• Birmingham City University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
University of Leicester Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Swansea University Featured Masters Courses
"system" AND "analysis"×
0 miles

Masters Degrees (System Analysis)

We have 1,098 Masters Degrees (System Analysis)

  • "system" AND "analysis" ×
  • clear all
Showing 1 to 15 of 1,098
Order by 
IN BRIEF. Opportunities to work across a variety of sports as a Performance Analyst. You will utilise industry standard Performance Analysis equipment and be taught by industry professionals. Read more

IN BRIEF:

  • Opportunities to work across a variety of sports as a Performance Analyst
  • You will utilise industry standard Performance Analysis equipment and be taught by industry professionals
  • Vastly growing sector with a need for highly qualified personnel
  • Part-time study option
  • Work/industrial placement opportunity

COURSE SUMMARY

Throughout this course you will study the discipline of Performance Analysis in Sport and gain an understanding of how this vastly growing sector interacts with a multitude of Sports Science disciplines.

As a student on this programme you will have access to industry standard Performance Analysis equipment and you will learn how this exciting discipline is used across sports to enhance performance (Performance Analysis Module). You will generate an understanding of how Performance Analysis can be utilised in relation to sports injuries and how this can be measured (Injury Prevention and Performance Measurement Module).

You will also have the opportunity to conduct some primary research that could lead to publications, which may inform future Performance Analysis practice (Research Project Module).

COURSE DETAILS

This is the only Performance Analysis master's degree in the North West of England. The online theoretical content will provide the basis for the ‘on campus’ sessions, in order to put your learning into practice and provide some context to the theories.

COURSE STRUCTURE

The MSc course is offered on both a full-time and part-time basis.

The full-time course runs over three academic semesters (October through to September the following year), whilst  giving you the chance to exit with the following awards:

  • Postgraduate Certificate: completion of one module
  • Postgraduate Diploma: completion of two modules
  • Masters: completion of two modules plus a dissertation

In order to achieve an award of MSc Performance Analysis in Sport you must successfully complete the modules Performance Analysis and Injury Prevention and Performance Measurement, along with producing a thesis for the dissertation module.

TEACHING

This course is available both part-time and full-time and is delivered via a blended learning approach, which includes:  

  • Workshops (three days per module, per semester). These are interactive, discursive, reflective, participatory, collaborative and practice related sessions that employ a variety of teaching and learning methods. As the course progresses these will become progressively more student led, with you presenting case studies for peer and tutor review.  
  • Individual scholarly activity.
  • Self directed learning, personal reflection, practice based application and reflection, including peer and tutor review.  
  • Distance learning resources.
  • Delivery of supporting resources such as study guides and lecture material online. 
  • Facilitated group work, including tutor and peer evaluation are a key component of this course. 
  • Personal tutor and peer support, to provide an academic, practice based and personal support mechanism alongside facilitated networking.

ASSESSMENT

Assessment methods will vary depending on the module. They include:

  • Case studies (written and oral presentations)
  • Viva vocé
  • Literature review
  • Practical assessments
  • Journal articles (research reports written in the format of a journal article)
  • Research proposal
  • Consultancy Pitch Presentation
  • Report Writing

EMPLOYABILITY

With the skills you'll learn in this course, you could take a lead role in Performance Analysis and make a difference to the performance of your clients. This course could help significantly increase your chances of getting a high profile role in top-flight sport.

LINKS WITH INDUSTRY

This programme has strong links with several premiership and football league clubs, as well as local rugby and basketball teams.

As part of this programme you would be expected to assess athlete performance and put forward suggestions for improvement. Upon successful completion of this programme you will be equipped with the required skills to apply for ISPAS (International Society of Performance Analysis of Sport) accreditation.

FURTHER STUDY

Upon successful completion of the course it would be possible to progress on to a PhD, or a PhD via publication. We offer a range of research degrees relevant to your area of practice.

FACILITIES

You will have access to some of the best facilities in the UK, including our purpose-built Human Performance Lab, which contains our vast array of Performance Analysis softwares and almost every type of physiological and biomechanical equipment including:

  • Quintic Biomechanics
  • SportsCode Gamebreaker
  • Dartfish 
  • Dartfish Easy Tag (Ipads)
  • FT700 Ballistic Measurement System
  • 9 AMTI Force Plates, 5 of which are situated in a 40m running track
  • ProReflex 10 Camera real-time motion analysis system
  • KinCom and Biodex Isokinetic Dynamometers for muscle strength testing
  • Portable Kistler force plate
  • EMG (electromyography) system used to measures the electrical activity of muscles and to gather information about the muscular and nervous systems
  • Esaote AU5 Ultrasound used to study skeletal muscles, tendons, ligaments and blood flow
  • We have a range of cycle and rowing ergometers, two treadmills, and two online gas analysis systems. We can perform blood analysis with our Analox GM7 Multi-Assay Blood Analyser to measure blood lactate, glucose and a range of other blood substrates
  • There is also the Reflotron which another multi-use system that can measure blood cholesterol and haemoglobin as well as portable blood glucose and lactate analysers.

In addition we have the usual equipment found in exercise physiology labs.

  • Polar heart rate monitors
  • Harpenden skinfold callipers
  • Wingate tests
  • Hand grip dynamometers
  • Height, weight monitors
  • Jump mats and timing gates


Read less
Who is it for?. The course is for motivated students who enjoy working within high-pressure environments often to tight deadlines. Read more

Who is it for?

