibious Operation and Waterjet Propulsions for Infantry Combat Vehicle.
- Design of the Light Weapon System
- Analysis of the Off-road Performance of a Wheeled or Tracked Vehicle

Group Project

- Armoured Fighting Vehicle and Weapon Systems Study
To develop the technical requirements and characteristics of armoured fighting vehicles and weapon systems, and to examine the interactions between the various sub-systems and consequential compromises and trade-offs.

Syllabus/curriculum:
- Application of systems engineering practice to an armoured fighting vehicle and weapon system.
- Practical aspects of system integration.
- Ammunition stowage, handling, replenishment and their effects on crew performance and safety.
- Applications of power, data and video bus technology to next generation armoured fighting vehicles.
- Effects of nuclear, biological and chemical attack on personnel and vehicles, and their survivability.

- Intended learning outcomes
On successful completion of the group project the students should be able to –
- Demonstrate an understanding of the engineering principles involved in matching elements of the vehicle and weapon system together.
- Propose concepts for vehicle and weapon systems, taking into account incomplete and possibly conflicting user requirements.
- Effectively apply Solid Modelling in outlining proposed solutions.
- Interpret relevant legislation and standards and understand their relevance to vehicle and weapon systems.
- Work effectively in a team, communicate and make decisions.
- Report the outcome of a design study orally to a critical audience.

Assessment

Continuous assessment, examinations and thesis (MSc only). Approximately 30% of the assessment is by examination.

Career opportunities

Many previous students have returned to their sponsor organisations to take up senior programme appointments and equivalent research and development roles in this technical area.

For further information

On this course, please visit our course webpage - https://www.cranfield.ac.uk/Courses/Masters/Gun-Systems-Design

Read less
This MSc in Advanced Engineering Design is aimed at high calibre and ambitious engineering graduates who want to gain expertise in systematically developing complex, multidisciplinary engineering design. Read more

About the course

This MSc in Advanced Engineering Design is aimed at high calibre and ambitious engineering graduates who want to gain expertise in systematically developing complex, multidisciplinary engineering design.

You will learn how to design products requiring embedded intelligence and comprehensive engineering analysis and how to use six CAE software packages.

The programme - accredited by the Institution of Mechanical Engineering (IMechE) - has been developed to fulfil the industry’s need for an integrated course that offers:
teaching of advanced theory, human factors and creativity tools essential to successful product development
training in software, research and applications
practical experience of applying your knowledge and skills through an integrating, real life group project.

Aims

Integration of mechanical, electrical, electronic and control knowledge into a single product is challenging – and this course allows you to appreciate the complexity of modern product design and to develop your expertise.

The Brunel programme aims to create the new generation of engineering designers who can combine knowledge from different areas and produce world class design.

Engineering design is the application of engineering principles, the experience of making, and use of mathematical models and analysis. The design and production of complex engineering products often require the use of embedded intelligence and detailed engineering analysis involving mechanical, electronic and control functions. Advanced theoretical knowledge and a wide range of computer driven tools, methods and methodologies are essential for this process – and the course provides graduates with these essentials.

Course Content

Continued design of modern complex products demands advanced knowledge in mechanical, electronic, manufacturing and control engineering disciplines and human factors in design, and an ability to use advanced engineering software packages, integrating application experience and a capacity to carry on learning.

The Advanced Engineering Design MSc has been developed to produce design engineers who can meet these demands. It contains six taught modules where advanced multi-disciplinary theory is taught. As part of the course, six engineering software packages are also taught. In order to give an integrating application experience in an industrial setup, 'Design Experience', a group project module with an industry, has been included as part of the curriculum.

The dissertation is aimed at providing training in carrying out an in-depth engineering task on a self-learning basis. By the end of the course you will become a confident design engineer equipped with high quality and advanced knowledge and skills to work on design tasks in an advanced computer assisted environment.

Compulsory Modules

Sustainable Design and Manufacture
Manufacturing Systems Design and Economics
Computer Aided Engineering 1
Computer Aided Engineering 2
Design Experience
Dissertation Project

Optional Modules (choose two modules)

Advanced Manufacturing Measurement
Human Factors in Design
Robotics and Manufacturing Automation
Design of Mechatronic Systems

Special Features

Special facilities

MSc Engineering Design students work in a well-equipped design studio with various experiential learning facilities, with computers available for your exclusive use of Engineering Design students.Our investment in laboratory facilities and staff ensures that we can provide an excellent experience in a friendly and supportive environment.

