• University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
Vlerick Business School Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Surrey Featured Masters Courses
"systems"×
0 miles

Masters Degrees (Systems)

We have 4,735 Masters Degrees (Systems)

  • "systems" ×
  • clear all
Showing 1 to 15 of 4,735
Order by 
The Systems Engineering Management MSc has been specifically designed for the needs of engineering professionals working in the field of complex systems development. Read more
The Systems Engineering Management MSc has been specifically designed for the needs of engineering professionals working in the field of complex systems development. The programme encompasses not only the technical tools and approaches needed to build success in this area, but also the management dimension of the relevant processes.

Degree information

Students gain an integrated, interdisciplinary view of complex systems and an advanced understanding of the systems engineering process. They gain the ability to apply this process to a variety of real world situations and the management skills necessary to facilitate the development of complex systems on time and within budget.

Students undertake modules to the value of 180 credits.

The programme consists of four core taught modules (60 credits) two optional taught modules (30 credits) and three research modules (90 credits). Modules are generally taught as intensive five-day 'block weeks' to minimise time away from the office.

A Postgraduate Diploma (120 credits, full-time nine months, or flexible study up to five years) is offered. A Postgraduate Certificate (60 credits, full-time 12 weeks, or flexible study up to two years) is offered.

Core modules
-Systems Engineering Management
-Lifecycle Management
-Risk, Reliability, Resilience
-The Business Environment

Optional modules
-Defence Systems
-Environmental Systems*
-Project Management
-Rail Systems
-Spacecraft Systems
-Systems Design
-Systems, Society, Sustainability*

*These modules are delivered by UCL's Department of Civil, Environmental and Geomatic Engineering in ten half-day sessions over the course of a term instead of the usual intensive 'block week' format

Research modules - all MSc students undertake a structured research programme comprising the following mandatory modules:
-Systems Engineering in Practice (15 credits)
-Systems Engineering Project Concept (15 credits)
-Systems Engineering Research Project (60 credits)

Teaching and learning
The programme is delivered through a combination of lectures, discussion sessions, workshop activity, and project work. Each taught course will be separately assessed through a combination of course work and a written examination. The project will be assessed through written dissertation and subsequent oral examination.

Careers

Complex systems are commonplace in many branches of UK industry including rail, aerospace, defence, and manufacturing. The ability to create such systems effectively is crucial to the competitiveness of these industries and has a direct bearing on the wealth of the nation.

Recent graduates of the programme have the following careers:
-London Underground: Head of Railway Systems
-Accenture: Analyst
-Thales Aerospace: Design Authority Manager
-BAE Systems: Systems Design Authority
-Selex Sensors and Airborne Management: Engineering Lead
-Xerox: Engineering Manager
-QinetiQ: Marine Engineer
-BAE Systems: Senior Hardware Engineer
-British Aerospace: Software Engineer
-Orange: Principal Engineer
-Halcrow Group Limited: Design Manager

Top career destinations for this degree:
-Software Engineer, Bank of America Merrill Lynch
-Analyst, Accenture
-Proposals engineer, Invensys PLC
-Engineering Manager, BAE Systems
-Systems Engineer, BIG

Why study this degree at UCL?

This MSc combines academic rigour with the practical expertise exemplified by our collaborators in UK industry and government. The flexible programme enables participants to structure their studies to suit their own career goals, and is accredited by the IET as a programme of further learning for registration as a Chartered Engineer.

Lectures are presented by experts in the field, many of whom have engaged in the practice of systems engineering in industry.

Industry is operating in an environment where technology changes rapidly, and where global competition grows ever more intensive. The challenge to remain competitive means we must make the right thing at the right price. Our MSc equips graduates with the skills to meet this challenge.

Read less
This course has been designed with industry to meet the challenge of interdependence between sophisticated engineered systems of all kinds. Read more
This course has been designed with industry to meet the challenge of interdependence between sophisticated engineered systems of all kinds. It is often taken in its part-time format.

It is aimed at engineers who have specialised in a traditional discipline but are now expected to understand, operate in, develop and integrate entire systems that are not only increasingly complex but rapidly changing.

The block taught format of the programme and the option to elect assessment by coursework rather than exam makes it a popular part time course and a CPD option.

Core study areas include systems thinking, systems architecture, systems design, verification and validation, and an individual project.

Optional study areas include enterprise systems management, holistic engineering (industry-led module), sensors and actuators for control, imagineering technologies, engineering and management of capability and understanding complexity.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/systems-engineering/

Programme modules

Compulsory Modules:
• Systems Thinking
• Systems Architecture
• Systems Design
• Validation & Verification
• Individual Project

Optional Modules (choose four):
• Enterprise Systems Engineering
• Holistic Engineering (industry-led module)
• Sensors and Actuators for Control
• Imagineering Technologies
• Engineering and Management of Capability
• Understanding Complexity

Block taught, individual modules are also highly suitable as CPD for professional engineers working onsystems engineering projects and challenges.

How you will learn

The curriculum stimulates thinking and extends the capabilities of technical managers and engineers to handle complexity, enabling them to remain effective in the workplace by providing:
- an integrated systems engineering view of inter-related technologies, processes, tools, techniques and their effective use;

- essential systems skills such as model-based systems architecture and design, against a background of the need for traceability in managing complex projects;

- knowledge and technical expertise in a range of systems technologies;

- experience of the importance to ultimate success of effective, integrated, multi-skilled project teams working in extended enterprises beyond the confines of any particular organisation;

- increased depth of technical and management knowledge through elective modules; and

- the ability to transfer systems skills and knowledge into the workplace through the individual master’s project.

Teaching staff comprise a varied skill set of international expertise to give the broadest perspectives and modules frequently feature master classes from industry practitioners.

- Assessment
There is the option to complete without written examinations as all compulsory modules are assessed by coursework. Where examinations are taken these are in January and May.

Facilities

We employ advanced modelling, simulation and interactive visualisation tools and techniques to enable you to gain greater understanding of the performance, behaviour and emergent properties of advanced technology and complex systems.

Many of these facilities are part of the Advanced VR Research Centre ( AVRRC) http://www.lboro.ac.uk/research/avrrc/facilities/

Careers and further study

Graduates of this course gain capabilities that are in global demand across a range of sectors and which can be applied to the challenges and issues posed by any complex system design and operation.