The course is for motivated students who enjoy working within high-pressure environments often to tight deadlines. You will need a good undergraduate degree as well as the tenacity and patience to understand business systems and the ability to adapt to constant change.

Objectives

There is a common misconception in building business systems: that users know their requirements. Often they don’t. This postgraduate Business Systems Analysis programme has been designed to address this problem.

The MSc in Business Systems Analysis and Design is not about developing algorithms and coding. We work with technology but we are not technicians because we know that to become an IT consultant or business analyst, you need to understand the disparate areas that make up the discipline. This is a Masters degree where you will design a business system; in order to do this you will unpick the information infrastructure to find out if the system works.

Analysing a business system is a process that demands constant re-evaluation. By investigating system requirements, considering how information flows through it, and exploring the pitfalls that emerge within user hierarchies, at City we examine the business system as a whole. This approach is essential to respond to rapid business change.

These are some of the questions the course poses:

  • What is the right system to address the problem?
  • Does the system meet the needs of the business now and will it be able to adapt in the future?
  • How is information flowing within the system?
  • How will users interact with the system throughout the project life cycle?

Accreditation

Accredited by BCS, The Chartered Institute for IT for the purposes of partially meeting the academic requirement for registration as a Chartered IT Professional.

Internships

As a postgraduate student on a Computing and Information Systems course, you will have the opportunity to complete up to six months of professional experience as part of your degree.

Our longstanding internship scheme gives you the chance to apply the knowledge and skills gained from your taught modules within a real business environment. An internship also provides you with professional development opportunities that enhance your technical skills and business knowledge.

Internships delivered by City, University of London offer an exceptional opportunity to help you stand out in the competitive IT industry job market. The structure of the course extends the period for dissertation submission to January, allowing you to work full-time for up to six months. You will be supported by our outstanding Professional Liaison Unit (PLU) should you wish to consider undertaking this route.

More information on postgraduate internships.

Teaching and learning

We provide a diversity of teaching approaches so you get a diversity of learning experiences in the form of traditional lectures, live classroom demonstrations, tutorials, laboratories, and TV studio role-playing. We encourage you to engage with the material in an active way. As a postgraduate student, we expect you to take responsibility for your own learning and use non-timetabled hours for your own private study or group interactions.

You will be assessed in a variety of ways from coursework and laboratory work to presentations, examinations and a project dissertation. By successfully completing eight taught modules and the research project you will be awarded a Master of Science (MSc) degree. All modules in this course are supported by Moodle, City's online learning environment.

The course is available full time (12 months) and part time (up to 28 months - two days a week). The Department is aware that this involves considerable commitment from part-time students, and we try to be as flexible as we can so you can successfully combine your work and study.

By completing eight modules and the dissertation you will be awarded 180 credits and a Masters level qualification. Alternatively, if you do not complete the dissertation but have successfully completed the eight modules, you will be awarded 120 credits and a postgraduate diploma. If you successfully complete four modules (60 credits) you will be awarded a postgraduate certificate.

Modules

There are six core modules and four electives from which you can choose two topics. Practical work is emphasised throughout the degree programme to develop your understanding and skills, which is strengthened by interactive teamwork. The course has an excellent track record in producing employable hybrid IT/business professionals.

In the industry you need to communicate your expertise in lay terms. The modules give you experience in working on group projects so you can manage roles and responsibilities and build a set of professional values. The core content will also give you the ability to set strategies, manage information flows and deal with problems such as overload and risk. 

The course develops:

  • Skills in business awareness, design and consultancy to facilitate the alignment of IT systems and services to business objectives
  • The specialist understanding of theoretical principles in business systems analysis and design
  • Technical skills, through practical laboratory work, so you can apply your knowledge of IT and how it affects business competitiveness.

The course will give you specialist knowledge ranging from business systems requirements analysis and design, software systems engineering, data modelling to business intelligence, project management and business engineering with ERP solutions.

Career prospects

As a City graduate you leave with front-line knowledge. With insight from major areas of research including software engineering, human-computer interaction and artificial intelligence, you will be able to assimilate your skills within the industry and offer a future-focused mindset.

From Unilever to HMV and from Accenture to ITN, City graduates are employed across sectors in consultancy companies, software houses, the public services, telecommunications, multinational manufacturers, and large retailers. The programme will help you build a strong peer network as well as a solid network of contacts for your continued career development.



Read less
Developed to meet the expectations required by today’s employers, MSc Computer Science will develop your computing experience to a highly advanced level. Read more
Developed to meet the expectations required by today’s employers, MSc Computer Science will develop your computing experience to a highly advanced level.

You will develop an in-depth understanding of the topics that are defining the industry today and will gain advanced technical skills in areas such as application design, computer network security, system development and big data and cloud computing.

You will be taught in facilities that boast industry-standard software to further enhance your learning experience and skills.

This course fully meets the requirements for you register as a Chartered IT Professional and partially meets the requirement to become a Chartered Engineer.

This course can also be taken in January and with an advanced practice option - for more information, please view the relevant web-page:
16 months full time (Jan) - https://www.northumbria.ac.uk/study-at-northumbria/courses/computer-science-msc-ft-dtfcsq6/

2 years full time with advanced practice - https://www.northumbria.ac.uk/study-at-northumbria/courses/computer-science-with-advanced-practice-dtscsi6/

Learn From The Best

You will be taught by a range of academic staff who bring a wealth of professional experience. They are experts in specialist areas such as Strategic Management, Computer Science and Web Based Information Retrieval.