Industry-focused programme

The high standard of our research feeds directly into curriculum design and our teaching, ensuring our graduates are equipped with the most up-to-date techniques, methods and knowledge bases. Our teaching has an excellent reputation and is orientated to the expressed needs of modern enterprises and the industry.
The course is underpinned by the current research still being carried out by the staff in the former academic unit Advanced Manufacturing and Enterprise Engineering which promotes manufacturing as a discipline.  Thus the academics teaching on the Advanced Engineering Design which were part of this unit have strong research portfolios in manufacturing. This research has been judged world leading.  In the 2014 Research Excellence Framework, academics teaching on the course were involved with Brunel’s General engineering submission, one of one of the largest in the UK. The area’s percentage of world leading research doubled, with a significant increase in our research judged as internationally excellent as well. The impact of over 75% of this research was judged to be world leading or internationally excellent. This placed the discipline in the top 20% in the UK terms of research power.

Global reputation

With around 150 postgraduate students from all around the world and substantial research income from the EU, research councils and industry, we are a major player in the field of advanced manufacturing and enterprise engineering.
 
Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The MSc Advanced Engineering Design is accredited by both the Institution of Mechanical Engineering (IMechE). This will provide a route to Chartered Engineer status in the UK.

Read less
The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. Read more

The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. This interdisciplinary Master's programme presents environmental issues and technologies within a systems engineering context. Graduates will understand interactions between the natural environment, people, processes and technologies to develop sustainable solutions.

About this degree

Students will develop an understanding of systems engineering and environmental engineering. Environmental engineering is a multidisciplinary branch of engineering concerned with devising, implementing and managing solutions to protect and restore the environment within an overall framework of sustainable development. Systems engineering is the branch of engineering concerned with the development and management of large complex systems.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), a collaborative environmental systems project (30 credits), two optional modules (30 credits) and an individual environmental systems dissertation (60 credits).

A Postgraduate Diploma (120 credits) is offered.

Core modules

  • Collaborative Environmental Systems Project
  • Environmental Systems
  • Systems Engineering and Management
  • Systems Society and Sustainability
  • Environmental Modelling

Optional modules

Options may include the following:

  • Engineering and International Development
  • Industrial Symbiosis
  • Politics of Climate Change
  • Project Management
  • Water and Wastewater Treatment
  • Urban Flooding and Drainage
  • Offshore and Coastal Engineering
  • Natural and Environmental Disasters
  • Energy Systems Modelling
  • Smart Energy Systems: Theory, Practice and Implementation
  • Indoor Air Quality in Buildings
  • Light, Lighting and Wellbeing in Buildings
  • Building Acoustics
  • Science, Technology and Engineering Advice in Practice
  • Energy Systems and Sustainability
  • Waste and Resource Efficiency

Dissertation/report

All MSc students undertake an independent research project addressing a problem of systems research, design or analysis, which culminates in a dissertation of 10,000 words.

Teaching and learning

The programme is delivered through lectures, seminars, tutorials, laboratory classes and projects. The individual and group projects in the synthesis element involve interaction with industrial partners, giving students real-life experience and contacts for the future. Assessment is through written examination, coursework, presentations, and group and individual projects.

Further information on modules and degree structure is available on the department website: Environmental Systems Engineering MSc

Careers

Career paths for environmental systems engineers are diverse, expanding and challenging, with the pressures of increasing population, desire for improved standards of living and the need to protect the environmental systems. There are local UK and international opportunities in all areas of industry: in government planning and regulation, with regional and municipal authorities, consultants and contracting engineers, research and development organisations, and in education and technology transfer. Example of recent career destinations include Ford, KPMG, EDF Energy, Brookfield Multiplex, and the Thames Tideway Tunnel Project.

Recent career destinations for this degree

  • Air Quality Engineer, National Environment Agency
  • Environmental Engineering Consultant, DOGO
  • Nuclear Analyst, EDF Energy
  • Graduate Flood Risk Engineer, Pell Frischmann
  • Project Manager, Veolia Environmental Services

Employability

The discipline of environmental systems engineering is growing rapidly with international demand for multi-skilled, solutions-focussed professionals who can take an integrated approach to complex problems.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The discipline of environmental systems engineering is growing rapidly with an international demand for multi-skilled professionals who can take an integrated approach to solving complex environmental problems (e.g. urban water systems, technologies to minimise industrial pollution). Environmental engineers work closely with a range of other environmental professionals, and the community.

Skills may be used to:

  • design, construct and operate urban water systems
  • develop and implement cleaner production technologies to minimise industrial pollution
  • recycle waste materials into new products and generate energy
  • evaluate and minimise the environmental impact of engineering projects
  • develop and implement sound environmental management strategies and procedures.

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting environment in which to explore environmental systems engineering. Students have the advantages of studying in a multi-faculty institution with a long tradition of excellence in teaching and research, situated at the heart of one of the world's greatest cities.

