• Coventry University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
Middlesex University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Bath Spa University Featured Masters Courses
"systematics"×
0 miles

Masters Degrees (Systematics)

  • "systematics" ×
  • clear all
Showing 1 to 15 of 18
Order by 
visit course pages for more information about the next Open Day at NHM on Wednesday 7 June 2017. Taxonomy and systematics provide the foundation for studying the great diversity of the living world. Read more

Open Day

visit course pages for more information about the next Open Day at NHM on Wednesday 7 June 2017.

Course Overview

Taxonomy and systematics provide the foundation for studying the great diversity of the living world. These fields are rapidly changing through new digital and molecular technologies. There is ever greater urgency for species identification and monitoring in virtually all the environmental sciences, and evolutionary ‘tree thinking’ is now applied widely in most areas of the life sciences.

This course provides in-depth training in the study of biodiversity based on the principles of phylogenetics, evolutionary biology, palaeobiology and taxonomy. The emphasis is on quantitative approaches and current methods in DNA-based phylogenetics, bioinformatics, and the use of digital collections.

Location

This course is a collaboration of Imperial College London (Silwood Park) with the Natural History Museum. This provides an exciting scientific environment of two institutions at the forefront of taxonomic and evolutionary research.

The MSc in Taxonomy and Biodiversity comprises two terms of taught modules, mostly based at the Natural History Museum, and covers core areas in biodiversity, palaeobiology, phylogenetics, molecular systematics, phylogenomics and taxonomic principles. This is followed by a 16-week laboratory or field-based research project at the NHM or Imperial College’s Silwood Park or South Kensington campuses.

Modules

• Taxonomy of major groups and the Tree-of-Life: An introduction of major branches of the Tree, including identification exercises, presented by NHM experts
• Statistics and Computing: A two-week intensive course at Silwood Park
• Field course: trapping and collecting techniques for terrestrial and aquatic ecosystems
• Phylogenetic Reconstruction: the principles of building phylogenetic trees
• Molecular Systematics: generating and analysing molecular data; model-based phylogenetics
• Phylogenomics: Genomic techniques for studying evolutionary processes and biodiversity
• Biodiversity (Concepts): speciation, radiation, macroevolution
•Biodiversity (Applied): Measuring biodiversity, geospatial analysis, collection management and biodiversity informatics
• Palaeobiology: Studying the fossil record and what we can learn for biodiversity

Post Study

Students on the course will become the new generation of taxonomists in the broadest sense. They will be familiar with these new tools, as well as the wider concepts of biodiversity science, evolutionary biology and genomics. Most importantly, students gain the abilities to work as an independent scientist and researcher, to be able to solve questions about the future of biodiversity and to communicate them to peers and the public.
Students have many options for future employment in evolutionary and ecological research labs in industry, government and non-governmental organisations, conservation, and scientific publishing and the media. The courses are an excellent starting point for PhD level careers, feeding into various Doctoral Training Programmes available at NHM and Imperial, or elsewhere.

Read less
This is a full-time research-based postgraduate degree, run jointly by Imperial College London and the Natural History Museum, London. Read more
This is a full-time research-based postgraduate degree, run jointly by Imperial College London and the Natural History Museum, London.

OPEN DAY

visit the course pages for more information about the next Open Day at NHM on Wednesday 7 June 2017.

OUTLINE

Taxonomy and systematics provide the foundation for studying the great diversity of the living world. These fields are rapidly changing through new digital and molecular technologies. There is ever greater urgency for species identification and monitoring in virtually all the environmental sciences, and evolutionary ‘tree thinking’ is now applied widely in most areas of the life sciences. These courses provide in-depth training in the study of biodiversity based on the principles of phylogenetics, evolutionary biology, palaeobiology and taxonomy. The emphasis is on quantitative approaches and current methods in DNA-based phylogenetics, bioinformatics, and the use of digital collections.

LOCATION

The course is a collaboration of Imperial College London (Silwood Park) with the Natural History Museum. This provides an exciting scientific environment of two institutions at the forefront of taxonomic and evolutionary research.

[[SYLLABUS ]]
The MRes in Biosystematics features hands-on research projects that cover the main methodological approaches of modern biosystematics. After 6 weeks of general skills training, students will ‘rotate’ through three research groups each conducting a separate 14-week project in specimen-based phylogenetics, molecular systematics/genomics, and bioinformatics. The projects may be of the student’s own design. Students attend small group tutorials, lab meetings and research seminars.

TRANSFERABLE SKILLS]

The GSLSM (Graduate School of Life Sciences and Medicine) at Imperial College London provides regular workshops covering a wide range of transferable skills, and MRes students are encouraged to undertake at least four during the year. Topics include: Applied Writing Skills, Creativity and Ideas Generation, Writing for Publication, Introduction to Regression Modelling, Introduction to Statistical Thinking.