Promotion within their company for sponsored students is common since the course enables them to match higher job expectations and demands. Employed students often bring a work-relevant topic to their individual project giving the opportunity to display newly acquired skills.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/systems-engineering/

Read less
The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. Read more
The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. This interdisciplinary Master's programme presents environmental issues and technologies within a systems engineering context. Graduates will understand interactions between the natural environment, people, processes and technologies to develop sustainable solutions.

Degree information

Students will develop an understanding of systems engineering and environmental engineering. Environmental engineering is a multidisciplinary branch of engineering concerned with devising, implementing and managing solutions to protect and restore the environment within an overall framework of sustainable development. Systems engineering is the branch of engineering concerned with the development and management of large complex systems.

Students undertake modules to the value of 180 credits. The programme consists of four core modules (60 credits), a collaborative environmental systems project (30 credits), two optional modules (30 credits) and an individual environmental systems dissertation (60 credits). A Postgraduate Diploma (120 credits) is offered.

Core modules
-Collaborative Environmental Systems Project
-Environmental Systems
-Systems Engineering and Management
-Systems Society and Sustainability
-Environmental Modelling

Optional modules - options may include the following:
-Urban Flooding and Drainage
-Coastal Engineering
-Water and Wastewater Treatment
-Natural Environmental Disasters
-The Control of Noise
-Industrial Symbiosis
-Environmental Masterplanning
-Energy Systems Modelling
-Smart Energy Systems
-Low Carbon Energy Supply System Design for Buildings and Neighbourhoods
-Energy Systems & Sustainability
-Politics of Climate Change
-Natural Environmental Disasters
-Engineering and International Development
-Waste and Resource Efficiency
-Project Management for Engineers

Dissertation/report
All MSc students undertake an independent research project addressing a problem of systems research, design or analysis, which culminates in a dissertation of 10,000.

Teaching and learning
The programme is delivered through lectures, seminars, tutorials, laboratory classes and projects. The individual and group projects in the synthesis element involve interaction with industrial partners, giving students real-life experience and contacts for the future. Assessment is through written examination, coursework, presentations, and group and individual projects.

Careers

Career paths for environmental systems engineers are diverse, expanding and challenging, with the pressures of increasing population, desire for improved standards of living and the need to protect the environmental systems. There are local UK and international opportunities in all areas of industry: in government planning and regulation, with regional and municipal authorities, consultants and contracting engineers, research and development organisations, and in education and technology transfer. Example of recent career destinations include Ford, KPMG, EDF Energy, Brookfield Multiplex, and the Thames Tideway Tunnel Project.

Top career destinations for this degree:
-Environmental Specialist, BHP Billiton
-Project Engineer, Alberta WaterSMART
-Project Manager, Veolia Environmental Services
-MSc Business Management, Imperial College Business School, Imperial College
-PhD Environmental Research, Imperial College London

Employability
The discipline of environmental systems engineering is growing rapidly with international demand for multi-skilled, solutions-focussed professionals who can take an integrated approach to complex problems.

Why study this degree at UCL?

The discipline of environmental systems engineering is growing rapidly with an international demand for multi-skilled professionals who can take an integrated approach to solving complex environmental problems (e.g. urban water systems, technologies to minimise industrial pollution). Environmental engineers work closely with a range of other environmental professionals, and the community.

Skills may be used to:
-Design, construct and operate urban water systems.
-Develop and implement cleaner production technologies to minimise industrial pollution.
-Recycle waste materials into new products and generate energy.
-Evaluate and minimise the environmental impact of engineering projects.
-Develop and implement sound environmental management strategies and procedures.

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting environment in which to explore environmental systems engineering. Students have the advantages of studying in a multi-faculty institution with a long tradition of excellence in teaching and research, situated at the heart of one of the world's greatest cities.

Read less
The Systems Analysis and Design pathway gives students an understanding of how technological information systems work, enabling them to deliver IT-based solutions, such as enterprise systems to business and organisations. You’ll learn how to manage data to deliver actionable business insight using creative, sophisticated techniques to solve complex business issues. . Read more

The Systems Analysis and Design pathway gives students an understanding of how technological information systems work, enabling them to deliver IT-based solutions, such as enterprise systems to business and organisations. You’ll learn how to manage data to deliver actionable business insight using creative, sophisticated techniques to solve complex business issues. 

Commercial focus

Students will learn how systems ‘think’ and be able to apply their understanding to systems analysis and design methodology to enable them to plan, manage and design and implement information management projects.

After you’ve graduated

Our graduates leave us prepared to take on a range of jobs in the digital economy, from systems analysis and design, to product development and management consulting. Among other organisations, our alumni join financial services firms, IT companies, consulting firms, software houses, healthcare and the public sector.

Not sure which pathway to choose from 3 choices? Apply for the one that you feel fits you better and you will be able to change the pathway within the first few weeks from your arrival to the university.

Why Henley?

  • Consistently maintain highest standards: Henley is in top 1% of business schools worldwide to hold accreditation from all three bodies in the UK, Europe and US
  • Excellent networking potential : 72,000 Henley alumni members in 150 countries
  • High calibre students: always oversubscribed, 1,000 ambitious new Masters students join Henley each year
  • Award winning campus: beautiful, green, 134 hectares, with state of the art facilities
  • World-leading faculty: widely published, frequently asked for expert comment by media and to speak at events
  • Henley is proud to be part of the University of Reading. The University is ranked within the top 200 universities worldwide (Times Higher Education World University Rankings 2016/17 and QS World University Rankings 2018) and 98% of the research is rated as being of international standard.

Course content

Compulsory modules

Optional modules

In addition students must choose two optional module from the list below.

Please note there is no guarantee that in any one year all modules will be available. 

How we teach you

A holistic approach

Effective leadership requires more than first-class business acumen. It also requires a degree of self-awareness and sensitivity. Henley is renowned for its well-researched, professional approach to this aspect of business education and all our postgraduate programmes examine this aspect of leadership - helping to create emotionally intelligent graduates who can be fully effective in their chosen careers.

How you will learn

Henley Business School enjoys a strong reputation for the practical application of business ideas and concepts, underpinned by academic excellence and the strength of our research. We offer high-quality technical skills training as well as a deep understanding of the importance of personal development for leaders, a thread that runs through all of our Masters programmes.

Our postgraduate masters programmes feature a mix of core and optional modules, allowing you to tailor your degree towards your individual personal development needs and career ambitions. You will complete up to 10 taught modules during your programme, totalling 180 credits. One module usually equates to 20 credits or 10 hours of work per week. Your week will include lectures, tutorials, workshops and personal study, with each accounting for 25% of your time on average. This stimulating mix of lectures and interactive tutorials provides you with the opportunity to discuss and explore the subject material in depth with your lecturers and fellow students. You will be introduced to the latest thinking and research findings and be able to challenge some of those that have created it. You will also explore real-world issues and tackle current business challenges, and interact with guest lectures and speakers from industry, giving you the opportunity to test, extend and refine your knowledge and skills.