Accreditation

The progamme is accredited by the Joint Boad of Moderators, which is made up of the Institution of Civil Engineers, The Institution of Structural Engineers, the Chartered Institutions of Highways and Transportation, and the Institute of Highway Engineers.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Do you want to be able to help design the next generation of renewable energy systems, clean cars and aircraft? Do you want to be able to invent the electrical systems for future factories and robots?. Read more
Do you want to be able to help design the next generation of renewable energy systems, clean cars and aircraft? Do you want to be able to invent the electrical systems for future factories and robots?

The Power Electronics, Machines and Drives (PEMD) is a 1 year degree course that provides its students with the knowledge to design, construct and analyse integrated networks of power electronic converters, electrical machines, actuators, energy storage devices, and control systems. As a result of recent technical advances, PEMD technology is becoming commonplace and can be found for example in more-electric aircraft and ships, electric vehicles, railway systems, renewable power generation, active management of power distribution systems, automation systems for factories and industrial processes. The adoption of PEMD technology is being driven by the need to increase energy efficiency, and controllability, whilst reducing system weight and maintenance costs.

This MSc course has been designed to equip electrical engineers with the knowledge and skills that are required to design modern PEMD systems, it includes the fundamentals of electrical machine and power electronics design, system integration, control, energy management and protection. The teaching team of eight academic staff belong to the Power Conversion Group and are all actively involved in researching new aspects of machines, drives, power electronics and electrical systems, particularly for applications in transport and sustainable electricity supply. The Group's research activities and industrial links inform the course content and enrich the student experience.

Aims

-To enable you to gain experience in the design and analysis of systems in electrical engineering, for example renewable energy, more-electric aircraft, vehicles, and next-generation electric power transmission
-To enable you to critically evaluate electrical machine and converter technology applied in manufacturing, power systems and transport industries
-To employ recent developments in these research areas and to prepare students who wish to continue on to research studies
-To develop your ability to integrate strands of machines, power electronics, drives and their control

The MSc course begins with an introduction to the fundamentals of converters, machines, actuators and relevant control systems. The course will give you a high level of exposure to system integration and is illustrated by a broad range of high-technology activities related to industrial and other systems.

The next five course units give specialist tuition on advanced topics including machine design, systems analysis, converter circuits and applications. In addition to lectures, tutorials, design exercises and enquiry-based learning, you will attend industrial seminars and practical laboratories which employ mainly industrial equipment. The course will include a `mechatronic' emphasis in examining how system blocks interact and ensuring that electrical and mechanical systems work together.

The summer is spent on this individual dissertation project, which is strongly supported by the Power Conversion Research Group's research base (including the Rolls-Royce University Technology Centre) and extensive industrial contacts. Cutting-edge research areas include versatile power and conversion systems for a variety of applications, including more-electric aircraft and ships, electric and hybrid vehicles, automation systems and autonomous/micro-grid power systems.

Career opportunities

Graduates of the course will have acquired in-depth education in modern design, broad exposure to the expanding range of applications, hands-on experience and integration into state-of-the-art systems. These comprise the special knowledge and skills needed for a professional career in energy conversion systems, an area in which engineers are in demand for key power electronic/drives/automation industries.

Industry's competitive edge relies on high-technology drives and in the integration of systems to provide superior overall performance. Applications include the `more electric aircraft', electric transport and high-reliability systems.

Our students have been employed by companies such as:
-ABB
-BAE Systems
-Cummings Turbo Technologies
-GE Energy
-National Instruments
-Rolls-Royce
-Siemens

Opportunities also exist for further study to doctoral level (PhD) in the Power Conversion Group's recently re-equipped and expanding research laboratories.

Read less
Systems Engineering Essentials for Engineers is a 15-week online distance learning course for graduates in engineering or other technical and business disciplines, providing a comprehensive awareness of Systems Engineering as defined in the International Council for Systems Engineering (INCOSE) competencies framework. Read more
Systems Engineering Essentials for Engineers is a 15-week online distance learning course for graduates in engineering or other technical and business disciplines, providing a comprehensive awareness of Systems Engineering as defined in the International Council for Systems Engineering (INCOSE) competencies framework. The course provides students with a preliminary understanding of the systems approach upon which to build their in-depth Systems Engineering skills.

Work at your own pace with online lectures designed to fit into a busy schedule. Timetabled tutorials and forums will enable you to discuss your progress with other students and academic staff. Practical application of Systems Engineering is demonstrated through a case study concerned with the introduction of a commercial renewable energy scheme.