In a dynamic learning environment with an expert team of staff, you will be taught theoretical and practical research skills such as information literacy, as well as problem solving skills, self-directed learning and communication skills.

You’ll be taught by tutors who have many years’ experience in the computing. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

Northumbria has excellent links to industry including companies, such as Accenture, Hewlett Packard and Sage.

Teaching And Assessment

This course encompasses two semesters of taught subjects that cover topics such as computational intelligence, object-oriented design, artificial intelligence, wireless computer network technology, network security and system development .

On completion of these semesters you will undertake a substantial piece of research and software development related to these modules or an area that particularly interests you.

Each module of this course is individually assessed and assignments can take the form of research reports, system analysis documentation, programming exercises, group and project work, exams and presentations.

You will also learn additional key skills such as research and project management, which are highly beneficial for your dissertation and future career.

Learning Environment

Throughout the duration of your course you will have access to our state-of-the-art facilities including our dedicated computing suite, Pandon Basement.

Pandon Basement houses specialist facilities and studios with industry-standard software.

You will also have access to dedicated computing areas, which can be used during free periods and into the evenings and weekends.

When you want to get hands-on with technology our range of specialist facilities will support you.

Research-Rich Learning

Throughout the duration of your course you will be immersed in a research-rich environment, with new and exciting insights into the discipline from our rapidly expanding computer science research groups.

With access to diverse research work carried out by our expert academic staff, we seek to promote innovative and excellent learning and teaching practice, which will improve your student experience here at Northumbria University.

You will develop an understanding of important research methods and approaches that could be directly relatable to the demands of your future career.

Give Your Career An Edge

The MSc Computer Science degree will take your already establish skills to an advanced level, opening up additional job prospects and opportunities.

To further enhance your career edge we will support you in your own professional development through the integration of employability skills and use of regular feedback throughout all stages of your studies.

We will work with you to develop your communication, time and resource management skills. You will leave equipped with the ability to critique your own work and learning experience, as well as being able to demonstrate initiative and self-reliance.

This course fully meets the requirements to become a Chartered IT Professional, an accreditation that is highly valued by employers and beneficial to your own personal development.

Your Future

This course will further enhance your already established skills in computer science, providing you with an advanced qualification that will be highly regarded by employers.

Graduates will be equipped with the latest skills to excel in a variety of careers in the IT industry, such as software engineering, network design and management, artificial intelligence or IT consultancy.

Read less
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program. In this accredited and prestigious program you will gain. Read more

EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program.

In this accredited and prestigious program you will gain:

- Skills and know-how in the latest and developing technologies in electrical systems

- Practical guidance and feedback from experts from around the world

- Live knowledge from the extensive experience of expert instructors, rather than from just theoretical information gained from books and college

- Credibility and respect as the local electrical systems expert in your firm

- Global networking contacts in the industry

- Improved career choices and income

- A valuable and accredited Master of Engineering (Electrical Systems)** qualification

The next intake will start on the week of June 25, 2018.

Contact us to find out more and apply (http://www.eit.edu.au/course-enquiry).

** A note regarding recognition of this program in the Australian education system: EIT is the owner of this program. The qualification is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA). EIT delivers this program to students worldwide.

Visit the website http://www.eit.edu.au/master-engineering-electrical-systems

Professional Recognition

This Master's Degree is an academically accredited program by the Australian Government agency Tertiary Education Quality and Standards Agency (TEQSA) and provisionally accredited by Engineers Australia under the Sydney and Washington accords. This EIT Master's Degree is internationally recognised under the International Engineering Alliance (IEA) accords and the various signatories (http://www.ieagreements.org/accords/washington/signatories/).

Additional Entry Requirements

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6.0) or equivalent as outlined in the EIT Admissions Policy.

Congruent field of practice means one of the following with adequate electrical engineering content (with fields not listed below to be considered by the Dean and the Admissions committee on a case-by-case basis):

• Electrical Engineering

• Electronic and Communication Systems

• Industrial Engineering

• Instrumentation, Control and Automation

• Mechatronic Systems

• Manufacturing and Management Systems

• Industrial Automation

• Production Engineering

Overview

Electrical power is an essential infrastructure of our society. Adequate and uninterrupted supply of electrical power of the required quality is essential for industries, commercial establishments and residences; and almost any type of human activity is impossible without the use of electricity. The ever-increasing cost of fuels required for power generation, restricted availability in many parts of the world, demand for electricity fueled by industrial growth and shortage of skilled engineers to design, operate and maintain power network components are problems felt everywhere today. The Master of Engineering (Electrical Systems) is designed to address the last-mentioned constraint, especially in today’s context where the field of electrical power is not perceived as being ‘cool’ unlike computers and communications and other similar nascent fields experiencing explosive growth. But it is often forgotten that even a highly complex and sophisticated data centre needs huge amounts of power of extremely high reliability, without which it is just so much silicon (and copper).

