• Imperial College London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of Sussex Featured Masters Courses
University of Birmingham Featured Masters Courses
Coventry University Featured Masters Courses
Coventry University Featured Masters Courses
"system" AND "biology"×
0 miles

Masters Degrees (System Biology)

  • "system" AND "biology" ×
  • clear all
Showing 1 to 15 of 213
Order by 
The MSc in Bioinformatics and Computational Biology at UCC is a one-year taught masters course commencing in September. Bioinformatics is a fast-growing field at the intersection of biology, mathematics and computer science. Read more
The MSc in Bioinformatics and Computational Biology at UCC is a one-year taught masters course commencing in September. Bioinformatics is a fast-growing field at the intersection of biology, mathematics and computer science. It seeks to create, advance and apply computer/software-based solutions to solve formal and practical problems arising from the management and analysis of very large biological data sets. Applications include genome sequence analysis such as the human genome, the human microbiome, analysis of genetic variation within populations and analysis of gene expression patterns.

As part of the MSc course, you will carry out a three month research project in a research group in UCC or in an external university, research institute or industry. The programming and data handling skills that you will develop, along with your exposure to an interdisciplinary research environment, will be very attractive to employers. Graduates from the MSc will have a variety of career options including working in a research group in a university or research institute, industrial research, or pursuing a PhD.

Visit the website: http://www.ucc.ie/en/ckr33/

Course Detail

This MSc course will provide theoretical education along with practical training to students who already have a BSc in a biological/life science, computer science, mathematics, statistics, engineering or a related degree.

The course has four different streams for biology, mathematics, statistics and computer science graduates. Graduates of related disciplines, such as engineering, physics, medicine, will be enrolled in the most appropriate stream. This allows graduates from different backgrounds to increase their knowledge and skills in areas in which they have not previously studied, with particular emphasis on hands-on expertise relevant to bioinformatics:

- Data analysis: basic statistical concepts, probability, multivariate analysis methods
- Programming/computing: hands-on Linux skills, basic computing skills and databases, computer system organisation, analysis of simple data structures and algorithms, programming concepts and practice, web applications programming
- Bioinformatics: homology searches, sequence alignment, motifs, phylogenetics, protein folding and structure prediction
- Systems biology: genome sequencing projects and genome analysis, functional genomics, metabolome modelling, regulatory networks, interactome, enzymes and pathways
- Mathematical modelling and simulation: use of discrete mathematics for bioinformatics such as graphs and trees, simulation of biosystems
- Research skills: individual research project, involving a placement within the university or in external research institutes, universities or industry.

Format

Full-time students must complete 12 taught modules and undertake a research project. Part-time students complete about six taught modules in each academic year and undertake the project in the second academic year. Each taught module consists of approximately 20 one-hour lectures (roughly two lectures per week over one academic term), as well as approximately 10 hours of practicals or tutorials (roughly one one-hour practical or tutorial per week over one academic term), although the exact amount of lectures, practicals and tutorials varies between individual modules.

Assessment

There are exams for most of the taught modules in May of each of the two academic years, while certain modules may also have a continuous assessment element. The research project starts in June and finishes towards the end of September. Part-time students will carry out their research project during the summer of their second academic year.

Careers

Graduates of this course offer a unique set of interdisciplinary skills making them highly attractive to employers at universities, research centres and in industry. Many research institutes have dedicated bioinformatics groups, while many 'wet biology' research groups employ bioinformaticians to help with data analyses and other bioinformatics problems. Industries employing bioinformaticians include the pharmaceutical industry, agricultural and biotechnology companies. For biology graduates returning to 'wet lab' biology after completing the MSc course, your newly acquired skills will be extremely useful. Non-biology graduates seeking non-biology positions will also find that having acquired interdisciplinary skills is of great benefit in getting a job.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The MSc Marine Biology aims to train graduates in multiple areas of marine biology and equip them with professional certificates in Sea Survival, Powerboat Handling, Marine Radio and First Aid as well as necessary field skills. Read more
The MSc Marine Biology aims to train graduates in multiple areas of marine biology and equip them with professional certificates in Sea Survival, Powerboat Handling, Marine Radio and First Aid as well as necessary field skills.

The areas of marine biology covered in this master’s course include fisheries and aquaculture, genetics, marine ecology and conservation, marine mammals and ecological aspects of Geographic Information System (GIS). In addition, the course has a significant field work component including ship work as well as survey and sampling techniques training. This course, run entirely by the School of Biological, Earth and Environmental Sciences at University College Cork, will provide an understanding of these various disciplines and skills needed in order to meet the growing demand for trained marine biologists at home and abroad.

Visit the website: http://www.ucc.ie/en/ckr38/

Course Details

On successful completion of this course, you will be able to:

- demonstrate a clear understanding and integration of knowledge of marine flora and fauna, the marine environment and its biological and physical properties and processes
- assess the sustainability of exploitation (fisheries and aquaculture) and assess the impact of other anthropogenic factors on the marine environment
- define the roles of management and conservation across the marine environment
- demonstrate a wide range of research skills (field and laboratory) including safety-related and professional qualifications
- apply the knowledge and skills acquired in this course in the working environment enabling the development of policy.

Format

This full-time 12-month course is split into Part I taught modules running from September to April and Part II, a four-month research project for students passing Part I. The course includes ship time experience aboard the Irish State research vessel, Celtic Voyager and field work day trips to various locations in County Cork as well as a week-long residential field course in the West of Scotland in March. In addition, students undertake professional certificate courses in January and February at the National Maritime College of Ireland in Ringaskiddy, Cork

Part I of the course consists of eight taught modules to the value of 60 credits involving lectures, practicals, seminars and fieldwork. Part II is a substantial research project (BL6017) to the value of 30 credits for those passing Part I. Each of the prescribed taught modules will be examined by a written paper and/or continuous assessment. Each student progressing to Part II of the course must submit the research project in an area of marine biology by a date as prescribed by the School of BEES.