Units and Brief contents

1. What is a System?
Introducing Systems Engineering with topics such as The role of a systems engineer, Examples of Systems Failures, Systems Topology

2. Systems Concepts – Lifecycles
Introducing concepts such as The Development Lifecycle, Lifecycle Identification and Planning and, The Systems and Software Engineering Lifecycle Standard (ISO/IEC 15288)

3. Requirements Management
Introducing Stakeholder Identification and Management, Functional and Non-Functional Requirements and Quality Function Deployment (QFD).

4. Systems Design
Introducing Functional Analysis and Concept Generation.

5. Systems Architectures
Introducing Architectural Design, Design Integrity and Modelling and Simulation.

6. Organisational Aspects
Introducing Governance and Enterprise.

7. Systems Design 2
Introducing Selecting Preferred Solution, Trade-Off and Through Life Management.

8. System Realisation
Introducing Systems Integration, Transition to Operation and Validation

9. Consolidation
Introducing MDAL (Major Data & Assumptions List) and SEMP (Systems Engineering Management Plan).

Assessments will be a combination of online tests, group work and other exercises, all of which are activities to practise the competencies being acquired.

Successful students will receive a certificate of completion and 15 credits towards the Systems Engineering MSc., for students who wish to extend their studies at a later date.

Requirements

Target audience: Engineers requiring a sound awareness and greater expertise in Systems Engineering and knowledge of Systems Engineering processes and tools. It is specifically for those involved with new system introduction from marketing through to system and product support.

Previous experience: Graduate or those with appropriate industrial experience

Read less
Effective use of renewable energy and improvements in the efficiency of power generation facilities will enable better energy management in the future and help reduce environmental impact. Read more

Why take this course?

Effective use of renewable energy and improvements in the efficiency of power generation facilities will enable better energy management in the future and help reduce environmental impact. This course responds to an urgent need for specialists in energy and power systems management, as well as a growing skills shortage of people with core knowledge in this field.

The course provides relevant, up-to-date skills that will equip both graduates and working professionals in the advanced concepts of sustainable electrical power and energy generation. It offers skills for operation, control, design, regulation and management of power systems and networks of the future. You will also receive training in and understanding of energy production, delivery, consumption and efficiency.

What will I experience?

On this course you will:

Benefit from experts in the industry who will deliver part of the course as visiting lecturers, bringing professional expertise and industry-relevant material
Be encouraged to reach a level of competence and professionalism where you can effectively integrate your technical and non-technical knowledge to solve a range of problems of a complex nature
Learn in a challenging and stimulating study environment
Develop a range of key skills by means of opportunities provided in the study units
Being an MSc course, you are encouraged and expected to be able to reach a level of competence and professionalism where you can effectively integrate your technical and non-technical knowledge to solve a range of problems of a complex nature.

What opportunities might it lead to?

The course will help to maximise your career potential in this field and equips you to work as an engineer, at an advanced level, in the fields of energy and power systems management.

Module Details

You will study several key topics and complete a four-month individual project in which you apply your knowledge to a significant, in-depth piece of analysis or design. Projects are tailored to your individual interests and may take place in our own laboratories or, by agreement, in industry. Experts from Industry (STS Nuclear) deliver part of the course as visiting lecturers, bringing professional expertise and industry-relevant material to the programme.

Here are the units you will study:

Power Systems Technology: This unit provides an in-depth overview of contemporary electrical power systems. It covers the elements of electrical power systems including generation, transmission and distribution in the mixed energy source paradigm.

Electrical Machines and drives: Provides an in-depth overview of the operational principles and physical design of DC and AC electrical machines as well as broad understanding of concepts of power electronics and power electronic converters, so that you can describe their application and selection criteria. You will develop an understanding of the issues present in converter design, including the impact of physical layout and heat dissipation.

Energy Systems: Focuses on the techniques and principles of operation of thermodynamics and combustion systems, as well as the provision and management of energy. It also focuses on power generation and combined systems, BioMass processers application of heat and fluid transfer.

Renewable and Alternative Energy: Provides an in-depth coverage of the principles of renewable and alternative energy systems: Winds, Solar, BioMass, Geothermal, Fuel Cells, Hydrogen Technologies and Nuclear Energy.

Nuclear Technology: A study of nuclear engineering including the theory of atomic and nuclear physics, methods and benefits of generating electricity from nuclear power plants, and the effects of ionising radiation. The nuclear fuel cycle and the associated environmental impacts are also considered. The development of international guidance on nuclear and radiological safety and a comparison of national regulatory structures are analysed. The importance of safety cultures, safety behaviours and safety cases is a key element throughout this module.