This program presents the topics at two levels. The first year addresses the design level where the student learns how to design the components of a power system such as generation, transmission and distribution as well as the other systems contributing to the safety of operation. The topics in the first year also cover the automation and control components that contribute to the high level of reliability expected from today’s power systems. Because of the constraints imposed by the fuel for power generation and the environmental degradation that accompanies power generation by fossil fuels, the attention today is focused on renewable energy sources and also more importantly how to make the generation of power more efficient and less polluting so that you get a double benefit of lower fuel usage and lower environmental impact. Even the best designed systems need to be put together efficiently. Setting up power generation and transmission facilities involves appreciable capital input and complex techniques for planning, installation and commissioning. Keeping this in view, a unit covering project management is included in the first year.

The second year of the program focuses on the highly complex theory of power systems. If the power system has to perform with a high degree of reliability and tide over various disturbances that invariably occur due to abnormal events in the power system, it is necessary to use simulation techniques that can accurately model a power system and predict its behavior under various possible disturbance conditions. These aspects are covered in the course units dealing with power system analysis and stability studies for steady-state, dynamic and transient conditions. The aspect of power quality and harmonic flow studies is also included as a separate unit.

The study of power systems has an extensive scope and besides the topics listed above, a student may also like to cover some other related topic of special interest. The ‘Special Topics in Electrical Power Systems’ unit aims to provide students with the opportunity for adding one ‘state-of-the art’ topic from a list of suggested fields. Examples are: Smart grids, Micro-grids and Geographic Information System (GIS) application in utility environment.

The Masters Thesis which spans over two complete semesters is the capstone of the program, requiring a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding units. As a significant research component of the course, this program component will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling the students to critique current professional practice in the electrical power industry.

Who Would Benefit

Those seeking to achieve advanced know-how and expertise in industrial automation, including but not limited to:

- Electric Utility engineers

- Electrical Engineers and Electricians

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Consulting Engineers

- Production Managers



Read less
Developed to meet the expectations required by today’s employers, MSc Computer Science will develop your computing experience to a highly advanced level. Read more
Developed to meet the expectations required by today’s employers, MSc Computer Science will develop your computing experience to a highly advanced level.

You will develop an in-depth understanding of the topics that are defining the industry today and will gain advanced technical skills in areas such as application design, computer network security, system development and big data and cloud computing.

You will be taught in facilities that boast industry-standard software to further enhance your learning experience and skills.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

This course fully meets the requirements for you register as a Chartered IT Professional and partially meets the requirement to become a Chartered Engineer.

Learn From The Best

You will be taught by a range of academic staff who bring a wealth of professional experience. They are experts in specialist areas such as Strategic Management, Computer Science and Web Based Information Retrieval.

In a dynamic learning environment with an expert team of staff, you will be taught theoretical and practical research skills such as information literacy, as well as problem solving skills, self-directed learning and communication skills.

You’ll be taught by tutors who have many years’ experience in the computing. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

Northumbria has excellent links to industry including companies, such as Accenture, Hewlett Packard and Sage.

Teaching And Assessment

This course encompasses two semesters of taught subjects that cover topics such as computational intelligence, object-oriented design, artificial intelligence, wireless computer network technology, network security and system development .

On completion of these semesters you will undertake a substantial piece of research and software development related to these modules or an area that particularly interests you.

Each module of this course is individually assessed and assignments can take the form of research reports, system analysis documentation, programming exercises, group and project work, exams and presentations.

You will also learn additional key skills such as research and project management, which are highly beneficial for your dissertation and future career.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

Learning Environment

Throughout the duration of your course you will have access to our state-of-the-art facilities including our dedicated computing suite, Pandon Basement.

Pandon Basement houses specialist facilities and studios with industry-standard software.

You will also have access to dedicated computing areas, which can be used during free periods and into the evenings and weekends.

When you want to get hands-on with technology our range of specialist facilities will support you.

Research-Rich Learning

Throughout the duration of your course you will be immersed in a research-rich environment, with new and exciting insights into the discipline from our rapidly expanding computer science research groups.

With access to diverse research work carried out by our expert academic staff, we seek to promote innovative and excellent learning and teaching practice, which will improve your student experience here at Northumbria University.

You will develop an understanding of important research methods and approaches that could be directly relatable to the demands of your future career.

Give Your Career An Edge

The MSc Computer Science degree will take your already establish skills to an advanced level, opening up additional job prospects and opportunities.

To further enhance your career edge we will support you in your own professional development through the integration of employability skills and use of regular feedback throughout all stages of your studies.

We will work with you to develop your communication, time and resource management skills. You will leave equipped with the ability to critique your own work and learning experience, as well as being able to demonstrate initiative and self-reliance.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

This course fully meets the requirements to become a Chartered IT Professional, an accreditation that is highly valued by employers and beneficial to your own personal development.

Your Future

This course will further enhance your already established skills in computer science, providing you with an advanced qualification that will be highly regarded by employers.

Graduates will be equipped with the latest skills to excel in a variety of careers in the IT industry, such as software engineering, network design and management, artificial intelligence or IT consultancy.

Read less
This MSc programme in Sustainable Electrical Power aims to produce graduates capable of leading teams which will operate, control, design, regulate and manage the power systems and networks of the future. Read more

About the course

This MSc programme in Sustainable Electrical Power aims to produce graduates capable of leading teams which will operate, control, design, regulate and manage the power systems and networks of the future.

The course equips graduates with the ability to critically evaluate methodologies, analytical procedures and research methods in:

-Power system engineering – using state-of-the-art computational tools and methods.
-Design of sustainable electrical power systems and networks.
-Regulatory frameworks for, and operation of, power systems and electricity markets.