Part I

BL6010 Characteristics of the Marine Environment (5 credits)
BL6012Marine Megafauna (10 credits)
BL6013Marine Fisheries and Aquaculture (10 credits)
BL6014Marine Fieldwork and Survey Techniques (10 credits)
BL6015Practical Marine Workplace Skills (5 credits)
BL6016Marine Ecology and Conservation (10 credits)
BL6019 Ecological Applications of Geographical Information Systems (5 credits)
BL6020 Genetics and the Marine Environment (5 credits)

Part II - Four-Month Research Project

BL6017Marine Biology Research Project (30 credits)

Assessment

The taught modules in the course are assessed by a combination of written examinations and continuous assessment elements (including essays, practical reports, critiques, seminars, dossiers and analytical elements). The four-month research project is assessed by a dissertation, project seminar and an assessment of your practical ability throughout the duration of the project.

Careers

As well as a number of professionally certified courses that will be provided throughout the course, students will also gain a variety of technical skills associated with research and computer skills (GIS in particular). Many transferable skills are also fostered through different learning approaches, including critical thinking, problem solving, report writing, oral presentations, statistical analysis, independent research and time management.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
Is your passion linked to the human system? Are you interested in the workings of the brain, or would you be the one that bridges the different understandings of fundamental biological processes and health & disease in humans? Your choice might be Medical Biology!. Read more

Passion for the human system

Is your passion linked to the human system? Are you interested in the workings of the brain, or would you be the one that bridges the different understandings of fundamental biological processes and health & disease in humans? Your choice might be Medical Biology!

Where studying Biology starts with a fascination for life, Medical Biology shares this trait and specifies it towards the human system. The Master's in Medical Biology in Nijmegen focuses strongly on molecular and cellular life processes at the cutting edge of fundamental biology and medical scientific research.

Our programme is unique because it is a combination of fundamental research and the translation of its findings into clinical applications. This is facilitated by our close cooperation with the University Medical Centre.

See the website http://www.ru.nl/masters/medicalbiology

Specialisations within the Master's in Medical Biology

At the beginning of the first year, all students follow an orientation course before they choose one of the three Master's specialisations:
- Clinical Biology
- Medical Epigenomics
- Neuroscience
- Science in Society
- Science, Management and Innovation

Career prospects

This programme provides you with the qualifications you need to start working on your PhD and in the field of communication, business and management or education. Medical biologists often continue their research careers in universities, research institutes, pharmaceutical companies and public health authorities. On graduation, our students quickly take up positions as researchers or analysts in government departments, research organisations and medical or pharmaceutical companies.

What medical biologists do:
- Researchers at universities or in companies
- Supervisors of clinical trials
- Consultants
- Lecturers
- Teachers

Where medical biologists work:
- Research/education
- Health care
- Business services
- Industry
- Government
- Trade

Our approach to this field

Other Master's specialisations
The Master's programme has a strong emphasis on research, especially during the first year, but allows you to broaden your horizons towards the fields of Management, Communication and Education during the second year. This way, you have the opportunity to experience whether these specialisations might suit you when you start looking for a job. There are four Master's specialisations which you can choose from:
- Research trains students for fundamental and applied research. This specialisation is required for people pursuing a PhD position or a position in industrial or institutional research.
- Science, Management and Innovation prepares students for a management position as an academic professional. It prepares students for a career in science related business and administration and for innovation and enterprise from an academic perspective.
- Science in Society trains students in the direction of science communication, which prepares them for a career in communication research, applications and media.
- Education prepares students to become a (first degree) teacher (this variant is only available in Dutch).

Our research in this field

Experts
Education is closely linked to on-going research within the:
- Institute for Water and Wetlands Research;
- Institute of Neuroscience;
- Nijmegen Centre for Molecular Life Sciences.

Nijmegen's biologists are experts in the fields of animal physiology at system level as well as at cellular and molecular level. But they also are top researchers in the fields of human health, disease and development.

- Personal tutor
The programme offers you many opportunities to follow your own interests under the guidance of a personal tutor. Each time you start a research internship you will select a research group and be allocated a supervisor. Together you will decide which research to carry out and the specialisations and subject choices that most effectively support it. In practice you will be occupied for four days a week with your own research and one day will be devoted to lectures.

- The Nijmegen approach
The first thing you will notice as you enter our Faculty of Science is the open atmosphere. This is reflected by the light and transparent building and the open minded spirit of the working, exploring and studying people that you will meet there. No wonder students from all over the world have been attracted to Nijmegen. You study in small groups, in direct and open contact with members of the staff. In addition, Nijmegen has excellent student facilities, such as high-tech laboratories, libraries and study ‘landscapes'.

Studying by the ‘Nijmegen approach' is a way of living. We will equip you with tools which are valuable for the rest of your life. You will be challenged to become aware of your intrinsic motivation. In other words, what is your passion in life? With this question in mind we will guide you to translate your passion into a personal Master's programme.

See the website http://www.ru.nl/masters/medicalbiology

Read less
The two year MSc Biology concerns understanding the complexity of biological systems, at scales ranging from single molecules to whole ecosystems, provides a unique intellectual challenge. Read more

MSc Biology

The two year MSc Biology concerns understanding the complexity of biological systems, at scales ranging from single molecules to whole ecosystems, provides a unique intellectual challenge. The biosciences aim to understand living systems and to help preserve biodiversity and our environment and simultaneously produce sufficient healthy and safe food.