How we assess you

You will learn and be assessed through a wide variety of teaching methods which vary depending on your chosen Masters programme. These include online materials and multimedia content, guest lectures, individual and group assignments, case studies, field visits, dealing room simulations, presentations, applied projects, consultancy work and examinations.

On average examinations form around 70% of the assessed work with the remaining 30% coming from coursework, including a written dissertation or project depending on your chosen programme. The exam period falls between April and June in the summer term, with students taking an average of 5 or 6 exams. Graduation normally takes place in December.

Ongoing support

While postgraduate students are self-motivated and determined individuals, study at this level can present additional pressures which we take seriously. Lecturers are available to discuss the content of each module and your personal tutor can meet with you regularly to discuss any additional issues. Full-time support staff are also available to help with any questions or issues that may arise during your time at Henley

Careers and accreditations

Each pathway of our MSc Information Management is designed to give a rigorous academic understanding of real-life and current business issues. Graduates of the Systems Analysis and Design pathway will be equipped to manage and utilize information resources in various business fields including business & management, construction management and healthcare through a thorough understanding of systems analysis and design methodology.

A number of our students join our PhD programmes each year.

Students who pass the module INMR66 – Business Domain and Requirements Analysis with a mark of 60 or above will be eligible for the British Computer Society Professional Certificate in Business Analysis Practice. 



Read less
Systems Engineering Essentials for Engineers is a 15-week online distance learning course for graduates in engineering or other technical and business disciplines, providing a comprehensive awareness of Systems Engineering as defined in the International Council for Systems Engineering (INCOSE) competencies framework. Read more
Systems Engineering Essentials for Engineers is a 15-week online distance learning course for graduates in engineering or other technical and business disciplines, providing a comprehensive awareness of Systems Engineering as defined in the International Council for Systems Engineering (INCOSE) competencies framework. The course provides students with a preliminary understanding of the systems approach upon which to build their in-depth Systems Engineering skills.

Work at your own pace with online lectures designed to fit into a busy schedule. Timetabled tutorials and forums will enable you to discuss your progress with other students and academic staff. Practical application of Systems Engineering is demonstrated through a case study concerned with the introduction of a commercial renewable energy scheme.

Units and Brief contents

1. What is a System?
Introducing Systems Engineering with topics such as The role of a systems engineer, Examples of Systems Failures, Systems Topology

2. Systems Concepts – Lifecycles
Introducing concepts such as The Development Lifecycle, Lifecycle Identification and Planning and, The Systems and Software Engineering Lifecycle Standard (ISO/IEC 15288)

3. Requirements Management
Introducing Stakeholder Identification and Management, Functional and Non-Functional Requirements and Quality Function Deployment (QFD).

4. Systems Design
Introducing Functional Analysis and Concept Generation.

5. Systems Architectures
Introducing Architectural Design, Design Integrity and Modelling and Simulation.

6. Organisational Aspects
Introducing Governance and Enterprise.

7. Systems Design 2
Introducing Selecting Preferred Solution, Trade-Off and Through Life Management.

8. System Realisation
Introducing Systems Integration, Transition to Operation and Validation

9. Consolidation
Introducing MDAL (Major Data & Assumptions List) and SEMP (Systems Engineering Management Plan).

Assessments will be a combination of online tests, group work and other exercises, all of which are activities to practise the competencies being acquired.

Successful students will receive a certificate of completion and 15 credits towards the Systems Engineering MSc., for students who wish to extend their studies at a later date.

Requirements

Target audience: Engineers requiring a sound awareness and greater expertise in Systems Engineering and knowledge of Systems Engineering processes and tools. It is specifically for those involved with new system introduction from marketing through to system and product support.

Previous experience: Graduate or those with appropriate industrial experience

Read less
All those involved in the wider defence enterprise, across government, military, industry, science and technology have changing needs and aspirations for defence. Read more

Course Description

All those involved in the wider defence enterprise, across government, military, industry, science and technology have changing needs and aspirations for defence. Agility, resilience, continuity of supply, skills and innovation now complement the continuing need to balance cost, time and performance in everything we do.

The Centre for Systems Engineering has been at the forefront of developing systems engineering education for the past fifteen years, blending the breadth of systems thinking with the rigour of systems engineering and closely integrating this within acquisition management.

You will develop knowledge and skills in understanding the wider context of defence capability and guiding the development of operational, support and enabling business solutions which both deliver cost effective outcomes and contribute to the attributes of defence as a whole.

Course overview

The course is modular and you will accumulate credits for each module you successfully complete:

- Full modules are each worth 10 credits.
- The Advanced Systems Engineering Workshop is worth 20 credits.

The course structure has been devised to give the maximum amount of flexibility for you to create your own learning pathway whilst ensuring that the fundamental principles of systems engineering are compulsory.

- The PgCert comprises 60 credits of which 40 are for compulsory modules and 20 are for elective modules.
- The PgDip comprises 120 credits of which 70 are for compulsory modules and 50 are for elective modules.
- The MSc comprises 200 credits of which 70 are for compulsory modules, 50 credits are for elective modules and 80 are for the thesis associated with the Individual Project.

Full-time MSc - one year, Part-time MSc - up to three years, Full-time PgCert - one year, Part-time PgCert - two years, Full-time PgDip - one year, Part-time PgDip - two years

(For MOD status students the duration may vary, subject to annual review.)

Individual Project

The Individual Project provides you with an opportunity to undertake an in-depth study of an area of particular interest to you or your sponsor which is written up as a thesis or dissertation. The study might include, for example:

- Application of Systems Engineering tools and techniques to a real world problem.
- Analysis of underpinning Systems Engineering theory and practice.
- Development of new or tailored Systems Engineering processes.

Modules

The Compulsory and Elective Modules below are as for the MSc and PgDip. For PgCert students Capability Context and Advanced Systems Engineering Workshop are Elective.