The programme features practical workshops and the option of an industry-based dissertation. Students benefit from our high performance lab and computing facilities, including a grid-enabled cluster of processors. We’re also home to a world leading research group, the Brunel Institute of Power Systems.

Aims

Sustainable energy is a vital, growing sector and this newly designed MSc programme meets industry’s demand for engineers with advanced knowledge of sustainable electrical power and energy generation systems.

The course is suitable for:
- Graduates in power or electrical engineering, physical sciences, or related disciplines who aspire to work in the electrical power industry, especially within the renewable energy sector.
- Industrially experienced graduate engineers and managers who recognise the importance of developing new analytical and critical skills, and state-of-the-art methodologies associated with the development sustainable electrical power systems.

Course Content

Compulsory Modules:

Energy Economics and Power Markets
Power System Operation and Management
Power Electronics and FACTS
Power System Analysis and Security
Sustainable Power Generation
Power System Stability and Control
Project Management
Sustainable Electrical Power Workshop
Project & Dissertation

Special Features

All students enrolled in the course have the opportunity to develop real-world skills with the best globally available, cutting-edge power analysis software and tools. The course is also supported by a wide range of application oriented power engineering experiments carried out in a modern well-equipped practical power systems laboratory.

The Brunel Institute of Power Systems is an internationally leading research group specialising in the optimal design, operation and modelling of power systems, as well as in the economics of electricity markets.

Our high performance computing capability is considerable including a recently installed grid-enabled cluster of processors consisting of 20 dual processor nodes with dual Gigabit Ethernet interfaces.

Major power system software are available including MATLAB/SIMULINK, Orcad, PSCAD, DigSILENT, IPSA, ETAP, and PowerWorld.

Electronic and Computer Engineering is one of the largest disciplines at Brunel University, with a portfolio of research contracts totalling £7.5 million and strong links with industry.

Our laboratories are well equipped with an excellent range of facilities to support the research work and courses. We have comprehensive computing resources in addition to those offered centrally by the University. The discipline is particularly fortunate in having extensive gifts of software and hardware to enable it to undertake far-reaching design projects.

We have a wide range of research groups, each with a complement of academics and research staff and students. The groups are:

-Media Communications
-Wireless Networks and Communications
-Power Systems
-Electronic Systems
-Sensors and Instrumentation.

Read less
Electronic engineering is a discipline at the forefront of advances for modern-day living and continues to push forward technological frontiers. Read more

Why take this course?

Electronic engineering is a discipline at the forefront of advances for modern-day living and continues to push forward technological frontiers.

This course provides relevant, up-to-date skills that will enhance your engineering competencies. You will broaden your knowledge of electronic engineering and strengthen your ability to apply new technologies in the design and implementation of modern systems.

What will I experience?

On this course you can:

Focus on the practical application and design aspects of electronic systems rather than intensive analytical detail
Experiment with our range of control applications including helicopter development kits and walking robots
Access a wide range of powerful and modern multimedia computational facilities, with the latest industry software installed

What opportunities might it lead to?

This course has been accredited by the Institution of Engineering and Technology (IET) and meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). It will provide you with some of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Here are some routes our graduates have pursued:

Professional electronics
Design
Research and development
Product manufacture
Project management

Module Details

You will study several key topics and complete a four-month individual project in which you apply your knowledge to a significant, in-depth piece of analysis or design. Projects are tailored to your individual interests and may take place in our own laboratories or, by agreement, in industry.

Here are the units you will study:

VHDL and Digital Systems Design: This unit covers the use of a hardware description language (VHDL) to capture and model the design requirement - whilst programmable logic devices enable an implementation to be explored and tested prior to moving into manufacture. The learning will have a practical bias such that experience as well as theory is gained in completing this unit.

Advanced DSP Techniques: This unit aims to introduce you to the fundamentals of statistical signal processing, with particular emphasis upon classical and modern estimation theory, parametric and nonparametric modelling, time series analysis, least squares methods, and basics of adaptive signal processing.

Mixed Signal Processors: This unit focuses on both control and signal processing hardware, how it works, how to interface to it, and software - how to design it and debug it.

Sensors and Measurement Systems: This unit proposes to introduce you to the technologies underpinning measurements including sensors both in terms of hardware and software. It also aims to provide you with an opportunity to apply classroom knowledge in a practical setting and gain an appreciation of modern day requirements in terms of measurement.

Microwave and Wireless Technology: The unit combines team working via a project based learning activity relating to a significant circuit simulation and design problem with lectures aimed at analysing and applying the characteristics of a range of devices used in the microwave and wireless industries.

Communication System Analysis: This unit focuses on basic principles in the analysis and design of modern communication systems, the workhorses behind the information age. It puts emphasis on the treatment of analogue communications as the necessary background for understanding digital communications.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis and you will spend a significant amount of time in our electronic, communications and computer laboratories.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

This course is designed to respond to a growing skills shortage of people with core knowledge in advanced electronic engineering. It is an excellent preparation for a successful career in this ever expanding and dynamic field of modern electronics.

On successful completion of the course, you will have gained the skills and knowledge that will make you attractive to a wide variety of employers with interests ranging from overall system design to the more detailed development of subsystems.