Programme summary

Biological issues are at the forefront of the technological progress of modern society. They are central to global concerns about how we effect and are affected by our environment. Understanding the complexity of biological systems, at scales ranging from single molecules to whole ecosystems, provides a unique intellectual challenge. The MSc Biology allows students to get a broad overview of the latest developments in biology, ranging from genes to ecosystems. They learn to critically discuss the newest scientific developments in the biological sciences. Within their area of specialisation, students deepen their knowledge and skills in a certain subject. To prepare for a successful international career, we strongly encourage our students to complete part of their programme requirements abroad.

Specialisations

The MSc Biology offers nine specialisations:

Animal Adaptation and Behavioural Biology
This specialisation focuses mainly on subjects as adaptation, mechanisms involved in these adaptations and behaviour of animals.

Bio-interactions
In this specialisation, you obtain knowledge about interactions between organisms. You learn to understand and interpret interactions on different levels, from molecular to ecosystem level.

Molecular Ecology
In this specialisation, you learn to use molecular techniques to solve ecological questions. You will use, for example, molecular techniques to study the interaction between a virus and a plant.

Conservation and Systems Ecology
This specialisation focuses initially on fundamental processes that play a key role in ecology. You learn to interpret different relations, for example, the relation between chemical (or physical processes) and bioprocesses. Furthermore, you learn to analyse different ecosystems. You can use this knowledge to manage and conserve these ecological systems.

Evolution and Biodiversity
The systematics of biodiversity in an evolutionary perspective is the central focus of this specialisation. Subjects that will be addressed in this specialisation are: evolution, genetics, biosystematic research and taxonomic analysis.

Health and Disease
This specialisation focuses on regulatory mechanisms that have a central role in human and animal health.

Marine Biology
Choosing this specialisation means studying the complexity of the marine ecosystem. Moreover, you learn about the impacts of, for instance, fishery and recreation on this ecosystem or the interaction between different species in this system.

Molecular Development and Gene Regulation
This specialisation focuses on gene regulations and the different developmental mechanisms of organisms.

Plant Adaptation
This specialisation focuses on the adaptations that different plants gained in order to adjust to various conditions. You learn to understand the regulation processes in plants that underlie these adaptations.

Your future career

Many graduates from the MSc Biology study programme enter careers in fundamental and applied research or go on to become PhD students. Some find a position as communication officer, manager or policymaker. Compared with other Dutch universities, many biology graduates from Wageningen University find a position abroad.

Alumna Iris de Winter.
"I work as a PhD student at Wageningen University. In my research, I aim to understand the effect of human disturbance on the parasites prevalence in lemurs. I also look at the potential risks of the transmission of diseases and parasites from lemurs to humans, but also vice versa, from humans (and their livestock and pets) to wild lemur population. I alternate my fieldwork in Madagascar with parasite identification, analyses and writing manuscripts in the Netherlands. With this research, I hope to gain more insight in the factors that increase parasite prevalence in natural systems and hereby to improve the protection of both lemurs and their natural habitat."

Related programmes:
MSc Molecular Life Sciences
MSc Animal Sciences
MSc Plant Sciences
MSc Forest and Nature Conservation
MSc Biotechnology
MSc Plant Biotechnology
MSc Aquaculture and Marine Resource Management
MSc Organic Agriculture.

Read less
Biomedical Science encompasses a range of biological, medical and health-related disciplines addressing global biomedical challenges such as obesity, cancer, neurological diseases and cardiovascular disease. Read more
Biomedical Science encompasses a range of biological, medical and health-related disciplines addressing global biomedical challenges such as obesity, cancer, neurological diseases and cardiovascular disease.

Biomedical Science draws on the disciplines of anatomy, physiology, biochemistry and neuroscience and the para-clinical disciplines of microbiology, pathology and pharmacology to understand and treat human disease. Biomedical Science has increasingly embraced the overarching disciplines of human genetics, epigenetics and genomics to understand how gene-environment interactions define the human phenotype in its normal and diseased states.

The Master of Biomedical Science with a specialisation in Human Biology integrates the understanding of human behaviour and biology across a range of systems, processes and contexts.Units explore human biology from the molecular to the population level of analysis. Topics include reproduction, physiology, embryology and growth, the nervous system, ecology, sleep, public health, behaviour and biosocial interactions.

The Human Biology specialisation

The Human Biology specialisation integrates understanding of behaviour and biology in humans across a range of systems, processes and contexts. The units offered within this specialisation cover molecular to population levels of analyses. The range of diverse topics include reproduction, physiology, embryology and growth; the nervous system; ecology, sleep, public health, behaviour and biosocial interactions.

Career opportunities

The course provides you with a wide range of career choices in industry (e.g. pharmaceutical companies); in hospital, university and government research laboratories; and in the health industry and government departments that deal with health promotion and related services.

Potential career destinations will also be influenced by your specialisation; for example, graduates who specialise in Biochemistry and Molecular Biology are well prepared for a career related to pharmaceutical research and development, whereas those taking a Human Biology specialisation are well prepared for a career in the provision of health services (e.g. an embryologist in a fertility clinic).

The Master of Biomedical Science also provides a pathway to PhD studies for those graduates who complete a research dissertation as part of their course.

Read less
This academically challenging and career-developing programme focuses on research and development using biological and chemical principles and systems to create new products, services and industries. Read more

Programme description

This academically challenging and career-developing programme focuses on research and development using biological and chemical principles and systems to create new products, services and industries.

You will employ elements of the developing field of synthetic biology to bring about significant changes and major innovations that address the challenges of rapidly changing human demographics, resource shortages, energy economy transition and the concomitant growth in demand for more and healthier food, sustainable fuel cycles, and a cleaner environment.