RECENT PROJECTS

MORPHOLOGICAL

The Natural History Museum’s Dorothea Bate Collection of dwarfed deer from Crete: adaptation and proportional size reduction in comparison with larger mainland species
Cambrian lobopodians and their position as stem-group taxa
Atlas of the Caecilian World: A Geometric Morphometric perspective
Tooth crown morphology in Caecilian amphibians
Morphometrics of centipede fangs: untapping a possible new source of character data for the Scolopendromorpha
Phylogeny of the Plusiinae (Lepidoptera: Noctuidae): Exploring conflict between larvae and adults
A comparison between species delineation based on DNA sequences and genital morphometrics in beetles (Coleoptera)

MOLECULAR

Geographical distribution of endemic scavenger water beetles (Hydrophilidae) on the island of Madagascar based on DNA sequence data
Cryptic diversity within Limacina retroversa and Heliconoides inflate
Phylogenetics of pteropods of the Southern Oceans
Molecular discrimination of the European Mesocestoides species complex
A molecular phylogeny of the monkey beetles (Coleoptera: Scarabaeidae: Hopliini)
The molecular evolution of the mimetic switch locus, H, in the Mocker Swallowtail Papilio dardanus Brown, 1776
Phylogenetic and functional diversity of the Sargasso Sea Metagenome

BIOINFORMATICS

A study into the relation between body size and environmental variables in South African Lizards
Cryptic diversity and the effect of alignment parameters on tree topology in the foraminifera
Delimiting evolutionary taxonomic units within the bacteria: 16S rRNA and the GMYC model
Testing the molecular clock hypothesis and estimating divergence times for the order Coleoptera
Taxon Sampling: A Comparison of Two Approaches
Investigating species concepts in bacteria: Fitting Campylobacter and Streptococcus MLST profiles to an infinite alleles model to test population structure
Assessing the mitochondrial molecular clock: the effect of data partitioning, taxon sampling and model selection

ON COMPLETION OF THE COURSE, THE STUDENTS WILL HAVE:

• a good understanding of the state of knowledge of the field, together with relevant practical experience, in three areas of biosystematic science in which he or she has expressed an interest;
• where applicable, the ability to contribute to the formulation and development of ideas underpinning potential PhD projects in areas of interest, and to make an informed decision on the choice of potential PhD projects;
• a broad appreciation of the scientific opportunities within the NHM and Imperial College;
• knowledge of a range of specific research techniques and professional and transferable skills.

FURTHER INFORMATION

Students are encouraged to view the NHM website for further information, and to contact the course administrator if they have any queries. Visits can be arranged to the NHM to meet the course organisers informally and to be given a tour of the facilities. Applications should be made online on the Imperial College London website.

Read less
The department offers programs leading to the Master of Science in Biological Sciences. The graduate program is designed to provide broad training in the biological sciences, with specialization in the fields of Molecular and Cellular Biology (MCB) or Ecology, Evolution and Systematics (EES). Read more
The department offers programs leading to the Master of Science in Biological Sciences. The graduate program is designed to provide broad training in the biological sciences, with specialization in the fields of Molecular and Cellular Biology (MCB) or Ecology, Evolution and Systematics (EES). Research foci within MCB include disease model systems; evolutionary and developmental genetics; microbiology and immunology; genomics; and protein biochemistry. Research foci within EES include population, community, and ecosystem ecology; microbial ecology; evolutionary biology; conservation genetics; animal behavior and physiology; and systematics, with a special emphasis on aquatic systems.

The primary aim of our graduate program in the Department of Biological Sciences is to foster your development as a scientist by providing you with a strong technical background, a sound grasp of current scientific problems and the analytical skills needed to address such problems. We also want to instill in you a motivation to continued learning, which we hope will permit you to define and solve new kinds of research problems during your professional career. Upon graduating, you will move on to positions in academia, industry, and government. We welcome your input on our graduate program. Your suggestions will assist us in further developing our program to remain at the cutting edge of science.

Read less
Deepen your knowledge and experience in a rigorous biology graduate program customized to you and your research interests. At Acadia, you will be part of one of the most vibrant and community-focused departments in the region. Read more
Deepen your knowledge and experience in a rigorous biology graduate program customized to you and your research interests. At Acadia, you will be part of one of the most vibrant and community-focused departments in the region.
In Acadia's Master of Science in Biology you will enhance your expertise in modern research methods in biology and deepen your knowledge in your chosen area of study. Although we have a wide variety of research areas to suit your interest, you will benefit from a small school experience, working closely with your supervisor and others in the same research group, and developing a close relationship with your fellow graduate students.

Within our graduate program emphasis is placed on research rather than coursework. You will work with your supervisor and advisory committee to determine an individualized program of study suited to your research interests. Through many of our research programs you will also gain experience working with individuals and organizations in the local community.

Be Inspired

Acadia is located near the tidal mud flats of the Bay of Fundy (named one of the Seven Natural Wonders of the World) and within the Annapolis Valley, so our location provides you with access to a variety of ecosystems including, aquatic, wetland, farm, and forest. These habitats are used in field-based research work to give you a balance of outdoor and indoor learning experiences throughout the program.

We have also taken leadership roles in some of the largest projects in the Atlantic region. Acadia, through the Acadia Tidal Energy Institute, is actively involved in tidal power initiatives in the Bay of Fundy. Acadia is a partner with Ducks Unlimited Canada in waterfowl and wetlands conservation projects. Watershed management and estuarine systems are studied through the Acadia Centre for Estuarine Research, the only centre of its kind in Canada.

Research Interests

-Animal movement and its relationship to population dynamics and conservation
-Cancer immunology
-Coevolution of parasites and hosts
-Conservation biology
-Developmental biology, and its relation to evolutionary change
-Ecology and health of coastal habitats
-Fungal endophytes of coastal and marine plants
-Immune cell developmental pathways
-Impacts of anthropogenic disturbances in coastal ecosystems on fish
-Insect pheromone processing and behaviour
-Interaction between parasites and host ecology
-Management and recovery of species at risk
-Molecular evolution and molecular systematics in bivalves and mammals
-Natural history of beetles and birds in forested and agricultural landscapes
-Floral character evolution in family Rosaceae and genus Vaccinum
-Pest management in forestry and agriculture
-Plant ecology
-Plant systematics, phylogeny and evolution
-Population dynamics
-Role of relaxin family peptides and their receptors in neuroprotection
-Tidal energy and its impacts
-Watershed management

Read less
This course combines theoretical and practical training in biology and control of disease vectors and the human pathogens they transmit. Read more
This course combines theoretical and practical training in biology and control of disease vectors and the human pathogens they transmit. Students will gain specialised skills in the molecular biology of infectious diseases, and will cover all aspects of major vector-borne diseases. The course also offers a thorough grounding in the systematics of medically important arthropods, processes regulating vector populations, and the biology of vector–parasite and vector–vertebrate interactions.