Energy Management: The unit is specifically designed to provide the students with the basic of economical analysis and evaluation of energy projects and asset management as well as risk and hazard assessment, comprising legislation, hazard identification and quantification, quantified risk analyses, methods of elimination/mitigation, economic appraisal of integrated renewable, and petroleum projects; with numerous pertinent case studies.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis and you will spend a significant amount of time in our Energy, Power systems and Electronic laboratories.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

This course is designed to respond to a growing skills shortage of people with core knowledge in energy and power systems management. It is an excellent preparation for a successful career in this ever expanding and dynamic field.

On successful completion of the course, you will have gained the skills and knowledge that will make you attractive to a wide variety of employers with interests ranging from overall system design to the more detailed development of subsystems. You will acquire the ability to critically evaluate methodologies, analytical procedures and research methods in energy and power systems management and in the use of state-of-the-art computational tools, the design of sustainable electrical power systems and networks and regulatory frameworks. For practicing engineers with professional business experience, the course is an opportunity to update your knowledge of current design practice and also to familiarise themselves with developments in codes and methods of analysis.

Read less
The Business Analysis and Service Design pathway will give you the capability to use information and information management to design agile and innovative business services.  . Read more

The Business Analysis and Service Design pathway will give you the capability to use information and information management to design agile and innovative business services.  

Commercial focus

Our students learn to apply their knowledge and skills to design technology-based solutions to application domains in business and management. They also gain a thorough understanding of management and leadership issues to enable them to work effectively within a variety of organisations.

After you’ve graduated

Graduates will be equipped for a variety of roles in the digital economy including business analysis, digital marketing, service development, strategic data analysis and consulting roles.

Not sure which pathway to choose from 3 choices? Apply for the one that you feel fits you better and you will be able to change the pathway within the first few weeks from your arrival to the university.

Why Henley?

  • Consistently maintain highest standards: Henley is in top 1% of business schools worldwide to hold accreditation from all three bodies in the UK, Europe and US
  • Excellent networking potential : 72,000 Henley alumni members in 150 countries
  • High calibre students: always oversubscribed, 1,000 ambitious new Masters students join Henley each year
  • Award winning campus: beautiful, green, 134 hectares, with state of the art facilities
  • World-leading faculty: widely published, frequently asked for expert comment by media and to speak at events
  • Henley is proud to be part of the University of Reading. The University is ranked within the top 200 universities worldwide (Times Higher Education World University Rankings 2016/17 and QS World University Rankings 2018) and 98% of the research is rated as being of international standard.

Course content

Compulsory modules

Optional modules

In addition students must choose two optional modules from the list below.

How we teach you

A holistic approach

Effective leadership requires more than first-class business acumen. It also requires a degree of self-awareness and sensitivity. Henley is renowned for its well-researched, professional approach to this aspect of business education and all our postgraduate programmes examine this aspect of leadership - helping to create emotionally intelligent graduates who can be fully effective in their chosen careers.

How you will learn

Henley Business School enjoys a strong reputation for the practical application of business ideas and concepts, underpinned by academic excellence and the strength of our research. We offer high-quality technical skills training as well as a deep understanding of the importance of personal development for leaders, a thread that runs through all of our Masters programmes.

Our postgraduate masters programmes feature a mix of core and optional modules, allowing you to tailor your degree towards your individual personal development needs and career ambitions. You will complete up to 10 taught modules during your programme, totalling 180 credits. One module usually equates to 20 credits or 10 hours of work per week. Your week will include lectures, tutorials, workshops and personal study, with each accounting for 25% of your time on average. This stimulating mix of lectures and interactive tutorials provides you with the opportunity to discuss and explore the subject material in depth with your lecturers and fellow students. You will be introduced to the latest thinking and research findings and be able to challenge some of those that have created it. You will also explore real-world issues and tackle current business challenges, and interact with guest lectures and speakers from industry, giving you the opportunity to test, extend and refine your knowledge and skills.

How we assess you

You will learn and be assessed through a wide variety of teaching methods which vary depending on your chosen Masters programme. These include online materials and multimedia content, guest lectures, individual and group assignments, case studies, field visits, dealing room simulations, presentations, applied projects, consultancy work and examinations.

On average examinations form around 70% of the assessed work with the remaining 30% coming from coursework, including a written dissertation or project depending on your chosen programme. The exam period falls between April and June in the summer term, with students taking an average of 5 or 6 exams. Graduation normally takes place in December.

Ongoing support

While postgraduate students are self-motivated and determined individuals, study at this level can present additional pressures which we take seriously. Lecturers are available to discuss the content of each module and your personal tutor can meet with you regularly to discuss any additional issues. Full-time support staff are also available to help with any questions or issues that may arise during your time at Henley

Careers and accreditations

Each pathway of our MSc Information Management is designed to give a rigorous academic understanding of real-life and current business issues. Graduates of the Systems Analysis and Design pathway will be equipped to manage and utilize information resources in various business fields including business & management, construction management and healthcare through a thorough understanding of systems analysis and design methodology.