Core -

Advanced Systems Engineering Workshop (ASEW)
Applied Systems Thinking
Capability Context
Lifecycle Processes Introduction
Lifecycle Processes Advanced
Systems Approach to Engineering

Elective -

Availability, Reliability, Maintainability and Support Strategy (ARMSS)
Decision Analysis, Modelling and Support (DAMS)
Human Centric Systems Engineering (HCSE)
Introduction to Defence Capability
Model Based Systems Engineering
Simulation and Synthetic Environments
System of Systems Engineering
Thesis Selection Workshop
- Systems Engineering and Software
- Systems Engineering Workshop
- Networked and Distributed Simulation Exercise

Assessment

Coursework, written examinations, oral examinations, portfolio and, for the MSc only, an individual thesis.

Funding

Funding is available to MoD students. For more information contact MoD Enquiries by calling 01793 314485 (Option 4) or Mil: 96161 4485.

For more information on funding for non-MoD students please contact

Career opportunities

Takes you on to impressive career prospects across a range of roles commensurate with your experience. This includes membership of multidisciplinary teams in acquisition, supply or research organisations. This could be in both general systems engineering roles or as a focal point for specific skills such as availability, reliability and maintenance (ARM), human factors, requirements, architecture test and evaluation, etc. It is also applicable to key roles in MoD acquisition such as Project Team leader, capability manager and requirements manager.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/Systems-Engineering-for-Defence-Capability

Read less
Information drives businesses. Without it, they cease to function. Whether for day-to-day operations or strategic decision-making, there is an imperative to record, manage and use information. Read more
Information drives businesses. Without it, they cease to function. Whether for day-to-day operations or strategic decision-making, there is an imperative to record, manage and use information.

The Master of Business Information Systems (MBIS) prepares you for careers in systems design, planning and management, as well as knowledge and information management. You gain the expertise to design solutions to business information problems, and to offer strategic guidance to organisations that will enhance their management and governance.

As an MBIS graduate, you may find work as a business analyst, systems analyst, consultant, project leader, IT manager, information management specialist, archivist or librarian.

The MBIS caters to students from a variety of backgrounds. If you do not have previous training in IT, the course includes preparatory units that will give you the IT knowledge needed for the remainder of the course. However, if you already have a degree in IT, you can accelerate your study with an exemption from these preparatory units, or perhaps study further elective units in areas of your choice.

The course gives you an opportunity to explore a wide range of areas, from enterprise systems, information systems design, and business intelligence to IT strategy and project management.

If your interests lie in information and knowledge management, you can pursue a specialisation in Archives and Recordkeeping or Librarianship and Information Science, accredited by professional organisations.

In your final semester, you may take part in an Industry Experience program, working in a small team with industry mentors to develop entrepreneurial IT solutions. Or you may undertake a minor-thesis research project, investigating cutting-edge problems in BIS under the supervision of internationally recognised researchers.

High-achieving students who complete the research component may progress to further research study.

The MBIS is accredited with the Australian Computer Society (ACS).

Visit the website http://www.study.monash/courses/find-a-course/2016/business-information-systems-c6003?domestic=true

Overview

The course has a general form and also provides students with the option to specialise in archives and recordkeeping, and library and information science. Students may study the general form, complete either specialisation or combine both specialisations. The specialisations are not available to Malaysia, on-campus students.

Career opportunities

The highly flexible course structure opens up a variety of career opportunities. Graduates of the program will be expected to play leading professional roles in the field locally and overseas.

Please select a specialisation for more details:

Archives and recordkeeping

Records managers and archivists ensure that vital records of social and organisational activity are created, managed and made available to business for accountability, corporate memory, enterprise knowledge and cultural purposes. Work settings include most major private and public sector organisations, and archival institutions. Knowledge managers are concerned with developing strategies and processes for managing organisational knowledge and knowledge flows to achieve organisational goals, enhance performance and add value. A particular concern is developing an environment conducive to the creation, sharing and application of organisational knowledge, and systems that support these processes.

Business information systems studies

The general form of the course gives students the skills and knowledge to solve organisational information problems. The course caters for students who would like to be business analysts, information systems consultants and IT managers. Students will learn about information technology principles, systems analysis and design, enterprise architecture and systems, IT management and governance and project management. Students can select from a range of business information systems units to focus their studies in several areas of interest including business intelligence, user experience design and business process modelling.

Library and information science

Librarians and information specialists manage information and provide information services to clients in a wide range of contexts. They are concerned with analysing information needs, solving information problems, evaluating information sources, organising information, synthesising information into targeted information products, and training clients in the use of information products, services and systems. They work for commercial, government and community sector organisations, for information consultancies and as independent information brokers.

Course Structure

The course is structured in three parts, A, B and C. All students complete Part B (core studies). Depending upon prior qualifications, you may receive credit for Part A (foundation studies) or Part C (advanced studies) or a combination of the two.

Note that if you are eligible for credit for prior studies you may elect not to receive the credit.

PART A. Foundations for advanced business information systems
These units provide an introduction to information systems and business concepts, including system design and analysis as applied in professional practice. You will learn basic software programming and development concepts and database technology.

These units are intended for students whose previous qualification is not in a cognate field.

PART B. Core Master's study
These studies draw on best practices within business information systems to gain critical understanding of the theories and practice relating to information systems and business process design, IT strategy, IT governance, IT management and related issues. Your study will focus on project management as well as a choice of several areas of enterprise IT and information management practice.

PART C. Advanced practice
The focus of these studies is professional or scholarly work in the broad realm of business information systems.

You have two options.

The first is a minor thesis research program, consisting of a research project and a research methods training unit. Students wishing to use this Masters course as a pathway to a higher degree by research should take this first option.

The second option is a program of coursework involving advanced study and an Industry experience studio project.

Students completing the combined specialisation Archives and Recordkeeping/Library and Information Science complete the industry experience program.

Students admitted to the course, who have a recognised honours degree in a discipline cognate to information systems, will receive credit for Part C, however, should they wish to complete a research project as part of the course they should consult with the course coordinator.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/information-technology

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/business-information-systems-c6003?domestic=true#making-the-application

Read less
This course is designed in collaboration with transport industry partners to equip you to meet the needs of the rail and road industries. Read more
This course is designed in collaboration with transport industry partners to equip you to meet the needs of the rail and road industries. There is an increased demand for advancements in electrical, electronic, control and communication systems for transport, with a particular focus on themes like higher efficiency and sustainability, safety and driving assistance, position and traffic control for smart transport planning.

Modern electrical, electronic, control and communication systems for intelligent transport require today engineers with a combination of skills and solutions from cross-disciplinary abilities spanning electrical, electronic, control and communications. In this context, the overall aim of this Conversion Masters is to provide you with an enriching learning experience, and to enhance your knowledge and skill-base in the area of modern road vehicle and rail transport systems design.