Graduates enter operational control programmes, applied basic research and academic fields. Students benefit from close interaction with staff who have extensive international expertise.

The James Busvine Memorial Medal and Prize, donated by Professor James Busvine in 1987, is awarded each year for outstanding performance.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/medic_progspec.pdf)
- Intercalating this course (http://www.lshtm.ac.uk/study/intercalate)

Visit the website http://www.lshtm.ac.uk/study/masters/msbcdv.html

Objectives

By the end of this course students should be able to:

- demonstrate advanced knowledge and understanding of the biology of vectors and intermediate hosts of human pathogens together with methods for their control

- describe the biology, pathogenesis and diagnosis of parasitic infections in humans and relate these to human health and disease control strategies

- demonstrate a range of specialised technical and analytical skills relevant to vectors and vector-borne diseases

- design and carry out a research project on biology or control of disease vectors, analyse and interpret the results and prepare a report including a critical literature review

- design, undertake and evaluate vector control interventions, and show written and verbal competence in communicating scientific information

Structure

Term 1:
There is a one-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and an introduction to major groups of pathogens, followed by three compulsory core modules:

- Parasitology & Entomology
- Analysis & Design of Research Studies
- Critical Skills for Tropical Medicine

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:
Students take a total of five modules, one from each timetable slot (Slot 1, Slot 2 etc.). Some modules can be taken only after consultation with the Course Director.

*Recommended modules

- Slot 1:
Epidemiology & Control of Malaria*
Designing Disease Control Programmes in Developing Countries
Molecular Biology & Recombinant Techniques

- Slot 2:
Advanced Diagnostic Parasitology*
Design & Analysis of Epidemiological Studies
Statistical Methods in Epidemiology

- Slot 3:
Vector Sampling, Identification & Incrimination (compulsory)

- Slot 4:
Vector Biology & Vector Parasite Interactions*
Epidemiology & Control of Communicable Diseases
Molecular Biology Research Progress & Applications
Population Dynamics & Projections

- Slot 5:
Integrated Vector Management (compulsory)

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tbcd.html

Residential Field Trip

There is a compulsory one week field course, after the Term 3 examinations, on vector and parasite sampling and identification methods. The cost of £630 is included in the field trip fee.

Project Report

During the summer months (July - August), students complete a field or laboratory research project on an appropriate entomological topic, for submission by early September.

Titles of some of the recent summer projects completed by students on this MSc

Due to our collaborative networking, students are given the opportunity to conduct research projects overseas. This unique experience provides students with skills that are highly desirable to potential employers. The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msbcdv.html#sixth

Read less
- Description -. ‘Systematic Theology’ offers the opportunity to study Theology in depth. In times of change, the need to think through the fundamentals of Christian Theology - or how theology works - has never been more pressing. Read more

Course detail

- Description -

‘Systematic Theology’ offers the opportunity to study Theology in depth. In times of change, the need to think through the fundamentals of Christian Theology - or how theology works - has never been more pressing. We attract students from Europe and the US, and from the new and thriving contexts of world Christianity. It is an inter-confessional course which is rigorous and inclusive, and which delivers a uniquely comprehensive study of Theology. The programme includes philosophical theology, biblical theology, practical theology, historical theology, ethics and the arts, as well as doctrine. It also has a strong 'this-worldly' focus, and a concern with studying how Theology matters in different Christian contexts. Over more than twenty years, ‘Systematic Theology’ at King’s has developed a unique international brand, offering highly respected training in theological skills for those concerned at all levels in the life of the Churches and across the spectrum of Christian traditions. Compulsory module: The Foundations of Theology: Forms and Fields. Leads to research in the Department of Theology or careers in teaching, journalism or the church.

Key benefits

- King's has unparalleled resources in Theology with strength across two departments. It has one of the largest Systematic Theology research institutes in Europe, employing five full-time systematicians and numerous other full-time staff in related fields.

- A thriving graduate research environment supports a long-standing systematics seminar which draws in leading scholars from home and overseas and also offers students the opportunity to hone their skills in a supportive educational environment.

- Students of Theology at King's find themselves at the centre of one of the world's most dynamic cities, which offers all kinds of opportunities for theological engagement as well as unparalleled access to specialist libraries and other resources in central London.

- Originally an Anglican founding college of the University of London, King's has had a unique place in shaping the theology of the future for some two hundred years. It continues to provide a vibrant, inter-denominational environment for theological education and research, and enjoys extensive contacts and collaboration both with Church institutions and communities in London, as well as other theological centres.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/systematic-theology-ma.aspx

- Course purpose -
For those who wish to develop their skills in Systematic Theology or to prepare for postgraduate research in the discipline. An introduction to aspects of the methods and content of Christian theology.

- Course format and assessment -
Taught core and optional modules assessed by coursework and/or examination plus a dissertation.

Career Prospects:

Research in the Department of Theology & Religious Studies; teaching; journalism; careers in the church.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 21 universities worldwide (2016/17 QS World University Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
About the course. -Designed to deepen your understanding of the diversity of plants and their conservation. -Taught by staff from academia and industry. Read more
About the course:
-Designed to deepen your understanding of the diversity of plants and their conservation
-Taught by staff from academia and industry
-Emphasises hands-on experience with plants, so theoretical understanding is matched by practical skills including plant identification
-Excellent record of graduates going on to higher (research) degrees or employment in the sector

WHAT WILL YOU STUDY?