A number of our students join our PhD programmes each year.

Students who pass the module – Business Domain and Requirements Analysis with a mark of 60 or above will be eligible for the British Computer Society Professional Certificate in Business Analysis Practice.



Read less
This Masters programme provides state-of-the-art training in the latest advances in Digital Health Systems development and management. Read more
This Masters programme provides state-of-the-art training in the latest advances in Digital Health Systems development and management. It's aimed at those who aim to become leaders in the field of Health IT, either for Health systems service delivery or for the Health & Wellness IT industry.

Graduates will gain essential skills and expertise in designing applications that are accessible and usable, and that comply with complex data governance within healthcare. You'll gain experience in managing, analysing and making use of data collected from personal devices (such as apps and wearables) and large scale health systems (such as electronic records). You'll also gain key software development and management skills that are critical for deploying health systems.

This course looking at the whole systems implementation of digital health systems is one of its kind in the UK.

This new and unique course is the first of its kind to offer technical graduates the opportunity to develop the core skills required to develop advanced health and wellness systems and technologies for improving the way we personally manage our lifestyles and how our care systems deliver better health to citizens.

You'll study

The course includes 120 credits of taught material - taken over the first two semesters - and a 60-credit digital health project that runs, typically, from May to September.

In addition to learning about the design, development and evaluation process for personal health and wellness devices and systems and larger scale hospital and community based IT systems, students will also be trained to understand and use techniques for using the data that these systems produce to support decision making and planning and delivery of better care.

Work placement

Student projects will be conducted in close collaboration with the Digital Health Research group partners.

Furthermore, the Digital Health Research group has close links with Scotland’s innovation centres (Digital Health & Care Institute, Data Lab), the Strathclyde Institute of Pharmacy & Biomedical Sciences, The City Observatory, and the Centre for Health Policy. These links provide a range of opportunities for practical partnerships with the leading organisations and industries in the field.

Major projects

Working closely with the Digital Health research group means students will be alongside a group that has conducted major collaborative research and development projects and evaluations within the UK and internationally. The group were lead investigators in the evaluation of a £37 million Innovate UK programme to deploy assistive digital health and wellness technologies at scale across the UK.

The group is also involved in organising key national and international conferences such as the British Computer Society (BCS) Health Informatics conference and the ACM conference on Human Factors in Computing Systems.

Example projects include: Design of mobile apps for Managing Diabetes; Cost Benefit Analysis of Technology Enabled Care; Evaluating the Barriers to Implementing Electronic Personal Health Records at Scale.

Student competitions

Each year one student will be awarded the 'Innovative Digital Health and Care' award for the best overall student project (judged by representatives from academia, health and social care and industry).

Guest lectures

The taught modules will include guest-lectures from experts and practitioners in the field of Health IT, both from industry, this sector and the National Health Service.

Course content

Classes
-Design of Usable Health Systems
-Digital Health Implementation
-Decision Support & Health Analytics
-Research Methods & Legal, Ethical and Professional Issues for the Information Society
-Information Systems Architecture
-Database & Web Systems Development
-Individual Project

Learning & teaching

Teaching combines face-to-face lectures, labs and tutorials as well as personal/group study time.

Assessment

Taught modules are assessed using a combination of individual projects, group projects and final exams. The project is assessed on the quality of the project report (ie Master thesis). An overall minimum of 50% across all assessed classes and report is required in order to be awarded the Master in Digital Health Systems.

Careers

Graduates from the programme will enjoy a broad range of career opportunities. The NHS remains one of the largest employers in the world and IT professionals is one of the fastest growing profession within the organisation.

Equally, private and public health and care services world-wide are also expanding their digital health capacities and workforce and hardware and software companies (sensors, wearables, mobile computing) are all seeking expertise in the health and wellness sector. Future career options will include:
-Application & system developer
-Health Systems & Service Designers
-Data Analyst
-IT manager
-Knowledge management specialist
-Knowledge & information manager
-Information governance manager
-Clinical information manager
-Computer support analyst/engineer
-Clinical coder/Clinical coding trainer
-Planning & performance manager
-Systems & process Auditor

Read less
The graduate in Automation and Control Engineering is an expert who can actively participate and take the lead in the executive design and development of products and systems. Read more