Programme structure

You will learn through a variety of activities, including:

lectures
workshops
presentations
laboratory work
field work
tutorials
seminars
discussion groups and project groups
problem-based learning activities

You will attend problem-based tutorial sessions and one-to-one meetings with your personal tutor or programme director.

You will carry out research at the frontier of knowledge and can make a genuine contribution to the progress of original research. This involves carrying out project work in a research laboratory, reviewing relevant papers, analysing data, writing reports and giving presentations.

Compulsory courses:

Applications of Synthetic Biology
Tools for Synthetic Biology
Social Dimensions of Systems & Synthetic Biology
Environmental Gene Mining & Metagenomics
Research Project Proposal
MSc Project and Dissertation

Option courses:

BioBusiness
Biochemistry
Bioinformatics
Bioinformatics Programming & System Management
Biological Physics
Biophysical Chemistry
Commercial Aspects of Drug Discovery
Data Mining & Exploration
Drug Discovery
Economics & Innovation in the Biotechnology Industry
Enzymology & Biological Production
Functional Genomic Technologies
Gene Expression & Microbial Regulation
Industry & Entrepreneurship in the Biotechnology Industry
Information Processing in Biological Cells
Intelligent Agriculture
Introduction to Scientific Programming
Molecular Modelling & Database Mining
Next Generation Genomics
Machine Learning & Pattern Recognition
Practical Skills in Biochemistry
Practical Systems Biology
Principles of Industrial Biotechnology
Stem Cells & Regenerative Medicine

Learning outcomes

By the end of the programme you will have gained:

a strong background knowledge in the fields underlying synthetic biology and biotechnology
an understanding of the limitations and public concerns regarding the nascent field of synthetic biology including a thorough examination of the philosophical, legal, ethical and social issues surrounding the area
the ability to approach the technology transfer problem equipped with the skills to analyse the problem in scientific and practical terms
an understanding of how biotechnology relates to real-world biological problems
the ability to conduct practical experimentation in synthetic biology and biotechnology
the ability to think about the future development of research, technology, its implementation and its implications
a broad understanding of research responsibility including the requirement for rigorous and robust testing of theories and the need for honesty and integrity in experimental reporting and reviewing

Career opportunities

You will enhance your career prospects by acquiring current, marketable knowledge and developing advanced analytical and presentational skills, within the social and intellectual sphere of a leading European university.

The School of Biological Sciences offers a research-rich environment in which you can develop as a scientist and entrepreneur.

Read less
This MSc is aimed at students who wish to extend their knowledge and expertise in the eye as an integrated biological system. Read more
This MSc is aimed at students who wish to extend their knowledge and expertise in the eye as an integrated biological system. The programme provides a unique and integrated review of the physiology and biology of the eye, covering molecular and developmental cell biology, complex genetics, immunology and behavioural neuroscience.

Degree information

The programme offers students the opportunity to develop their knowledge and expertise in ocular cell biology, genetics, visual neuroscience, development and immunology. On completion of the programme, students gain an enhanced knowledge and understanding of scientific communication skills, scientific design and analysis, sophisticated laboratory techniques and valuable research experience.

Students undertake modules to the value of 180 credits. The programme consists of four core modules (60 credits), one or two optional modules (30 credits) and a research project (90 credits).

Core modules
-Ocular Cell Biology
-Genetics and Epidemiology of Ocular Disease
-Ocular Immunology
-Ocular Development in Health and Disease

Optional modules
Either
-Advanced Visual Neuroscience (30 credits)
Or
-Microvascular Biology (15 credits) and Visual Neuroscience (15 credits)

Dissertation/research project
All MSc students undertake either a research or informatics project using state-of-the-art techniques and equipment. The project culminates in a dissertation of 15,000–18,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials, problem classes, journal clubs, self-directed studies and laboratory practical courses. Assessment is through long essays, coursework, laboratory practicals, oral examination and the research dissertation.

Careers

This programme provides excellent preparation for a PhD or a successful research career in academia or for positions in the public or commercial sectors. Previous students have also successfully obtained specialist trainee positions in ophthalmology at hospitals across the country.

Top career destinations for this degree:
-PG Dip Clinical Ophthalmology, University College London (UCL)
-Research Degree: Institute of Ophthalmology, University College London (UCL)
-Doctor, Mile End Hospital (NHS)
-GP (General Practitioner), Barnet Hospital (NHS)
-Research Associate, Sandwell and West Birmingham Hospitals NHS Trust

Employability
The programme aims to train first-class basic and clinical scientists in the field of ophthalmology.

Why study this degree at UCL?

The UCL Institute of Ophthalmology is one of the premier centres in the world for the study of vision and the mechanisms, diagnosis and therapy of eye disease. We embrace fundamental research, through the entire spectrum of translational medicine to clinical trials.

This MSc programme draws upon the extensive basic and clinical research experience available at the institute and at Moorfields Eye Hospital. Students gain expertise in basic cell biology, genetics, neuroscience and physiology, specialise in the biology of the eye as an integrated biological system and conduct a six-month research project within a world-class research environment.

Read less
The School of Anatomy, Physiology and Human Biology provides diverse coursework and research opportunities in human biology, including theoretical studies in evolution, human variation and adaptation, human ecology, population and occupational health, and human reproduction. Read more
The School of Anatomy, Physiology and Human Biology provides diverse coursework and research opportunities in human biology, including theoretical studies in evolution, human variation and adaptation, human ecology, population and occupational health, and human reproduction.

Course description, features and facilities

This course is aimed at students who wish to broaden and update their knowledge and expertise in aspects of human biology. Students undertake advanced training in the subject area to developing their investigative skills by participating in projects in different areas in human biology, critical reviews of literature, collection of material (field, experimental or literature) and the processing, analysis and evaluation of data.