Sample modules:
-Diversity and identification of plants
-Vegetation survey and assessment
-Global biodiversity and conservation
-Critical discussion
-Molecular systematics

Please note that all modules are subject to change.

WHAT CAREER CAN YOU HAVE?

All our master’s programmes emphasise the practical skills that employers need, whether that is the ability to identify plants, carry out environmental assessments or use the latest cutting-edge molecular techniques. As a University of Reading MSc graduate, you will be well equipped to work in the field or the lab, and in the private or public sector. Many of our graduates go on to study for a PhD and pursue a career in research either in industry or in universities.

Typical roles of graduates from our ecology and wildlife-based MSc programmes include conservation officers, project managers, field ecologists and environmental consultants. Graduates from our biomedical MSc programme typically go on to pursue PhD studies or work in the pharmaceutical industry.

Read less
Want to be at the forefront of scientific research into microbes and their role in developing new medicines, tackling diseases and improving the environment?. Read more
Want to be at the forefront of scientific research into microbes and their role in developing new medicines, tackling diseases and improving the environment?

Northumbria is the only UK university to offer Microbiology as an individual discipline, giving you the opportunity to develop specialist knowledge and break new ground as a scientist.

Gain hands-on, immersive experience, in high tech facilities, working alongside leading academics. Advance your expertise in clinical and environmental microbiology, studying how viral and bacterial diseases work and how you can use microbes to create new medicines.

You’ll cover microbial taxonomy, bioinformatics and molecular biology, using bacteria and viruses to develop new technologies and substances through data analysis and genome sequencing.

With opportunities to develop your theoretical knowledge, advance your own research, and increase your profile through articles and publications, this course equips you for further PhD study or for a career in microbiology.

This course is also available part time - for more information, please view the web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/microbiology-dtpmgy6/

Learn From The Best

Specialising in a wide range of research areas, from developing enzymes for pharmaceutical, chemical and food industries, to life in extreme environments, your academic team reflect the varied, multi-disciplinary nature of microbiological science.

Tutors are active researchers in their chosen specialisms and share their knowledge through teaching, scientific conferences and publications. Many have established relationships with professional microbiology organisations and lead policy and practice within the profession.

Combining industry experience and research expertise, you’ll benefit from their knowledge and real-life insights as you develop your skills and understanding.

Teaching And Assessment

You’ll enhance your knowledge of this broad subject matter through in-depth, research focused and real-life learning.

You’ll gain skills in applying tools, techniques and methods related to molecular biology, microbial culture and classification and in functional analysis of microbial and viral genomes.

With an emphasis on individual learning and problem solving using the latest research, as part of the course, you’ll undertake a research project based on a currently relevant question. This will allow you to develop your particular specialism or interest and focus your study on practical research.

You’ll be assessed on your ability to apply your subject knowledge to real-world challenges in the form of assessment tasks as well as being measured in key laboratory skills.

Module Overview
AP0700 - Graduate Science Research Methods (Core, 20 Credits)
AP0701 - Molecular Biology (Core, 20 Credits)
AP0702 - Bioinformatics (Core, 20 Credits)
AP0703 - Subject Exploration (Core, 20 Credits)
AP0706 - Microbes and Disease (Core, 20 Credits)
AP0707 - Microbial Diversity (Core, 20 Credits)
AP0708 - Applied Sciences Research Project (Core, 60 Credits)

Learning Environment

You’ll get hands-on experience in our large, modern well-equipped laboratories with audio-visual facilities that help you observe, learn and question techniques and ideas.

High-tech wet and dry labs which are fully equipped for molecular biology manipulations are available to help you work on your own research projects.

While some modules are conventionally taught, you’ll benefit from a mixture of learning experiences including lectures, small group seminars and laboratory sessions, adding a practical edge to your theoretical understanding.

Research-Rich Learning

The internationally recognised and well-established group, led by Professor Iain Sutcliffe, apply scientific approaches to aspects of healthcare and extend understanding of diseases.

Research areas include:
-Bacterial cell envelope architecture and biosynthesis
-Control of parasitic arthropods
-Microbial diagnostics (in collaboration with Applied Chemistry)
-Microbial enzymes as biocatalysts (through our Nzomics Innovation Unit, in collaboration with Applied Chemistry)
-Molecular ecology and microbial community analysis in human health (COPD, cystic fibrosis and necrotising enterocolitis)
-Molecular ecology and microbial community analysis in the environment (Lake Suigetsu, Japan; Polar environments) and in agricultural management
-Genomics and proteomics of prokaryotes
-Novel antimicrobials (in collaboration with Applied Chemistry)
-Systematics and taxonomy of bacteria
-Virulence determinants in pathogenic streptococci

Microbiological and virological based techniques to study; virus-host interactions and phage genomics (through our Nu-omics). Research is funded by companies, charities and research council grants.

Give Your Career An Edge

This course has been designed to help you develop specific knowledge and practical skills in Microbiology based on work-related learning. Teaching and assessment throughout the course is based on problem solving linked to a practical approach to current research.

You’ll have opportunities for work-based learning and to be an ambassador for STEM activities, gaining valuable professional experience and applying your knowledge in real-world situations.

Your research project provides a chance to showcase your interests and ability to define, formulate and test a hypothesis through careful experimental design, method development, data capture and analysis and communicating your findings.

You’ll be able to demonstrate transferable skills valued by employers including critical thinking, working as part of a group, data mining and record keeping, alongside problem solving, independent learning, and communication with both technical and non-technical audiences.