This conversion course is intended both for engineers in current practice and for fresh honours graduates to facilitate their professional development, mobility and employability.

Course content

This course aims to enhance your knowledge and skills in the area of intelligent and efficient transport systems design. You will develop advanced practical skills that will help you determine system requirements, select and deploy suitable design processes and use the latest specialist tool chains to test and/or prototype a device or algorithm. The programme will help you acquire the cross-disciplinary skills and abilities that today are vital to be able to implement effective solutions for modern electrical, electronic and communication systems applied to intelligent transport. The broad range of disciplines covered by the course will enable you to enter a career that requires a cross-disciplinary approach with a practical skillset.

The subject areas covered within the course offer you an excellent launch pad which will enable you to enter into this ever expanding, fast growing and dominant area within the electrical engineering sector, and particularly in the area of intelligent and efficient transport systems. Furthermore, the course will provide the foundations required to re-focus existing knowledge and enter the world of multi-disciplined jobs.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-Electric Motors and Control for Transport Systems
-Power Conversion and Drives for Transport Systems
-Project
-Sensor, Data Acquisition and Communication for Transport Systems

Associated careers

The course provides the foundations required to re-focus existing knowledge and enter the world of multi-disciplined jobs. Graduates can expect to find employment, for example, as Electrical systems design engineers; Control systems engineers, Transport systems engineers; Plant control engineers; Electronic systems design engineer; Communication systems design engineers; Sensor systems engineers; Computer systems engineer. Examples of typical industries of employment can be: Transport; Automobile; Aviation; Electrical systems; Electronic systems; Assembly line manufacturers; Robotics and home help; Toy; Communication systems; Logistics and distribution; Consumer industry; Life-style industry; Security and surveillance; Petro-chemical.

Professional recognition

This course will be seeking accreditation from the IET.

Read less
Created in the context of the rapid advancement of the renewable-energy industry, this Masters programme investigates both renewable energy and systems technologies. Read more

Created in the context of the rapid advancement of the renewable-energy industry, this Masters programme investigates both renewable energy and systems technologies.

It is designed to build your competence and confidence in the R&D and engineering tasks that are demanded of scientific engineers in the renewable and sustainable-development sector.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and academic support

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects. In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, ongoing research. In the past, several graduates have carried on their MSc research to a PhD programme.

Career prospects

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision-support systems alongside their main technical and/or scientific expertise.

Graduates of this programme will be well prepared to help technology-intensive organisations make important decisions in view of vast amounts of information by adopting, combining, implementing and executing the right technologies.

Educational aims of the programme

This programme investigates both renewable energy and systems technologies in order to produce scientific researchers and engineers who are competent in the R&D and engineering tasks applicable to the renewable energy and sustainable development sectors.

Its primary aims lie in developing a global understanding of the major types of renewable energy technologies, in-depth knowledge of the technology for biomass-based renewable energy, and knowledge and skills in systems modelling and optimisation.

A balanced curriculum will be provided with a core of renewable energy and systems engineering modules supplemented by a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme.

Programme learning outcomes

Knowledge and understanding

The programme aims to develop the knowledge and understanding in both renewable energy and systems engineering. The key learning outcomes include:

  • State-of- the-art knowledge in renewable energy technologies, in terms of: the sources, technologies, systems, performance, and applications of all the major types of renewable energy; approaches to the assessment of renewable energy technologies; the processes, equipment, products, and integration opportunities of biomass-based manufacturing
  • State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems; mathematical optimization and decision making; process systems design
  • Advanced level of understanding in technical topics of preference, in one or more of the following aspects: process and energy integration, economics of the energy sector, sustainable development, supply chain management

Intellectual / cognitive skills

The programme aims to strengthen cognitive skills of the students, particularly in the aspects of problem definition, knowledge and information acquiring, synthesis, and creativity, as collectively demonstrable through the successful completion of the research dissertation. The key learning outcomes include the abilities to:

  • Select, define and focus upon an issue at an appropriate level
  • Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
  • Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills

The programme primarily aims to develop skills for applying appropriate methods to analyze, develop, and assess renewable technologies and systems. The key learning outcomes include the abilities to:

  • Assess the available renewable energy systems
  • Design and select appropriate collection and storage, and optimise and evaluate system design
  • Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of renewable energy technologies and systems

Key / transferable skills

The programme aims to strengthen a range of transferable skills which are relevant to the needs of existing and future professionals in knowledge intensive industries irrespective of their sector of operation. The key learning outcomes include the further development of the skills in the following areas:

  • Preparation and delivery of communication and presentation
  • Report and essay writing
  • Use of general and professional computing tools
  • Collaborative working with team members
  • Organizing and planning of work
  • Research into new areas, particularly in the aspect of literature review and skills acquisition

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This Masters programme provides state-of-the-art training in the latest advances in Digital Health Systems development and management. Read more
This Masters programme provides state-of-the-art training in the latest advances in Digital Health Systems development and management. It's aimed at those who aim to become leaders in the field of Health IT, either for Health systems service delivery or for the Health & Wellness IT industry.

Graduates will gain essential skills and expertise in designing applications that are accessible and usable, and that comply with complex data governance within healthcare. You'll gain experience in managing, analysing and making use of data collected from personal devices (such as apps and wearables) and large scale health systems (such as electronic records). You'll also gain key software development and management skills that are critical for deploying health systems.

This course looking at the whole systems implementation of digital health systems is one of its kind in the UK.

This new and unique course is the first of its kind to offer technical graduates the opportunity to develop the core skills required to develop advanced health and wellness systems and technologies for improving the way we personally manage our lifestyles and how our care systems deliver better health to citizens.

You'll study

The course includes 120 credits of taught material - taken over the first two semesters - and a 60-credit digital health project that runs, typically, from May to September.

In addition to learning about the design, development and evaluation process for personal health and wellness devices and systems and larger scale hospital and community based IT systems, students will also be trained to understand and use techniques for using the data that these systems produce to support decision making and planning and delivery of better care.

Work placement

Student projects will be conducted in close collaboration with the Digital Health Research group partners.

Furthermore, the Digital Health Research group has close links with Scotland’s innovation centres (Digital Health & Care Institute, Data Lab), the Strathclyde Institute of Pharmacy & Biomedical Sciences, The City Observatory, and the Centre for Health Policy. These links provide a range of opportunities for practical partnerships with the leading organisations and industries in the field.