Roles our graduates have taken on include:

Electronics engineer
Product design engineer
Aerospace engineer
Application engineer

Read less
The MSc Advanced Computer Science course prepares students to work in roles that require the use of data management, analysis and presentation tools, the development of software to deliver services or to control complex processes and equipment, or to provide system analysis and development consultancy to a varied range of clients. Read more

Overview

The MSc Advanced Computer Science course prepares students to work in roles that require the use of data management, analysis and presentation tools, the development of software to deliver services or to control complex processes and equipment, or to provide system analysis and development consultancy to a varied range of clients. The course does not require background in programming or data analysis and for those with no such background appropriate training is offered to catch up with others who already have such training or experience. The course aims to match the needs of business that compete globally in a world driven by advances in information technology. The programme aims to develop both technical and people skills making our graduates ready for jobs that offer high satisfaction and regular challenge at the same time. The first semester of the course is organised into modules delivered intensively over three week periods. The second semester is organised using usual semester-long modules with the difference that all these modules are assessed by coursework only. The summer semester is dedicated to a Master’s level research or development project

See the website https://www.keele.ac.uk/pgtcourses/advancedcomputersciencemsc/

Course Aims

The aims of the programme are to equip students with knowledge of a range cutting-edge areas of computer science research and applications and to prepare students to be successful in a variety of computer science related jobs. The course covers advanced computer science topics, including user interaction design, big data, cloud computing, security, intelligent systems and mobile-oriented web applications. The course also provides a good grounding in collaborative team work and general skills for technology consultants.

Core Modules:

User Interaction Design (15 credits – Semester 1): The module provides the knowledge and skills required for a student to be able to work on User Interaction Design based on an evaluated assessment of the factors associated with a given application or user interaction scenario.

Distributed Intelligent Systems (15 credits – Semester 1): This module provides the knowledge and skills required for a student to be able to develop applications to control intelligent systems in a distributed and collaborative context, including the programming of robots or intelligent home appliances (e.g. TV, fridge, etc. equipped with embedded computers).

Statistical Techniques for Data Analytics (15 credits – Semester 1): This module provides the knowledge and skills required for a student to be able to develop applications to store, process, distribute, visualise and analyse large volumes of big data using distributed databases, statistical techniques and machine intelligence methods.

Cloud Computing (15 credits – Semester 2): The module provides the knowledge and skills required for a student to be able to understand the principles of operations of cloud computing and to develop applications for cloud computing environments, e.g. data storage and distribution, software-as-service, interactive content services.

Web Technologies and Security (15 credits – Semester 2): To module provided an understanding of contemporary web technologies used for both server and client side development of web applications, with particular focus on mobile applications, and an understanding of security aspects of such applications and of the defence methods and techniques employed to provide security.

Collaborative Application Development (15 credits – Semester 2): The module places students in a real world scenario requiring co-operation and communication as well as analysis and design skills. This will involve work for a real world client working as a development team.

Problem Solving Skills for Consultants (15 credits – Semester 1 & 2): This module explores skills such as project management, communication and team working and building. It also provides knowledge of ethical, legal and social issues related to the development and deployment of Information Technology.

Optional Modules:

System Design & Programming (15 credits – Semester 1): This module provides the knowledge and skills required for a student to be able to design software systems and write object oriented programs in an appropriate programming language (e.g. Java, C#).

Research Horizons (15 credits – Semester 1): To module provides the knowledge for a student about a selected computer science research area and the skills required for the development of a mini-project in this area

Project or Industrial Placement

MSc Project or Industrial Placement (60 credits – Semester 3): Provides an integration of concepts taught on the course in either an academic or business environment

Teaching & Assessment

All first semester 15 – credit taught modules, with the exception of one module delivered over two semesters, will be delivered in block mode, i.e. each of these modules will be delivered over a period of six consecutive weeks. In any week at most two block mode modules will be scheduled to be delivered during the first semester. All taught modules in the second semester are delivered along the whole semester.

The taught modules are mainly assessed by coursework, with examinations in some of the modules. Project assessment is based largely on a substantial final report.

Additional Costs

Additional costs may be incurred for text books, inter-library loans and potential overdue library fines. Some travel costs may be incurred if an external project or placement is undertaken; any such costs will be discussed with the student before the project is confirmed. It will be possible for the student to select an internal project and that would not incur any additional travel costs.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
The main objective of this programme is to produce graduates with the ability to plan, execute and produce reports on technical projects for industry and academia. Read more
The main objective of this programme is to produce graduates with the ability to plan, execute and produce reports on technical projects for industry and academia. The programme is composed of taught units, assessed by examination and coursework submission, and a major research project supervised by academic staff in the department.

The facilities and expertise in the Department of Mechanical Engineering have earned us consistently high rankings in university league tables and an internationally excellent rating for research.

Programme structure

Core units

Four mandatory units, each worth 10 credits, are designed to develop your skills of investigation, system analysis and project planning.

- Finite Element Analysis
- Literature Review
- Power Generation for the 22nd Century
- Research Project Proposal

You will be able to choose eight optional 10-credit units from the list below at the start of the programme. The current options list is as follows:

Design and Manufacture

- Virtual Product Development
- Robotic Systems
- Biomechanics

Engineering and the Environment

- Environmental Thermalhydraulics

Materials

- Ultrasonic Non-Destructive Testing
- Non-linear Behaviour of Materials
- Advanced Composites Analysis

Dynamics

- Advanced Dynamics
- Systems and Control Engineering 4
- Nonlinear Structural Dynamics
- Generic Propulsion

Research project (60 credits)

Each student is allocated an individual project, worth 60 credits, which is supported from within the department through the three main research groups:

- Dynamics and Control
- Design and Process Engineering
- Solid Mechanics

Provided that the content is academically rigorous, industrially-related projects are possible, through either your own contacts or the department's strong links with major companies such as Airbus UK, BAE Systems, Bechtel, British Energy, Nestlé, Qinetiq Ltd, Renishaw, Renold Chain and Rolls-Royce.