Your Future

The MSc Microbiology course will support and inspire you to high achievement in employment or further education and research in your chosen specialism.

Building on your theoretical knowledge with practical and laboratory skills you’ll show that you can tackle complex problems with confidence, skill and maturity as you develop key strengths in critical thinking and expressing opinions based on evidence.

The practices and procedures of Microbiology and Virology, together with logical thinking, attention to detail and a questioning mind will equip you with skills suitable for a range of careers in human health and disease, environmental studies and industrial or biotechnical industries.

Read less
This programme is for students who are passionate about early life, dinosaurs, mass extinctions, macroevolution, fossil preservation and understanding the palaeobiology of extinct organisms. Read more
This programme is for students who are passionate about early life, dinosaurs, mass extinctions, macroevolution, fossil preservation and understanding the palaeobiology of extinct organisms. It examines quantitative aspects of the fossil record and the history of life. The research-oriented MSc bridges the biology-geology divide and will provide you with a strong background for independent research to PhD level or for a career in museums, libraries, management or the media.

This interdisciplinary programme is taught mainly in the School of Earth Sciences, along with some archaeology and biology units. You will engage in current debates in evolutionary biology, systematics and palaeobiology.

You will learn how to analyse problems quantitatively, and design experimental approaches to resolving questions in macroevolution and in the study of ancient organisms. First-hand training in research methods in palaeobiology involves laboratory techniques. In addition, you will learn a range of advanced skills throughout the programme, such as computer software use, numeracy, planning research, problem-solving and communication skills. You will learn multimedia techniques, including presentation of palaeontological data through talks, posters and formal written reports. A key aspect of the programme is preparing your projects for publication, and we provide continuing support to ensure as many projects as possible are published in leading international journals.

Programme structure

The first half of the programme consists of lectures, practical classes, tutorials and visiting speakers, designed to provide a firm foundation in the theory and methodology of the subject.

The programme comprises five core units which all students take, and a number of optional units of which students choose four. We recommend that biologists take some of the more geologically-orientated optional units, and that geologists take some of the biological optional units.

Core units
-Current Controversies in Palaeobiology and Macroevolution
-Scientific Communication
-Phylogenetic Methods in Palaeobiology
-Literature Review
-Research Methods in Palaeobiology

Optional units
-Biomechanics and Functional Morphology
-The Cambrian Explosion: the origin of animal body plans
-Early Human Origins
-Evolutionary Biology*
-Evolution of the Biosphere
-Geology for Research Palaeobiologists**
-Micropalaeontology
-Tree of Life
-Vertebrate Palaeobiology and Evolution

*Mandatory for non-biologists
**Mandatory for non-geologists

Careers

The degree is research-based, and about half the graduates go on to academic careers, usually starting with a PhD. The MSc is focused on methods, and you will learn the latest techniques in phylogenetics, biomechanics, and macroevolution training, which is highly sought after by PhD supervisors across the world.

The training in professional skills, including writing scientific papers, is also highly regarded. Some students have used the MSc as a means to go on to careers in museums, the media and education and now hold senior positions as curators and collection managers in national and regional museums. Graduates also work in making scientific documentaries, or are involved in science education at all levels.

Finally, some graduates have gone into commercial work in marketing, the oil industry and computing, where their practical skills in palaeobiology and communication have proved invaluable.

Read less
The two year MSc Biology concerns understanding the complexity of biological systems, at scales ranging from single molecules to whole ecosystems, provides a unique intellectual challenge. Read more

MSc Biology

The two year MSc Biology concerns understanding the complexity of biological systems, at scales ranging from single molecules to whole ecosystems, provides a unique intellectual challenge. The biosciences aim to understand living systems and to help preserve biodiversity and our environment and simultaneously produce sufficient healthy and safe food.

Programme summary

Biological issues are at the forefront of the technological progress of modern society. They are central to global concerns about how we effect and are affected by our environment. Understanding the complexity of biological systems, at scales ranging from single molecules to whole ecosystems, provides a unique intellectual challenge. The MSc Biology allows students to get a broad overview of the latest developments in biology, ranging from genes to ecosystems. They learn to critically discuss the newest scientific developments in the biological sciences. Within their area of specialisation, students deepen their knowledge and skills in a certain subject. To prepare for a successful international career, we strongly encourage our students to complete part of their programme requirements abroad.

Specialisations

The MSc Biology offers nine specialisations:

Animal Adaptation and Behavioural Biology
This specialisation focuses mainly on subjects as adaptation, mechanisms involved in these adaptations and behaviour of animals.

Bio-interactions
In this specialisation, you obtain knowledge about interactions between organisms. You learn to understand and interpret interactions on different levels, from molecular to ecosystem level.

Molecular Ecology
In this specialisation, you learn to use molecular techniques to solve ecological questions. You will use, for example, molecular techniques to study the interaction between a virus and a plant.

Conservation and Systems Ecology
This specialisation focuses initially on fundamental processes that play a key role in ecology. You learn to interpret different relations, for example, the relation between chemical (or physical processes) and bioprocesses. Furthermore, you learn to analyse different ecosystems. You can use this knowledge to manage and conserve these ecological systems.

Evolution and Biodiversity
The systematics of biodiversity in an evolutionary perspective is the central focus of this specialisation. Subjects that will be addressed in this specialisation are: evolution, genetics, biosystematic research and taxonomic analysis.

Health and Disease
This specialisation focuses on regulatory mechanisms that have a central role in human and animal health.

Marine Biology
Choosing this specialisation means studying the complexity of the marine ecosystem. Moreover, you learn about the impacts of, for instance, fishery and recreation on this ecosystem or the interaction between different species in this system.