Major projects

Working closely with the Digital Health research group means students will be alongside a group that has conducted major collaborative research and development projects and evaluations within the UK and internationally. The group were lead investigators in the evaluation of a £37 million Innovate UK programme to deploy assistive digital health and wellness technologies at scale across the UK.

The group is also involved in organising key national and international conferences such as the British Computer Society (BCS) Health Informatics conference and the ACM conference on Human Factors in Computing Systems.

Example projects include: Design of mobile apps for Managing Diabetes; Cost Benefit Analysis of Technology Enabled Care; Evaluating the Barriers to Implementing Electronic Personal Health Records at Scale.

Student competitions

Each year one student will be awarded the 'Innovative Digital Health and Care' award for the best overall student project (judged by representatives from academia, health and social care and industry).

Guest lectures

The taught modules will include guest-lectures from experts and practitioners in the field of Health IT, both from industry, this sector and the National Health Service.

Course content

Classes
-Design of Usable Health Systems
-Digital Health Implementation
-Decision Support & Health Analytics
-Research Methods & Legal, Ethical and Professional Issues for the Information Society
-Information Systems Architecture
-Database & Web Systems Development
-Individual Project

Learning & teaching

Teaching combines face-to-face lectures, labs and tutorials as well as personal/group study time.

Assessment

Taught modules are assessed using a combination of individual projects, group projects and final exams. The project is assessed on the quality of the project report (ie Master thesis). An overall minimum of 50% across all assessed classes and report is required in order to be awarded the Master in Digital Health Systems.

Careers

Graduates from the programme will enjoy a broad range of career opportunities. The NHS remains one of the largest employers in the world and IT professionals is one of the fastest growing profession within the organisation.

Equally, private and public health and care services world-wide are also expanding their digital health capacities and workforce and hardware and software companies (sensors, wearables, mobile computing) are all seeking expertise in the health and wellness sector. Future career options will include:
-Application & system developer
-Health Systems & Service Designers
-Data Analyst
-IT manager
-Knowledge management specialist
-Knowledge & information manager
-Information governance manager
-Clinical information manager
-Computer support analyst/engineer
-Clinical coder/Clinical coding trainer
-Planning & performance manager
-Systems & process Auditor

Read less
Aerospace systems are the future of the aerospace industry and constitute the major component of all modern aircraft. They are the essential onboard systems that ensure the safe and accurate operation of all aerospace vehicles, from civil passenger planes to sophisticated unmanned aerial vehicles. Read more
Aerospace systems are the future of the aerospace industry and constitute the major component of all modern aircraft. They are the essential onboard systems that ensure the safe and accurate operation of all aerospace vehicles, from civil passenger planes to sophisticated unmanned aerial vehicles.

Why this programme

◾The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having internationally recognised expertise in all areas of Aeronautics and Aerospace Systems.
◾The University of Glasgow is one of the few institutions in the UK, and the only University in Scotland, to offer an Aerospace Systems MSc.
◾Aeronautical engineering at the University of Glasgow is consistently highly ranked recently achieving 10th in the UK and 1st in Scotland (Complete University Guide 2017).
◾If you are an aeronautical engineering or avionics graduate wanting to improve your skills and knowledge; a graduate of another engineering discipline, mathematics or physics and you want to change field; looking for a well-rounded postgraduate qualification in electronics & electrical engineering to enhance your career prospects; this programme is designed for you.
◾Students in this programme can benefit from access to our outstanding facilities: including several wind tunnels, a flight simulation lab, an autonomous unmanned vehicle (UAV) laboratory, helicopter test rig laboratories and computer labs for modelling and simulation.

Programme structure

Modes of delivery of the MSc in Aerospace Systems include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

The summer period is dedicated to project work, with either academic or industrial placements providing the context for your project.

Semester 1 core courses
◾Aircraft flight dynamics
◾Control M
◾Navigation systems
◾Simulation of aerospace systems
◾Space flight dynamics 1.

Semester 2 core courses
◾Autonomous vehicle guidance systems
◾Fault detection, isolation and reconfiguration
◾Radar and electro-optic systems
◾Robust control 5.
◾Aerospace systems team design project.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Aerospace Systems. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Accreditation

MSc Aerospace Systems is accredited by the Royal Aeronautical Society (RAeS)

Industry links and employability

◾You will be introduced to this exciting multi-disciplinary area of technology, gaining expertise in autonomous guidance and navigation, advanced aerospace control, simulation and simulators, fault detection and isolation, electro-optic and radar systems, and space systems.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, advising on projects, curriculum development, and panel discussion.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the aerospace industry.

Career prospects

Career opportunities include aerospace, defence, laser targeting systems, radar development, electro-optics, autonomous systems and systems modelling.

Graduates of this programme have gone on to positions such as:
Software Engineer at Hewlett-Packard
Avionic and Mission System Engineer at Qinetiq
Engineering Corporal & Driver at Hellenic Army.

Read less
This MSc concentrates on the commercially important and rapidly expanding area of embedded digital systems. It is the ideal choice if you plan a career in embedded systems engineering, or for professional development if you already work in the engineering industry. Read more
This MSc concentrates on the commercially important and rapidly expanding area of embedded digital systems. It is the ideal choice if you plan a career in embedded systems engineering, or for professional development if you already work in the engineering industry.

Embedded systems are at the heart of many engineering devices and you will investigate how they are designed and implemented in hardware and software. You will learn how to critically understand and apply circuit and system simulation techniques, with an emphasis on products that incorporate embedded technology. You will also understand the design of embedded systems, including microcontroller architectures and real-time embedded hardware operating systems.

The course has significant input from industry and as part of the course you will be given the chance to undertake a 6-month unpaid internship*. Whilst not compulsory, internships provide the opportunity to put the theory you’ve learned in the classroom into practice in the real world.

Routes of study:
The course is available to study via two routes:
- MSc Embedded Systems Design (with internship)
- MSc Embedded Systems Design (without internship)

Please note: *Internships are available to full-time students only. Internship places are limited. Students have the opportunity to work in a participating UK company or within a Research Centre at the University. You can also opt to study the course without an internship which will reduce your course length.

See the website http://courses.southwales.ac.uk/courses/1492-msc-embedded-systems-design-with-internship

What you will study

Modules include:
- Embedded Systems Design
- Designing with RTOS
- Digital Design with HDLs
- Research Methodology and Product Management
- Opto-Electronics Devices for Life Science and Measurement
- Applied Digital Signal Processing
- * Six month Internship*
- Msc Major Project (60 credits)

Learning and teaching methods

MSc Embedded Systems Design is delivered in three major blocks that offer an intensive but flexible learning pattern, with two entry opportunities for applicants each year in February and September. You will learn to use the latest computer-aided engineering tools and techniques for the design, manufacture and testing of electronic products. There are six taught modules and an 18-week major project. If you study part-time, you will study three modules per year.