The Faculty of Science offers Master's by Coursework bursaries for domestic students and Postgraduate Merit scholarships for international students. Please visit the Faculty of Science website for details.

Structure

Key to availability of units:
S1 = Semester 1; S2 = Semester 2; S3 = summer teaching period; N/A = not available in 2015;
NS = non-standard teaching period; OS = offshore teaching period; * = to be advised

All units have a value of six points unless otherwise stated.

Note: Units that are indicated as N/A may be available in 2016 or 2017.

Take all units (72 points):

Research skills

S1, S2 ANHB5438 Human Biology Project (24 points)
S1, S2 ANHB5446 Human Biology Dissertation Part 1 (18 points)
S1, S2 ANHB5447 Human Biology Dissertation Part 2 (18 points)
S1, S2 APHB4002 Research Design and Analysis
NS, S2 APHB4003 Advanced Experimental Techniques

Take unit(s) to the value of 24 points:

NS ANHB5431 Fundamentals of Sleep Technology
NS ANHB5432 Fundamentals of Sleep Biology
NS APHB5501 Developmental Origins of Health and Disease
NS APHB5502 Human Ecology
NS APHB5503 Neuroendocrinology
NS APHB5505 Advanced Studies in Physiology
N/A APHB5510 Advanced Aesthetic Crossovers of Art and Science
S2 APHB5511 Advanced Art and Life Manipulation
S1 DENT5600 Principles of Dental Public Health
S1 DENT5627 Oral Health Promotion
S2 DENT5628 Management and Financing of Oral Health Services
S2 DENT5629 Research Methods in Dental Public and Primary Health
NS NEUR4010 Modern Research Tools in Neuroscience
N/A NEUR5011 Neurodevelopment and its Disorders
N/A PHYL5510 Physiology of the Auditory System

Career opportunities

This degree is designed for professionals interested in further study who are seeking to familiarise themselves with recent developments in the field, or to enhance their intellectual and research skills.

Read less
The programme develops trainees' school experiences in order to explore some of the wider concers of Biology and Science teachers today, and provides opportunities to broaden professional experiences. Read more
The programme develops trainees' school experiences in order to explore some of the wider concers of Biology and Science teachers today, and provides opportunities to broaden professional experiences. There are sessions that are particularly important for Biology teachers: teaching ethics, teaching evolution and handling controversial issues such as intelligent design and teaching reproduction.

An effective Biology teacher must also develop his/her pedagogical subject knowledge specifically related to teaching Biology; for example, the effective use of practical work in Biology, the teaching and learning of key Biology ideas, and the teaching and learning of Biology beyond the classroom. Sessions are provided that focus on these areas for Biologists as well as other sessions in the other two Sciences. Subject knowledge is provided via a peer teaching programme.

Teaching and learning

Participation in the PGCE course is an active process. Although there are lectures and presentations, much of the course centres on workshops, seminars and school and classroom activities.

Activities emphasise team work and require trainees to share the responsibility for their learning.

Throughout the course, trainees are given guidance and support by mentors in school as well as their university tutors.

Assessment

The practical teaching requirements and formal written assignments are designed not just to provide evidence that trainees have reached the required Teachers' Standards but also as useful learning activities in themselves. Assessment is continuous, across all aspects of the course.

Trainees complete 3 Masters level assignments (60 Masters level credits).

Our secondary PGCE programmes prepare trainees to teach across the 11-16 age range. As part of the Post-16 Enhancement we offer trainees a range of experiences to develop their knowledge, understanding and skills for teaching at Post 16.

Course aims

The primary aim of the course is to enable trainees to meet the Teachers Standards and be recommended for Qualified Teacher Status (QTS) . The course also aims to encourage trainees to examine, in a critical but constructive way, the current educational system and practice.

The intention is that trainees should become skilled members of the teaching profession, able to make a full contribution to educational debate and innovations of the future.

The programme is assessed at Masters (M) level.

Read less
The programme develops trainees' school experiences in order to explore some of the wider concers of Biology and Science teachers today, and provides opportunities to broaden professional experiences. Read more
The programme develops trainees' school experiences in order to explore some of the wider concers of Biology and Science teachers today, and provides opportunities to broaden professional experiences. There are sessions that are particularly important for Biology teachers: teaching ethics, teaching evolution and handling controversial issues such as intelligent design and teaching reproduction.

An effective Biology teacher must also develop his/her pedagogical subject knowledge specifically related to teaching Biology; for example, the effective use of practical work in Biology, the teaching and learning of key Biology ideas, and the teaching and learning of Biology beyond the classroom. Sessions are provided that focus on these areas for Biologists as well as other sessions in the other two Sciences. Subject knowledge is provided via a peer teaching programme.

Want to apply?

Trainees come to the course with a range of qualifications, employment backgrounds and interests. Throughout the course you will be encourages to work collaboratively, sharing this wealth of experience, knowledge and technical expertise.

Teaching and learning

Participation in the PGCE course is an active process. Although there are lectures and presentations, much of the course centres on workshops, seminars and school and classroom activities.

Activities emphasise team work and require trainees to share the responsibility for their learning.

Throughout the course, trainees are given guidance and support by mentors in school as well as their university tutors.

Assessment

The practical teaching requirements and formal written assignments are designed not just to provide evidence that trainees have reached the required Teachers' Standards but also as useful learning activities in themselves. Assessment is continuous, across all aspects of the course.

Trainees complete 3 Masters level assignments (60 Masters level credits).