Molecular Development and Gene Regulation
This specialisation focuses on gene regulations and the different developmental mechanisms of organisms.

Plant Adaptation
This specialisation focuses on the adaptations that different plants gained in order to adjust to various conditions. You learn to understand the regulation processes in plants that underlie these adaptations.

Your future career

Many graduates from the MSc Biology study programme enter careers in fundamental and applied research or go on to become PhD students. Some find a position as communication officer, manager or policymaker. Compared with other Dutch universities, many biology graduates from Wageningen University find a position abroad.

Alumna Iris de Winter.
"I work as a PhD student at Wageningen University. In my research, I aim to understand the effect of human disturbance on the parasites prevalence in lemurs. I also look at the potential risks of the transmission of diseases and parasites from lemurs to humans, but also vice versa, from humans (and their livestock and pets) to wild lemur population. I alternate my fieldwork in Madagascar with parasite identification, analyses and writing manuscripts in the Netherlands. With this research, I hope to gain more insight in the factors that increase parasite prevalence in natural systems and hereby to improve the protection of both lemurs and their natural habitat."

Related programmes:
MSc Molecular Life Sciences
MSc Animal Sciences
MSc Plant Sciences
MSc Forest and Nature Conservation
MSc Biotechnology
MSc Plant Biotechnology
MSc Aquaculture and Marine Resource Management
MSc Organic Agriculture.

Read less
Biodiversity, evolution and conservation are of growing importance due to climate change, extinction, and habitat destruction. Read more
Biodiversity, evolution and conservation are of growing importance due to climate change, extinction, and habitat destruction. This new research-led programme is run in collaboration with the Institute of Zoology and the Natural History Museum, providing a rigorous training and unparalleled opportunities across the full breadth of pure and applied research in evolutionary, ecological, and conservation science.

Degree information

Taught modules will focus on cutting-edge quantitative tools in ecology, evolutionary biology, genetics, bioinformatics, systematics, palaeobiology, conservation, biogeography and environmental biology. Seminars, journal clubs and the two research projects will provide students with diverse opportunities for experience at UCL Genetics, Evolution and Environment & Centre for Biodiversity and Environment Research, the Natural History Museum and the Institute of Zoology, Zoological Society of London.

Students undertake modules to the value of 180 credits. There are no optional modules for this programme. The programme consists of three core taught modules (60 credits) and two 16-week research projects (120 credits).

Core modules
-Research Skills (15 credits)
-Current Topics in Biodiversity, Evolution & Conservation Research (15 credits)
-Analytical Tools in Biodiversity, Evolutionary and Conservation Research (30 credits)

Dissertation/report
All students undertake two 16-week research projects, which each culminate in a written dissertation, and poster or oral presentation.

Teaching and learning
The programme is delivered through a combination of seminars, presentations, assigned papers, as well as data analysis and interpretation. The seminar series includes mandatory seminars at UCL, the Natural History Museum and the Institute of Zoology (Zoological Society of London). Assessment is through essays, project reports, presentations and practicals. The two research projects are assessed by dissertation, and poster or oral presentation.

Careers

This programme offers students a strong foundation with which to pursue careers in academic research, environmental policy and management, applied conservation, public health, or scientific journalism.

Top career destinations for this degree
-Intern, ZSL Institute of Zoology
-PhD in Evolutionary Biology, Queen Mary University of London (QMUL)
-PhD Researcher (Evolutionary Biology), University of Edinburgh a

Employability
This programme provides students with a strong foundation to pursue careers in academic research, environmental policy and management, applied conservation, public health, or scientific journalism.

Why study this degree at UCL?

This programme is an innovative collaboration between three globally renowned organisations: UCL Genetics, Evolution and Environment & Centre for Biodiversity and Environment Research, the Natural History Museum and the Institute of Zoology, Zoological Society of London.

By consolidating research expertise across these three organisations, students will gain a unique and exceptionally broad understanding of ties among different fields of research relating to the generation and conservation of biodiversity.

The MRes offers diverse research opportunities; these include the possibility of engaging actively in fundamental and applied research and participating in the Global Biodiversity Information Facility (based at the Natural History Museum) or the EDGE of Existence programme (based at the Zoological Society of London).

Read less
With only a small percentage of the planet's diversity formally described by science, it is more important than ever to train a new generation of taxonomists who will go on to describe, understand and conserve biodiversity. Read more
With only a small percentage of the planet's diversity formally described by science, it is more important than ever to train a new generation of taxonomists who will go on to describe, understand and conserve biodiversity.

Of critical shortage are skilled scientists in plant and fungal taxonomy, scientists that underpin much bioscience, nature conservation, plant breeding work, as well as underpinning the development of environmental policy. This course delivers vital training to fill that skill shortage. The course will provide training in plant and fungal identification skills, in combination with a thorough grounding in molecular systematics, evolutionary biology, and conservation policy, theory and practice.

Collaboration with the Royal Botanic Gardens, Kew

This MSc course is delivered in collaboration with the Royal Botanic Gardens, Kew and you will be based there for some of your teaching. The Royal Botanic Gardens, Kew was founded in 1759, and has the largest and most diverse collections of plant and fungal specimens and associated biodiversity databases in the world. The combination of extensive specimen collections, databases, and scientific research conducted on a global scale is unique, and means that Kew plays a leading role in facilitating greater access to basic plant information, underpinning science and conservion activities worldwide.

Other taught modules will be based at Queen Mary, Mile End campus. You will also take a fieldwork module based in Madagascar.