The course is available to study via two main routes, you can opt to add further value to your studies by undertaking an internship or simply focus on building your academic knowledge through a on-campus study as detailed below:


MSc Embedded Systems Design (with internship):

- Delivery: Full-time only | Start dates: September and February
If you choose to undertake an internship, your course will be delivered in four major blocks that offer an intensive but flexible learning pattern. Six taught modules are completed during two teaching blocks featuring 12 contact hours per week. This is followed by 6 month period of internship, after which the student returns to undertake a 16-week major research project. Please note: Course length may vary dependent on your chosen start date.


MSc Embedded Systems Design (without internship):

- Delivery: Full-time and Part-time | Start dates: September and February
The study pathway available without internship is available full-time and part-time. The full-time route is delivered in three major blocks. Six taught modules are completed during two teaching blocks featuring 12 contact hours per week followed by a 16-week major research project. The full-time course duration is about 12 months, if you study part-time then you will complete the course in three years. Part-time study involves completing three modules in each of the first two years and a major research project in the final year. The use of block-mode delivery in this way allows flexible entry and exit, and also enables practising engineers to attend a single module as a short course.

Work Experience and Employment Prospects

Many industries need specialists in embedded systems design, and by the time you graduate, your skills and knowledge will be highly desired by employers. Careers are available in industrial and technology sectors such as embedded systems hardware or software development, telecommunication implementations, instrumentation, general real-time device applications, and signal processing development.

Internship

Internships are only available to students studying full-time: Following successful completion of six taught modules, you will be competitively selected to join participating UK companies or University Research Centres on a six-month period of unpaid work placement before returning to undertake your major research project. All students who have an offer for the MSc Embedded Systems Design (with internship) are guaranteed an internship either in industry or in a University Research Centre.

There are 10 internship places available. Students who wish to undertake an internship must apply for the MSc Embedded Systems Design (with internship). It is anticipated that there will be significant demand for this programme and applicants are advised to apply as soon as possible to avoid disappointment. Applications will be considered on a first come first served basis and the numbers of students offered a place on the programme with internship will be capped.

If the course is already full and we are unable to offer you a place on the Masters course with internship, we may be able to consider you for the standard MSc Embedded Systems Design (without internship) which is a shorter programme.

Assessment methods

Typically, each module will be assessed through coursework.

Read less
Enterprise Systems Management is an innovative MSc degree course designed for those who want to pursue careers as managers and leaders in implementing technology-based information systems solutions to achieve business excellence. Read more
Enterprise Systems Management is an innovative MSc degree course designed for those who want to pursue careers as managers and leaders in implementing technology-based information systems solutions to achieve business excellence.

What's covered in the course?

To understand the design of Enterprise Systems and the benefits, you will firstly gain a broader understanding of systems thinking. Case studies and live project briefs underpin reinforcement of the learning and teaching.

The modules studied in this highly rigorous course are directly relevant to industry's current and expected future needs. You will be challenged to think outside the box, and apply knowledge and skills to provide robust and innovative solutions to a range of business problems.

You will study at our Enterprise Systems Centre at the City Centre Campus, where you will learn how modern management information systems are structured, how they are managed and the issues in integrating them to support effective management of robust business processes.

You will also be given access to SAP systems based on a virtual industry. This practical element of your programme provides an applied learning experience to develop knowledge in enterprise systems.

The Master's Project module will give you the opportunity to apply your skills and knowledge to practical problems and investigate an enterprise systems management research topic.

Why choose us?

-The course explores systems and activities within an enterprise that bring together processes, people and technology to help streamline operations to gain competitive advantages, improved performance and reduced operational costs, as well as implementing efficient business processes and improving real-time decision-making capabilities.
-Enterprise Systems Management students will have access to the University’s unique SAP Lab, providing an inspirational research and development space for you to use for creative thinking and design.
-You will participate in ERPsim to gain experience of enterprise systems, using virtual business scenarios to evaluate the impact of integration of processes on manufacturing and business analytics.
-The Faculty is a member of SAP University Alliance. This programme provides you with the opportunity to undertake SAP certification in a number of key areas including enterprise resources planning (ERP) and business warehouse (BW).

Course in depth

Our teaching philosophy revolves around you both ‘learning by doing’ and also transferring acquired knowledge to others. Activities will be conducted both individually and in teams, with tutors providing leadership and mentoring aimed at supporting your transition into independent learners. In this partnership, we will be encouraging you to become proactive, so that you can develop your confidence to undertake a range of progressively complex and challenging tasks.

We expect you to attend all teaching sessions, as well as to read and prepare before these sessions. Good preparation will enable you to get the most from your contact time and will help you become an autonomous learner. Advanced preparation is also a critical skill which you must develop if you wish to succeed in business or professional practice. Teaching sessions will include lectures and small group interactive seminars.

You will be assessed in a number of different ways, including coursework, patchwork assessment, examinations (seen and unseen, open and closed-book), presentations, practical assignments, vivas, online forums, podcasts and project work.

Semester One
-Enterprise Systems 20 credits
-Manufacturing Systems 20 credits
-Strategic Information Systems Planning 20 credits

Semester Two
-Technology Relationship Management 20 credits
-Business Intelligence and Technology Entrepreneurship 20 credits
-Principles of Project Management 20 credits

Semester Three
Postgraduate Project 60 credits

Accreditation

The Faculty is a member of SAP University Alliance. This programme provides you with the opportunity to undertake SAP Certification in a number of key areas, including enterprise resources planning (ERP) and business warehouse (BW).

Enterprise Systems Management students have access to the University’s unique SAP Lab, providing an inspirational research and development space for you to use for creative thinking and design.

Enhancing your employability skills

Birmingham City University programmes aim to provide graduates with a set of attributes which prepare them for their future careers. The BCU Graduate:
-Is professional and work-ready
-Is a creative problem solver
-Is enterprising
-Has a global outlook

The University has introduced the Birmingham City University Graduate+ programme, which is an extracurricular awards framework that is designed to augment the subject-based skills that you develop through your programme with broader employability skills, enhancing your employment options when you leave university.

The programme will help you with crafting your CV, personal statements, covering letters and presentations, and will also help you seek part-time work experience and voluntary placements.