Our secondary PGCE programmes prepare trainees to teach across the 11-16 age range. As part of the Post-16 Enhancement we offer trainees a range of experiences to develop their knowledge, understanding and skills for teaching at Post 16.

Course aims

The primary aim of the course is to enable trainees to meet the Teachers Standards and be recommended for Qualified Teacher Status (QTS) . The course also aims to encourage trainees to examine, in a critical but constructive way, the current educational system and practice.

The intention is that trainees should become skilled members of the teaching profession, able to make a full contribution to educational debate and innovations of the future.

The programme is assessed at Masters (M) level.

Read less
We offer an opportunity to train in one of the newest areas of biology. the application of engineering principles to the understanding and design of biological networks. Read more

Programme description

We offer an opportunity to train in one of the newest areas of biology: the application of engineering principles to the understanding and design of biological networks. This new approach promises solutions to some of today’s most pressing challenges in environmental protection, human health and energy production.

This MSc will provide you with a thorough knowledge of the primary design principles and biotechnology tools being developed in systems and synthetic biology, ranging from understanding genome-wide data to designing and synthesising BioBricks.

You will learn quantitative methods of modelling and data analysis to inform and design new hypotheses based on experimental data. The University’s new centre, SynthSys, is a hub for world-leading research in both systems and synthetic biology.

Programme structure

The programme consists of two semesters of taught courses followed by a research project and dissertation, which can be either modelling-based or laboratory-based.

Compulsory courses:

Applications of Synthetic Biology
Dissertation project
Information Processing in Biological Cells
Practical Systems Biology
Social Dimensions of Systems and Synthetic Biology
Tools for Synthetic Biology

Option courses:

Biobusiness
Biochemistry
Bioinformatics Algorithms
Bioinformatics Programming & System Management
Biological Physics
Computational Cognitive Neuroscience
Drug Discovery
Economics & Innovation in the Biotechnology Industry
Environmental Gene Mining & Metagenomics
Functional Genomic Technologies
Gene Expression & Microbial Regulation
Industry & Entrepreneurship in Biotechnology
Introduction to Scientific Programming
Molecular Phylogenetics
Neural Computation
Next Generation Genomics
Practical Skills in Biochemistry
Probabilistic Modelling and Reasoning
Statistics and Data Analysis
Stem Cells & Regenerative Medicine

Career opportunities

The programme is designed to give you a good basis for managerial or technical roles in the pharmaceutical and biotech industries. It will also prepare you for entry into a PhD programme.

Read less
Systems biology is a rapidly emerging discipline within the life sciences offering a organicist view on biology. It is making us aware of the connectedness of living systems where interactions between molecules, genes, cells, species and the environment are responsible for the regulation of biological functions. Read more
Systems biology is a rapidly emerging discipline within the life sciences offering a organicist view on biology. It is making us aware of the connectedness of living systems where interactions between molecules, genes, cells, species and the environment are responsible for the regulation of biological functions. The emergence of biological function cannot be reduced to a linear summation of the functions of its individual parts but rather needs to be investigated in its natural context. This implies that decoding the individual parts of a biological system by using the bioinformatician's toolbox marks only the first step in the systems biology cycle for knowledge discovery. This cycle describes the process that connects and couples a biological system through an in-vivo or in-vitro experiment to a mathematical model that is based on acquired, quantitative data. The mathematical model itself can then generate quantifiable predication that in turn can be validated against the biological model system. If completion of this loop succeeds we have indeed gained a deeper insight into or understanding of the modelled biological process.

Systems biology therefore spans several disciplines and is by and large a team effort. Closing the communication gap between life science graduates and members of the other sciences (e.g. chemistry, physics, mathematics) and engineers (e.g. computer science) is therefore a particular challenge for a systems biology course. We have addressed this challenge by offering students a flexible, fully online provided course that makes use of modern teaching technologies guiding them through the interesting and challenging teaching material at their own pace.

Read less
Radboud University’s Master’s specialisation in Microbiology deals with the interface between fundamental biological and medical sciences. Read more
Radboud University’s Master’s specialisation in Microbiology deals with the interface between fundamental biological and medical sciences. It focuses on molecular, medical and environmental microbiology to improve our health and environment and provides in-depth insight into present-day microbial research in general and clinical microbiology.

The major topics of the Microbiology specialisation are:

Environmental microbiology and Biotechnology

Microorganisms can be used to break down environmental pollutants and toxic chemicals. Therefore microbiology has the potential to replace common energy-intensive chemical processes with more sustainable solutions. Radboud University collaborates closely with environmental scientists and industrial partners to create energy-efficient and environmentally friendly solutions for societal waste problems.

Immunology

Unfortunately some microorganisms make us ill. A better understanding of battle between our immune system and these microorganisms will lead to the development of improved vaccines.

Molecular Microbiology

The genome of a microorganism is a key factor in research, because it determines how the organisms interact with the host cell and how they cause diseases. Molecular Microbiology acts on the interface between microbiology, molecular biology and genetics and is fundamental for the development of novel antibiotics and improvement of vaccines against microorganisms.

Top research

The department of Microbiology at Radboud University has been bestowed with the most prestigious science prizes, including two ERC Advanced Grants, a Spinoza Prize, and two Gravitation Grants. Additionally, many of out students have been awarded prizes for best thesis, poster and paper. The department works at the forefront of environmental microbiology and is specialised in the discovery of ‘impossible’, new anaerobic micro-organisms. The laboratory is equipped with state-of-the-art bioreactors, electron microscopy, GC-MS, metagenomics, and metaproteomics facilities to grow and study micro-organisms that contribute to a better environment by consuming greenhouse gasses and nitrogenous pollutants.