Research

Queen Mary and Kew have a number of long-established research links, and these have led to research papers in leading science journals such as 'Science, Trends in Plant Science', 'Trends in Ecology and Evolution', and 'Plant Journal'.

You will be taught by world-leading experts, internationally recognised for cutting edge research in plant and fungal sciences, applying new technologies to answer fundamental questions about the diversity of plant and fungal life on the planet, how it evolved and how we can best conserve it.

Read less
The Department of Zoology at UBC is internationally renowned for its research in a variety of modern biological sciences, including ecology, evolution, physiology, neurobiology, cell biology and development. Read more
The Department of Zoology at UBC is internationally renowned for its research in a variety of modern biological sciences, including ecology, evolution, physiology, neurobiology, cell biology and development. The department has many strong interdisciplinary connections between different areas of research.

Zoology has a solid computing infrastructure of computer labs, compute servers, loaner equipment, colour and poster printers, and three computing support staff for knowledgable help.

Program Overview

Zoology encompasses over 50 principal investigators. Research interests of faculty members can be divided into several broad categories with substantial overlap of interest and collaboration among these arbitrary groups. The program vigorously promotes integrative research in biology and actively participates in several interdisciplinary programs, including the graduate programs in genetics, neuroscience, applied mathematics, and resource management.

Zoology offers a wide variety of research programs leading to the Master of Science and Doctor of Philosophy in the following areas: cell and developmental biology, community and population ecology, comparative physiology and biochemistry, neurobiology, and evolutionary biology.

In addition Zoology is actively involved in several interdisciplinary programs of instruction and research including:
- Fisheries Centre
- Centre for Biodiversity Research
- Centre for Applied Conservation Research (CACR), Faculty of Forestry
- Genetics Program
- ICORD (International Collaboration on Repair Discoveries)
- Institute of Applied Mathematics
- BC Cancer Research Centre
- Life Sciences Institute

Quick Facts

- Degree: Master of Science
- Specialization: Zoology
- Subject: Life Sciences
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Science

Research focus

- Cell and Developmental Biology: molecular and genetic bases of development and cellular function
- Comparative Physiology: aspects of animal physiology from a comparative perspective, particularly those mechanisms underlying adaptive responses to environmental constraints
- Ecology: blends field ecology and natural history with ecological theory and conservation biology
- Evolution: encompasses evolutionary ecology, evolutionary genetics, conservation genetics, theory, and systematics

Read less
Ecology and evolutionary biology offer a perspective on biology from the level of genes to communities of species. In the master's degree program, you can become familiar with a wide variety of topics in three areas. Read more
Ecology and evolutionary biology offer a perspective on biology from the level of genes to communities of species.

In the master's degree program, you can become familiar with a wide variety of topics in three areas: ecology, evolutionary biology and conservation biology. You can choose studies from any of these areas, as well as from other master's degree programmes. The programme is diverse and multidisciplinary: teaching is done with lectures, laboratory and computer training courses, interactive seminars, study tours and field courses. The field courses range from the northern subarctic region to tropical rainforests.

Our wide expertise extends from molecular ecology to population and community biology. The Centres of Excellence of Metapopulation Biology and Biological Interactions are located in our department.

Our programme offers you a wide range of options: evolutionary biology or genetics for those interested in ecological genetics and genomics, as well as the ability to take advantage of the high-quality molecular ecology and systematics laboratory; conservation biology for those interested in regional or global environmental problems; and ecological modelling skills for those interested in computational biology. Our training also offers Behavioural Ecology.

Ecology, evolutionary biology and conservation biology are not only fascinating topics for basic research, they also have a key role in addressing global environmental challenges.

Upon graduating from the Master's degree in ecology and evolutionary biology programme, you will:
-Have mastered the main theories and methods in ecology and evolutionary biology and be able to apply them to practical problems.
-Be able to plan and carry out a scientific research project.
-Have read the relevant scientific literature and be able to utilise your expertise in different types of work.
-Be able to work as an expert in your field.
-Be able to to write good scientific English.
-Be able to work in research projects and groups.
-Be able to continue on to doctoral studies.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The Master's degree program includes studies of ecology, evolutionary biology and conservation biology. The studies are organised in modules. You can affect the content of the studies by planning your personal curriculum. You can study the following themes:
-Ecology studies the abundance and distribution of species (animals, plants, microbes) and the interactions among them and with the environment. The perspective ranges from the molecular to the ecosystem level. In ecology, a central question is: Why are some species able to invade new habitats and displace native species? Which species are able to adapt to environmental change or migrate with the changing climate, and which species will become extinct?
-Evolutionary biology examines the processes which support biodiversity on its various levels (genes – individuals – populations – species – ecosystems). You will learn about the theory of evolution and how to use population genetics and genomics methods in researching evolutionary issues.
-Conservation Biology studies the depletion of biodiversity, its causes and consequences. You will learn to apply ecological theory to the problems of environmental conservation, to assess the effectiveness of methods of conservation, as well as to resolve the problems relating to conservation e.g. by modelling and computational methods. The training emphasizes the importance of interdisciplinary education in the area of conservation.

Programme Structure

You undertake modules producing a total of 120 credits (ECTS) according to your personal study plan. The degree consists of:
-60 credits of advanced studies, including a research project (Master’s thesis, 30 credits)
-60 credits of other studies chosen from the Programme or from other Programmes

Career planning or extracurricular activities can be included in your personal study plan. If you are studying to qualify as a biology teacher, you will need 60 credits of pedagogical studies in your degree. This applies only to Finnish or Swedish speaking students.