Mission and goals

The graduate in Automation and Control Engineering is an expert who can actively participate and take the lead in the executive design and development of products and systems. She/he may take on full responsibility for designing, installing, testing and maintaining complex machines and systems. The goal of the Automation and Control Engineering programme is to provide the graduate with a strong background in fundamental scientific disciplines, such as mathematics and physics, in classical engineering fields, such as thermodynamics, mechanics, electric drives, automatic control, and in the disciplines of the information and telecommunication technology, like computer science, electronics, communication networks. Thanks to the interdisciplinary nature of her/his background, the graduate has all the necessary skills to design or manage systems resulting from the integration of highly diverse components and technologies. This flexibility both in the attitude and in the competences is a significant asset of the Automation and Control Engineer, in view of the large variety of possible applications, of the continuous and rapid evolution of the technologies, as well as of the dynamics of the job market.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

Career opportunities

Automation and Control Engineering offers challenging and fulfilling careers for engineering technologists in design, research and development, and technical support, in many fields where automation and control are of paramount importance, such as: (a) industry producing manufacturing systems, automatic machines, robotic systems, mechatronic systems; (b) process industry (pulp and paper, energy production and conversion, chemical and petrochemical industry, etc.); (c) transportation systems (ground, marine and aerospace), concerning both the development of vehicles (cars, boats, helicopters, aircrafts, satellites), and the design, management and control of infrastructures; (d) transportation and distribution networks; (e) food industry; (f) electrical appliances and domotics; (g) environmental resources.

Typical companies where the automation and control engineers may operate include those producing and selling automation systems (both hardware and software); companies that use automated production plants or that manage highly complex services; engineering and consulting firms that design and project complex, economically challenging and technologically advanced plants and systems.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Automation_Engineering.pdf
This programme aims at providing the graduates with sound engineering skills to design, develop, implement and manage automation systems for manufacturing plants, industrial processes, mechatronic devices, distribution networks and environmental systems. Graduates have a strong background in the classical engineering fields and in the information and telecommunication technology. The interdisciplinary nature of this programme provides the graduates with all the skills to design/manage systems resulting from the integration of highly diverse technologies.
Graduates will have wide employment opportunities in many fields: industry producing manufacturing systems, automatic machines, robotic systems, mechatronic systems, process industry, transportation systems, transportation and distribution networks, food industry, electrical appliances, home automation and environmental resources.
The programme is taught in English.

Subjects

The mandatory courses are:
- Advanced and multivariable control
- Automation and control laboratory
- Computer aided manufacturing
- Dynamics of electrical machines and drives
- Dynamics of mechanical systems
- Model identification and data analysis
- Software engineering

Among the optional courses:
- Automation and control in vehicles
- Automation of energy systems
- Control of industrial robots
- Production systems control
- Safety in automation systems
- Thesis and final exam

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/automation-and-control-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Geographical Information Systems (GIS) has grown rapidly to become a major component of information technology, creating distinctive methods of data analysis, algorithms and software tools. Read more

Why take this course?

Geographical Information Systems (GIS) has grown rapidly to become a major component of information technology, creating distinctive methods of data analysis, algorithms and software tools.

This course emphasises the acquisition of practical GIS skills. We use a wide range of industry-standard software tools and a structured approach to the analysis of spatial data through project work.

What will I experience?

On this course you can:

Get hands-on experience of using instruments such as GPS, Total Stations and 3D laser scanners
Be taught by experts, who have extensive industrial and consultancy experience and strong research portfolios
Practise your GIS data collection skills in a range of environments

What opportunities might it lead to?

The wide range of career opportunities across public and private sectors and in university-based research, coupled with the rapid rate of technological change, mean that major organisations and industrial firms are finding it essential to update their skills through advanced study. We therefore aim to meet this demand by tailoring our course to the needs of both regional and national markets.

Here are some routes our graduates have pursued:

Environmental consultancies
Geographical information science specialists
Working for the Environmental Agency
Working for the Ordnance Survey

Module Details

The academic year is divided into two parts. The first part comprises the lecture, workshop, practical and field work elements of the course, followed by a dissertation which will take approximately five months to complete.

Here are the units you will study:

Principles of Geographic Information Science: Beginning with an overview of the development of GIS, the first part of this unit examines data sources and data capture, as well as hardware and software tools. The second part deals with vector-based data structures and data management, followed by vector GIS operations, such as overlay and buffering. You will undertake a project to create a GIS of your own, which may be presented as a seminar session. Practical exercises are undertaken using MapInfo. You will then go on to develop an understanding of raster-based approaches to GIS, cartographic modelling and related areas of image processing which are often applied in remote sensing. Topics include raster data models and data compression techniques, raster GIS and cartographic modelling, imaging systems and image processing, geometric correction techniques and GIS/remote sensing integration in the raster domain. Practical work uses MapInfo, ArcGIS - ArcMap and ERDAS Imagine.