Our approach to this field

- Research themes
The Master's specialisation Microbiology is mainly focused on research. You can choose one of the following themes as the subject of your research internship:

- Environmental Microbiology & Biotechnology
For students who are intrigued by questions like: How does life without oxygen work? How do global biogeochemical (nutrient) cycles govern the functioning of the Earth? Can we use microorganisms to create a more sustainable wastewater industry? How do microorganisms break down environmental pollutants and toxic chemicals?
You will do research at the interface between Microbiology, environmental sciences and biochemistry. The research questions cover several levels, from gaining fundamental understanding of energy metabolism of bacteria to their applications in wastewater treatment.
Societal relevance: Microbiology has the potential to replace common energy-intensive chemical processes by more sustainable solutions. Radboud University collaborates closely with environmental scientists, animal ecologists and industrial partners to create energy-efficient and environmentally friendly solutions for societal waste problems.

- Immunology
For students who are intrigued by questions like: Why do some bacteria make us ill whereas others do not? How do bacteria outsmart our immune system? What are the mechanisms of human defence against microorganisms?
You will do research at the interface between Microbiology, Immunology and Cell Biology, and can, for example, work on how microorganisms are recognised by the host defence system
Societal relevance: A better understanding of host defence will lead to the development of improved vaccines against microorganisms.

- Molecular Microbiology
For students who are intrigued by questions like: How are microorganisms able to persist inside the human body and how do they cause diseases? What does gene regulation tell us about their pathogenic capabilities? Can microbial genomes help us determine how microorganisms interact with human host cells?
You will do research at the interface between Microbiology, molecular biology and genetics, and can, for example, work on functional gene analyses by mutagenesis studies and on the interaction between epithelial cells and pathogenic bacteria.
Societal relevance: Understanding host-pathogen interactions is fundamental for the development of novel antibiotics and improvement of vaccines. Radboudumc collaborates with public health institutes – such as the RIVM (National Institute of Public Health) – and with industrial partners.

- Personal tutor
Our top scientists are looking forward to guiding you during a challenging and inspiring scientific journey. This programme offers you many opportunities to follow your own interests under the excellent supervision of a personal tutor. This allows you to specialise in a field of personal interest.

- The Nijmegen approach
The first thing you will notice as you enter our Faculty of Science is the open atmosphere. This is reflected by the light and transparent building and the open minded spirit of the people working, exploring and studying there. It is no wonder students from all over the world have been attracted to Nijmegen. You study in small groups, with direct and open contact with members of the staff. In addition, Nijmegen has excellent student facilities, such as high-tech laboratories, libraries and study ‘landscapes'.

Studying by the ‘Nijmegen approach' is a way of living. We will equip you with tools which are valuable for the rest of your life. You will be challenged to become aware of your intrinsic motivation. In other words, what is your passion in life? With this question in mind we will guide you to translate your passion into a personalised Master's in Biology.

See the website http://www.ru.nl/masters/microbiology

Read less
The only Master’s specialisation in the Netherlands covering the function of our epigenome, a key factor in regulating gene expression and in a wide range of diseases. Read more

Master's specialisation in Medical Epigenomics

The only Master’s specialisation in the Netherlands covering the function of our epigenome, a key factor in regulating gene expression and in a wide range of diseases.
Our skin cells, liver cells and blood cells all contain the same genetic information. Yet these are different types of cells, each performing their own specific tasks. How is this possible? The explanation lies in the epigenome: a heritable, cell-type specific set of chromosomal modifications, which regulates gene expression. Radboud University is specialised in studying the epigenome and is the only university in the Netherlands to offer a Master’s programme in this field of research.

Health and disease

The epigenome consists of small and reversible chemical modifications of the DNA or histone proteins, such as methylation, acetylation and phosphorylation. It changes the spatial structure of DNA, resulting in gene activation or repression. These processes are crucial for our health and also play a role in many diseases, like autoimmune diseases, cancer and neurological disorders. As opposed to modifications of the genome sequence itself, epigenetic modifications are reversible. You can therefore imagine the great potential of drugs that target epigenetic enzymes, so-called epi-drugs.

Big data

In this specialisation, you’ll look at a cell as one big and complex system. You’ll study epigenetic mechanisms during development and disease from different angles. This includes studying DNA and RNA by next-generation sequencing (epigenomics) and analysing proteins by mass spectrometry (proteomics). In addition, you‘ll be trained to design computational strategies that allow the integration of these multifaceted, high-throughput data sets into one system.

Why study Medical Epigenomics at Radboud University?

- Radboud University combines various state-of-the-art technologies – such as quantitative mass spectrometry and next-generation DNA sequencing – with downstream bioinformatics analyses in one department. This is unique in Europe.
- This programme allows you to work with researchers from the Radboud Institute for Molecular Life sciences (RIMLS), one of the leading multidisciplinary research institutes within this field of study worldwide.
- We have close contacts with high-profile medically oriented groups on the Radboud campus and with international institutes (EMBL, Max-Planck, Marie Curie, Cambridge, US-based labs, etc). As a Master’s student, you can choose to perform an internship in one of these related departments.
- Radboud University coordinates BLUEPRINT, a 30 million Euro European project focusing on the epigenomics of leukaemia. Master’s students have the opportunity to participate in this project.

Career prospects

As a Master’s student of Medical Epigenomics you’re trained in using state-of-the art technology in combination with biological software tools to study complete networks in cells in an unbiased manner. For example, you’ll know how to study the effects of drugs in the human body.
When you enter the job market, you’ll have:
- A thorough background of epigenetic mechanisms in health and disease, which is highly relevant in strongly rising field of epi-drug development
- Extensive and partly hands-on experience in state-of-the-art ‘omics’ technologies: next-generation sequencing, quantitative mass spectrometry and single cell technologies;
- Extensive expertise in designing, executing and interpreting scientific experiments in data-driven research;
- The computational skills needed to analyse large ‘omics’ datasets.