Career Prospects

Master's degree in ecology and evolutionary biology gives an access to the capability of University teaching and research tasks, for a wide range of expert and administrative tasks of the various research centres, companies, in the field of public administration (e.g., The UNITED NATIONS, the European Union, the State and the provincial administration, cities, municipalities), international and national organizations and the media. The degree also provides the scientific validity for doctoral education in different areas of biology.

The Master’s degree in Ecology and Evolutionary Biology is a well-liked option among students studying towards biology teacher qualification (Finnish and Swedish speaking students).

Internationalization

You will have the opportunity to study at foreign universities and research institutions within the framework of an international student exchange. You can also gain valuable experience by working as a tutor of international students or participating in the international activities of the Student Union or other student organisations.

The teachers and researchers in the department of Ecology and Evolutionary Biology are internationally known and respected. Their research groups host numerous international researchers as visitors and workers. They also employ many foreign graduate students, which creates an international atmosphere in the programme.

Read less
Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystems. Read more
Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystems. Plants release the oxygen we breath. They convert solar energy into chemical energy, providing us with food, fibres, renewable energy sources, and raw materials for many industries. Plants do not carry out these processes in isolation. They interact with other organisms and the physical and chemical environment, communicate and actively adjust to their circumstances. How do they do these things and how can we profit from understanding them? When you have graduated from the Master’s Program in Plant Biology you will have the answers to these big questions, and more, such as:
-How one plant cell develops into a complicated organism and how plant cells, tissues and organs communicate with each other
-How plants avoid, tolerate or defend themselves from external stress factors such as diseases, drought and excessive solar radiation
-How plants sense their environment and communicate with each other and with other organisms
-How plants, interacting with microbes, fungi and animals, maintain ecosystems and thus life
-How the genotypic, functional and morphological differences between plants allow them to thrive in vastly different habitats

You will also be able to:
-Understand how research in plant biology and biotechnology can contribute to plant breeding and production.
-Plan, coordinate and execute high-quality basic and applied scientific research.
-Have a good command of the scientific method and critically evaluate research across scientific disciplines.
-Use the basic skills needed to expand your knowledge into other related fields and communicate with experts in those fields.
-Act in working life as an expert and innovator in your field, supported by your language, communication and other transferable skills.
-Be eligible for scientific post-graduate (doctoral) studies.

After earning your degree, you can continue towards a PhD or move directly into a career. If you have a Bachelor’s degree in a field of biology from another Finnish university or from a foreign university anywhere in the world, you are welcome to apply for the Master’s programme in Plant Biology. Based on your previous studies we will evaluate the possible need for supplementary studies, which will be included in your degree.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees.

Programme Contents

The Master’s Programme in Plant Biology is a joint programme of the Faculty of Biological and Environmental Sciences and the Faculty of Agriculture and Forestry, which ensures an exceptionally comprehensive curriculum. You will be able to study the diversity of wild and cultivated plants from the Arctic to the Tropics, as well as plant functions from the molecular to the ecosystem level.

The teaching is diverse, consisting of modern laboratory and computer courses, field courses, seminars and excursions. The curriculum is intertwined with research. You will be introduced to the research groups from the beginning of your studies, so you will become familiar with research methods as your studies progress. Much of the study material is in various learning platforms (such as Moodle), which allow distance learning. You will have a personal tutor who will help you tailor an individual study plan according to your requirements.

Within the programme you can choose among several optional study modules and focus on, for example:
-Plant biotechnology and breeding
-Molecular biology and genetics
-Regulation of growth, reproduction and differentiation of tissues
-Biological basis of crop yield
-Plant ecology and evolutionary biology
-Evolutionary history and systematics of plants and fungi
-Species identification

All modules are worth at least 15 credits. They are interlinked to ensure a coherent and balanced degree that allows you to obtain a broad perspective. Alternatively, you can focus on your primary research interest while acquiring the skills needed to follow your career goals on completion of your degree.

A translational perspective is emphasised in courses in which it is relevant. That will allow you to apply the acquired basic knowledge in problem-based research, bridging the gap between basic and applied research.

Selection of the Major

By choosing study modules you find interesting you will be able to deepen your expertise in particular areas of plant biology. Your degree can thus be tailored depending on your aspirations, whether you want to be a university researcher, entrepreneur, or environmental/agricultural consultant. You will also be free to pick individual courses from any module, without having to take all courses in it. However, each module is a coherent entity so we recommend that you take all of the courses in it.

Programme Structure

The extent of the programme is 120 credits (ECTS), to be completed in two years of full-time studies. The degree consists of:
-60 credits of advanced studies (in plant biology), including Master’s thesis (30 credits).
-60 credits of other studies from this programme or other programmes.

The curriculum contains a personal study plan and it can contain career planning or transferable skill studies.

Career Prospects

With a Master’s degree in Plant Biology, you will have many potential career opportunities. You can work especially:
-As a researcher and/or part-time teacher at universities or other institutions of higher education.
-As a researcher in national and international institutions in the public and private sectors.
-As an expert, civil servant, authority or PR officer in public administration.
-In various positions in international organisations or enterprises engaged in bioeconomy.
-As an entrepreneur in the biological or environmental sectors of business.

Internationalization

International scope is a key benefit of the Plant Biology programme. You will be encouraged and helped to seek exchange possibilities in international student exchange programmes with cooperating universities. In this way you will get new ideas, perspectives and personal contacts that may prove useful later in your working life or doctoral studies.

All of our research groups include numerous members from Europe and farther afield. Thus you will be doing research in an international community and will be able to improve your skills in foreign languages, especially English, which is of primary importance in working life today.

You can also tutor international students or act in the student’s subject association or Student’s Union and get valuable experience of international and multicultural communities.

Read less

Show 10 15 30 per page



Cookie Policy    X