GIS and Database Management Systems: Your major focus on this unit will be the use of industry-standard methods and tools to develop competence in the successive stages of database design, development and implementation. You will have an introduction to data analysis techniques, followed by an examination of alternative types of database system and the rules of relational database design. There is extensive treatment of the SQL query language in standard databases and for attribute query within a GIS. You will be introduced to advanced topics including database programming and computer-aided database design. You will also consider the Object-Relational databases and spatial data types, explore the use of spatial queries using the ORACLE relational database management system and examine procedural database programming and web database connectivity. Practical work for this unit uses the ORACLE relational database management system, running in full client-server mode.

Applied Geographic Information Systems: On this unit you will develop a general, inferential, model-based approach to the analysis of quantitative data within a geographical framework. You will examine a range of underlying concepts including model specification, bias, linearity, robustness and spatial autocorrelation. You will subsequently develop these in the context of a unified framework for analysis. Practical work is based on ArcGIS - ArcMap.

Research Methods and Design: This unit will introduce you to the basic principles of research design and methodology, enabling you to develop a critical approach to the selection and evaluation of appropriate methods for different types of research problem.

Modelling and Analysis and the Web: This unit gives you the chance to consider the use of GIS technology for creating terrain models and explore the basics of photogrammetry, as well as analytical and digital techniques for photogrammetric data capture. You will also look at Orthophotography, LiDAR and RADAR systems. ArcGIS is used for spatial analysis, such as buffering and overlay techniques. You will also explore and exemplify data transfer between GIS software systems and technologies for internet-based GIS.

Dissertation: This provides an opportunity for you to pursue a particular topic to a greater depth than is possible within the taught syllabus. It can take a variety of forms, for example GIS-based analysis of original data sources and digital datasets, case studies of GIS adoption in public or private sector organisations, the development of new software tools/applications or the design of GIS algorithms. The final submission takes the form of an extended written report or dissertation of a maximum of 15,000 words.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

The majority of assessment takes the form of practical exercises and project-based activity. This enables you to become familiar with industry-standard software systems and develop your skills by applying your newfound expertise in areas that particularly interest you.

Student Destinations

GIS technology is now very widely deployed in many organisations ranging from utility companies, telecommunications networks, civil engineering, retailing, local and national government, international charities and NGOs, the National Health Service, environmental organisations, banking and finance, and insurance. GIS has become an essential part of the world's information infrastructure.

You can expect to go on to find work in organisations such as local authorities, health authorities, conservation organisations, banks and insurance companies, amongst others. Many of our previous graduates are now employed all over the world, working on a whole variety of GIS-related projects in a very wide range of different organisations and industries.

Read less
The objective of the Space Engineering MSc is to educate highly skilled professionals, qualified to develop and manage technical activities related to research and design in the space sector. Read more

Mission and goals

The objective of the Space Engineering MSc is to educate highly skilled professionals, qualified to develop and manage technical activities related to research and design in the space sector. Space Engineering graduates have all the competences to fully develop activities related to the design, technical analysis and verification of a space mission. Within these activities, in particular, graduates from Politecnico di Milano can develop specific skills in the areas of: mission analysis, thermal and structural design of space components, design of the space propulsion and power generation system, design of the orbit and attitude control systems, space systems integration and testing.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

Professional opportunities

The knowledge gained through the degree in Space Engineering is suited to responsibility positions where working autonomy is required. As an example, positions offered by the space industry, research centres, private or public companies involved in the design, manufacturing and testing of space components. Furthermore, the skills and competences of the space engineer are well suited to companies involved in the design and manufacturing of products characterized by lightweight structures and autonomous operation capacity, and more in general where advanced design tools and technologies are adopted.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Space_Engineering_02.pdf
The Master of Science programme in Space Engineering aims at training professionals able to develop and manage technical activities related to research and design in the space sector. Within these activities, students can develop specific skills in the following areas: mission analysis, thermal and structural design of space components, design of the space propulsion and power generation system, design of the orbit and attitude control systems, and space systems integration/testing. Space engineers are suitable for positions offered by the space industry, research centres, private or public companies involved in the design, manufacturing and testing of space components, or generally in the design of advanced technologies. The programme is taught in English.

Subjects

- 1st year
Aerothermodynamics, Orbital Mechanics, Aerospace Structures, Dynamics and Control of Aerospace Structures with Fundamentals of Aeroelasticity, Fundamentals of Thermochemical Propulsion, Heat Transfer and Thermal Analysis, Communications Skills.

- 2nd year
Spacecraft Attitude Dynamics and Control, Space Propulsion and Power Systems, Space Physics, Numerical Modeling of Aerospace Systems, Experimental Techniques in Aerospace Engineering, Aerospace Technologies and Materials, Telecommunication Systems, Space Mission Analysis and Design, Graduation Thesis and Final Work.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less

Show 10 15 30 per page



Cookie Policy    X