Read less
The 1-year Electrical Power Systems Masters/MSc is good, the 2-year Electrical Power Systems with Advanced Research Masters/MSc is even better!. Read more
The 1-year Electrical Power Systems Masters/MSc is good, the 2-year Electrical Power Systems with Advanced Research Masters/MSc is even better!

The 3rd energy industry revolution is taking place where the key is the development of electrical power systems in the contexts of smart grids. Electrical power systems are playing a pivotal role in the development of a sustainable energy supply, enabling renewable energy generation. Globally there is a big shortage of skilled engineers for designing, operating, controlling and the economic analysis of future electricity networks – smart grids

The new 2-year MSc Electrical Power Systems with Advanced Research will give you the timely advanced skills and specialist experience required to significantly enhance your career in the electrical power industry. The programme builds on a very close involvement with the power industry, the education of power engineers and extensive research work and expertise as well as the successful experience on the 1-year MSc Electrical Power Systems at the University of Birmingham. The 2-year MSc Electrical Power Systems with Advanced Research will be able to fill in the gap of skills between the 1-year MSc and PhD research.

Some modules will be taught by leading industry experts, which will give you the exciting opportunity to understand the real challenges that power industry is facing, hence propose innovative solutions. In addition, students working on relevant MSc projects may have the opportunity to work with leading industry experts directly.

The new 2-Year MSc Electrical Power Systems with Advanced Research will run in parallel with the existing 1-Year MSc Electrical Power Systems. The taught credits in the 1st year of the 2 Year MSc are identical to that of the 1-Year MSc while the 2nd Year is mainly focused on a research project.

This programme also aims to provide graduates with the ability to critically evaluate methodologies, analytical procedures and advanced research methods. Year 1 of the programme is focussed on the taught modules covering:

Control concepts and methods
Advanced energy conversion systems and power electronic applications
Advanced power electronic technologies for electrical power networks – HVDC and FACTS
Electrical power system engineering - using state-of-the-art computational tools and methods, and design of sustainable electrical power systems and networks
Economic analysis of electrical power systems and electricity markets.
While Year 2 of the programme will give you the opportunity to work on an advanced research project. For some suitable projects, in conjunction with joint industry supervisions, industry placement may be available.

It is envisaged there will be the opportunity for students to transfer between the two programmes using the University’s procedures for transfers between programmes, subject to programme requirements. This opportunity would take place at the end of the taught part of the programme.

About the School of Electronic, Electrical & Systems Engineering

Electronic, Electrical and Systems Engineering, is an exceptionally broad subject. It sits between Mathematics, Physics, Computer Science, Psychology, Materials Science, Education, Biological and Medical Sciences, with interfaces to many other areas of engineering such as transportation systems, renewable energy systems and the built environment.
Our students study in modern, purpose built and up to date facilities in the Gisbert Kapp building, which houses dedicated state-of-theart teaching and research facilities. The Department has a strong commitment to interdisciplinary research and boasts an annual research fund of more than £4 million a year. This means that wherever your interest lies, you can be sure you’ll be taught by experts in the field.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The evolution of wireless communication systems and networks in recent years has been accelerating at an extraordinary pace and become an essential part of modern lifestyle requirements. Read more

About the course

The evolution of wireless communication systems and networks in recent years has been accelerating at an extraordinary pace and become an essential part of modern lifestyle requirements.

The effects of this trend has seen a growing overlap between the network and communication industries, from component fabrication to system integration, and the development of integrated systems that transmit and process all types of data and information.

This distinctive course, developed with the support of industry, aims to develop a detailed technical knowledge of current practice in wireless systems and networks. You will study the fundamentals of wireless communication systems and the latest innovations in this field.

You will study the fundamentals of wireless communication systems and the latest industry innovations and needs. The MSc programme incorporates theory and practice and covers all aspects of a modern communication system ranging from RF components, digital signal processing, network technologies and wireless security and examines new wireless standards.

This course is accredited by the Institution of Engineering and Technology (IET).

Aims

The sharp increase in the use of smartphones, machine to machine communication systems (M2m), sensor netowrks, digital broadcasting networks and smart grid systems have brought tremendous technological growth in this field.

It has become a global phenomenon that presently outstrips the ability of commercial organisations to recruit personnel equipped with the necessary blend of technical and managerial skills who can initiate and manage the introduction of the new emerging technologies in networks and wireless systems.

By studying Wireless Communications Systems at Brunel, you will be equipped with the advanced technical and professional skills you need for a successful career either in industry or leading edge research in wireless communication systems.

Course Content

Typical Modules:

Advanced Digital Communications
Network Design and Management
DSP for Communications
Wireless Network Technologies
Communications Network Security
Research Methods
Radio and Optical Communication Systems
Project Management
Project & Dissertation

Teaching

The course blends lectures, workshops, seminars, self-study, and individual and group project work. You’ll develop communication and teamwork skills valued by industry through carefully designed lab exercises, group assignments, and your dissertation project.

In lectures, key concepts and ideas are introduced, definitions are stated, techniques are explained, and immediate student queries discussed.

Seminars provide the students with the opportunity to discuss at greater length issues arising from lectures.

Workshops sessions are used to foster practical engagement with the taught material.

The dissertation project plays a more significant role in supporting literature review in a technically complex area and to plan, execute and evaluate a significant investigation into a current problem area related to wireless communication systems.

Assessment

Taught modules are assessed by final examinations or by a mix of examination and laboratory work. Project management is assessed by course work. Generally, students start working on their dissertations in January and submit by the end of September.

Special Features

The course is taught by academics who are experts in their fields and have strong collaborative links with industry and other international research organisations. Some well-known textbooks in this area are authored by members of the course team.

The course is fully supported with computing and modern, well-equipped RF laboratories. As a student you will enjoy working on the latest and advanced equipment.

Electronic and Computer Engineering at Brunel supports a wide range of research groups, each with a complement of academics and research staff and students:

- Media Communications
- Wireless Networks and Communications
- Power Systems
- Electronic Systems
- Sensors and Instrumentation.

Our portfolio of research contracts totals £7.5 million, and we’ve strong links with industry.

Prizes
Rohde and Schwartz best in RF Prize
Criteria for award: Best overall PG student on MSc Wireless Communications Systems with a relevant RF dissertation
Composition of prize: RF books and Certificate

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The MSc in Wireless Communications Systems is fully accredited by the Institution of Engineering and Technology (IET).

Read less

Show 10 15 30 per page



Cookie Policy    X