Careers

Several of our recent students have gone into research, including two recent PhD graduates from Bristol.

One further student is currently working towards an Engineering doctorate with the Systems Centre in Bristol and has been working closely with a local company, Vestas Wind Systems (his industrial sponsor). His research title is "Expanding the life cycle of wind turbine components through reverse engineering and repairing solutions".

Read less
This one year award is specifically designed for students who are involved in requesting gait analysis reports or actively undertake gait analysis. Read more
This one year award is specifically designed for students who are involved in requesting gait analysis reports or actively undertake gait analysis. The modules build on the concepts and theories that underpin assessment and analysis of human movement. There is opportunity to develop hands on experience in data collection, interpretation and processing for all the equipment in the gait analysis laboratory. This includes an 18 camera vicon system, a 2.5 metre plantar pressure system, 4 AMTi Frce plates and EMG. The aim of the award is to expose students to all types of gait analysis that will enhance their working practices. Modules are delivered at weekends with some attendance to campus required as well as supported distance learning tasks.

Read less
This MSc course has been developed for the Jaguar Land Rover Technical Accreditation Scheme. The course is available on a part time basis, taking typically four years to complete. Read more
This MSc course has been developed for the Jaguar Land Rover Technical Accreditation Scheme.

The course is available on a part time basis, taking typically four years to complete. Students take 12 Assessed Modules over 3 years, 5 of which are Core (C) and 7 Optional (O), plus a project on a SSE topic within the automotive domain (over the final year). See the Project tab for more details.

This modular MSc is designed to prepare students for work in the demanding field of Safety Systems Engineering (SSE) by exposing them to the latest science and technology within this field. In the core module phase, the course focuses on the principles and practices in SSE across a range of domains, including automotive. In the optional module phase, the course focuses on specialist SSE and automotive topics. The projects are also designed to consider SSE topics within an automotive context.

The discipline of SSE developed over the last half of the twentieth century. It can be viewed as a process of systematically analysing systems to evaluate risks, with the aim of influencing design in order to reduce risks, i.e. to produce safer products and services. In mature industries, such as aerospace and nuclear power, the discipline has been remarkably successful, although there have been notable exceptions to the generally good safety record, e.g. Fukushima, Buncefield and the Heathrow 777 accident.

Various trends pose challenges for traditional approaches to SSE. For example, classical hazard and safety analysis techniques deal poorly with computers and software where the dominant failure causes are errors and oversights in requirements or design. Thus these techniques need extending and revising in order to deal effectively with modern systems. Also, in our experience, investigation of issues to do with safety of computer systems have given some useful insights into traditional system safety engineering, e.g. into the meaning of important concepts such as the term hazard. The optional modules allow students to investigate such areas as the contribution of software, human factors or operational factors within an automotive engineering context in more depth.

Learning Outcomes
The course aims to provide participants with a thorough grounding and practical experience in the use of state-of-the-art techniques for development of safety critical systems, together with an understanding of the principles behind these techniques so that they can make sound engineering judgements during the design, deployment and operation of such systems. Graduates completing the course will be equipped to participate in safety-critical systems engineering related aspects of industry and commerce.

New areas of teaching will be developed in response to new advances in the field as well as the requirements of the organisations that employ our graduates.

The course aims to equip students with knowledge, understanding and practical application of the essential components of System Engineering, to complement previously gained knowledge and skills. A York System Safety Engineering with Automotive Applications graduate will have a knowledge and understanding of the essential areas, as represented by the core modules, knowledge and understanding on a number of specialist topics, as represented by the optional modules. and an ability to identify issues with the safety process in a particular project, identify responses to this gap and evaluate the proposal, as represented by the project.

Transferable Skills
Information-retrieval skills are an integrated part of many modules; students are expected to independently acquire information from on-line and traditional sources. These skills are required within nearly all modules.

Numeracy is required and developed in some modules. Time management is an essential skill for any student in the course. The formal timetable has a substantial load of lectures and labs. Students must fit their private study in around these fixed points. In addition, Open Assessments are set with rigid deadlines which gives students experience of balancing their time between the different commitments.

All students in the University are eligible to take part in the York Award in which they can gain certified transferable skills. This includes the Languages for All programme which allows students to improve their language skills.

Projects

The MSc System Safety Engineering with Automotive Applications project for part-time students is 60 credits in length:
-Literature survey on a subject to determine the state of the art in that area
-A gap in the state of the art identified in the first part is addressed, a proposal made and evidence provided for the proposal. This project is completed in September of a student's fourth year

The Project(s) enable(s) students to:
-Demonstrate knowledge of an area by means of a literature review covering all significant developments in the area and placing them in perspective
-Exhibit critical awareness and appreciation of best practice and relevant standards
-Investigate particular techniques and methods for the construction of safe systems, possibly involving the construction of a prototype
-Evaluate the outcome of their work, drawing conclusions and suggesting possible further work in the area

The project(s) address(es) a technical problem concerned with real issues in the automotive domain. It should, if possible, include the development and application of a practical method, technique or system. It is a natural progression from the taught modules, and builds on material covered in them. It addresses the problem from an automotive system safety perspective, including hardware, software or human factors. It will typically have an industrial flavour, students are encouraged, with the help of their managers and academic staff, to select a project which is relevant to their own work.