With this background, you can become a researcher at a:
- University or research institute;
- Pharmaceutical company, such as Synthon or Johnson & Johnson;
- Food company, like Danone or Unilever;
- Start-up company making use of -omics technology.

Apart from research into genomics and epigenomics, you could also work on topics such as miniaturising workflows, improving experimental devices, the interface between biology and informatics, medicine from a systems approach.

Or you can become a:
- Biological or medical consultant;
- Biology teacher;
- Policy coordinator, regarding genetic or medical issues;
- Patent attorney;
- Clinical research associate;

PhD positions at Radboud University

Each year, the Molecular Biology department (Prof. Henk Stunnenberg, Prof. Michiel Vermeulen) and the Molecular Developmental Biology department (Prof. Gert-Jan Veenstra) at the RIMLS offer between five and ten PhD positions. Of course, many graduates also apply for a PhD position at related departments in the Netherlands, or abroad.

Our approach to this field

- Systems biology
In the Medical Epigenomics specialisation you won’t zoom in on only one particular gene, protein or signalling pathway. Instead, you’ll regard the cell as one complete system. This comprehensive view allows you to, for example, model the impact of one particular epigenetic mutation on various parts and functions of the cell, or study the effects of a drug in an unbiased manner. One of the challenges of this systems biology approach is the processing and integration of large amounts of data. That’s why you’ll also be trained in computational biology. Once graduated, this will be a great advantage: you’ll be able to bridge the gap between biology, technology and informatics , and thus have a profile that is desperately needed in modern, data-driven biology.

- Multiple OMICS approaches
Studying cells in a systems biology approach means connecting processes at the level of the genome (genomics), epigenome (epigenomics), transcriptome (transcriptomics), proteome (proteomics), etc. In the Medical Epigenomics specialisation, you’ll get acquainted with all these different fields of study.

- Patient and animal samples
Numerous genetic diseases are not caused by genetic mutations, but by epigenetic mutations that influence the structure and function of chromatin. Think of:
- Autoimmune diseases, like rheumatoid arthritis and lupus
- Cancer, in the forms of leukaemia, colon cancer, prostate cancer and cervical cancer
- Neurological disorders, like Rett Syndrome, Alzheimer, Parkinson, Multiple Sclerosis, schizophrenia and autism

We investigate these diseases on a cellular level, focusing on the epigenetic mutations and the impact on various pathways in the cell. You’ll get the chance to participate in that research, and work with embryonic stem cell, patient, Xenopus or zebra fish samples.

See the website http://www.ru.nl/masters/medicalbiology/epigenomics

Read less
This MSc is a full-time one-year course, consisting of 9 months taught course and 3 months research project, and examined by continuous assessment. Read more
This MSc is a full-time one-year course, consisting of 9 months taught course and 3 months research project, and examined by continuous assessment. The course provides advanced training in marine biology with a strong emphasis on practical training.

The course provides training addressing the following major themes:

Marine Ecology Skills
Habitat Ecology / Coastal Survey
Marine Fisheries
Marine Vertebrates
Marine Invertebrates
Research Design & Planning
Research Project / Dissertation
The programme is achieved through a series of compulsory modules encompassing theory, practical, private study and practical research.

The School of Ocean Sciences at Bangor University has over 50 years experience of teaching at postgraduate level, and excellent teaching and research facilities for the study of the marine biology. Undergraduate teaching was graded excellent in the last Teaching Quality Assessment, and research was graded 4* in the Research Assessment Exercise. NERC has designated the School as a Centre of Excellence in Coastal Seas, Marine Biology and Biological Oceanography.

The MSc course in Marine Biology is one of a suite of 4 focused MSc courses in marine science run within the School. New students on this course are inducted to the University and School via an introductory course consisting of orientation through site tours, excursions and social events, and 5 weeks of quantifying biological variability, learning Information Technology, and practising presentation skills. Pre-sessional English language training courses are also available for overseas students.

The MSc course is managed by a course team comprising of the Course Director, Deputy Course Director and Postgraduate Course Administrator. The team report to the School Course Board, which in turn reports to the College of Natural Sciences. Each student has a personal tutor drawn from the teaching staff. The School has 30 academics teaching and researching across the marine science disciplines of Marine Biology (15), Biogeochemistry (2), Physical Oceanography (6) and Geological Oceanography (7) with a similar overall number of technical staff. Teaching on the MSc Marine Biology will be provided from 'in house' in the main, but additional teaching will be provided from the University's School of Biological Sciences and the National Museum of Wales.

The MSc course is housed in a fully serviced and dedicated postgraduate suite. The School is located on the shores of the Menai Strait which separates the Isle of Anglesey from the mainland. The Menai Strait is a proposed Statutory Marine Resource and EU Special Area of Conservation and there are unspoilt marine environments relatively close by.

The University's newly refurbished science library is located in nearby in Bangor. Specialist facilities in the School include temperate and tropical aquaria, satellite imaging processing and Geographical Information System computing, diving and field survey operations (including ROVs and sledges) and laboratories for benthic analysis, nutrition, microbiology, genetics, radiochemical analysis, stable isotopes, sediments and organic chemistry, scanning electron microscopy. An additional strength in our field teaching, is work at sea aboard the only ocean-going research vessel in the Higher Education sector (RV Prince Madog), which entered service in 2001.

MSc course students can benefit from the School's links with other institutions, especially for research project opportunities. Such links presently include the Virginia Institute of Marine Science, U.S.A., University of Mauritius, Catholic University Chile etc.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X