The project begins at the start of the Autumn term after completion of the taught modules, and lasts 12 months part-time. There are three weeks attendance at York during the project, for progress assessment and access to library facilities: in October near the start of the project; and in the following January and July.

Read less
HACCP Management. is a unique course which provides relevant and up-to-date experience in foodborne disease and HACCP development, development in essential transferable skills such as communication skills and the opportunity for career development and enhancement. Read more

HACCP Management is a unique course which provides relevant and up-to-date experience in foodborne disease and HACCP development, development in essential transferable skills such as communication skills and the opportunity for career development and enhancement. Within the last few years there has been widespread agreement that to improve the safety of our food and promote consumer confidence in safe food production, a system known as Hazard Analysis Critical Control Point (HACCP) is applied throughout the food industry. As a result new European legislation will require all food businesses to implement a full HACCP system. This postgraduate course is ideal for students who are working in, or want to work in the food industry, local government and the private sector. The course is available online with no campus attendance required and part-time to complete within one to three years of study.

PROGRAMME AT A GLANCE

YEAR 1

  • Foodborne Disease (Double Module)
  • HACCP Development

YEAR 2

  • HACCP Audit and Management (Double Module)
  • Research Methods for Food Safety

FURTHER INFORMATION

MODULES

Foodborne Disease - This double module aims to explore the problem of foodborne disease in a global context. It analyses its cause and identifies appropriate control strategies. The module also helps you to develop the skills necessary for effective study eg information searching and retrieval, problem solving and communication skills.

Hazard Analysis Critical Control Point Development - This module aims to enable you to develop competence in HACCP methodology. It uses a number of case studies and can be applied to a number of sectors of the food industry.

Hazard Analysis Critical Control Point Audit and Management - This double module will provide you with the theoretical foundations and practical techniques together with essential skills to develop effective HACCP systems. It uses a number of case studies and practical examples across a range of food sectors.

Research Methods for Food Safety - This module enables you to develop your knowledge or research aims and processes so that you can critically assess current research in food safety. You will experience a number of ways of researching and the practical application to food safety issues.

LEARNING ENVIRONMENT AND ASSESSMENT

Detailed learning materials are all available online. The Induction Sessions ensure that you can navigate around the web-based material and that you can communicate effectively with staff and other students. Each topic of study involves a number of learning activities such as asynchronous discussions and workshops.

We provide a number of different ways of assessing your work a report on an outbreak of foodborne disease, a personal portfolio, critical analysis of papers and case studies There are no examinations.

RELATED COURSES

Also see Hazard Analysis Critical Control Point (HACCP) - PGCert



Read less
Our computer science conversion course is for those who have little or no experience in computing. You will study the principles and practice of computing. Read more

Our computer science conversion course is for those who have little or no experience in computing. You will study the principles and practice of computing. It will include the fundamentals of computing science, database design, network technologies and programming.

This course can also be taken as Continuing Professional Development (CPD), for example by ICT teachers who are switching to the new Computer Science curriculum.

Our graduates have an excellent record of finding employment (around 90%). Recent examples include:

-Graduate Trainee, British Airways

-Software Developer, IBM UK

-Graduate Developer, Scott Logic

-Software Engineer, BT

Our research expertise feeds into our teaching. This means that you learn at the cutting edge of the discipline. We incorporate new techniques and knowledge into your learning and have an active research community. We have several research groups and four three research centres.

Delivery

The course is delivered by the School of Computing. You can study over one year full time or two years' part time.

The first nine months of the full time course are devoted to taught modules (120 credits), which are examined by written papers. There will be about 20 contact hours per week. You will also undertake a substantial amount of supervised and unsupervised practical work.

The taught part of the course follows three main threads:

  • programming: introduces the Java programming language
  • computer architecture: covers the basic structure of computers and computer networks
  • software engineering: considers the problems of the design and implementation of large computing systems produced by a team of designers and programmers

The three summer months are devoted to a dissertation project (worth 60 credits).

You can find more information on the School website:

Accreditation

We seek British Computer Society (BCS) accreditation for all our degrees. This ensures that you will graduate with a degree that meets the standards set out by the IT industry. A BCS-accredited degree provides the foundation for professional membership of the BCS on graduation. This is the first step to becoming a chartered IT professional.

The School of Computing Science at Newcastle University is an accredited and a recognised Partner in the Network of Teaching Excellence in Computer Science.

Facilities

You will have dedicated computing facilities in the School of Computing. You will have access to the latest tools for system analysis and development. For certain projects, special facilities for networking can be set up.

You will enjoy access to specialist IT facilities to support your studies, including:

  • high specification computers only for postgrduates
  • over 300 PC's running Windows, 120 just for postgraduates
  • over 300 Raspberry Pi devices 
  • the latest Windows operating system and development tools
  • 27" monitors with high resolution (2560X1440) display
  • motion capture facilities
  • 3D printing facilities
  • graphics processing unit
  • cloud scale virtualisation facilities
  • a Linux based website that you can customise with PHP hosting services
  • haptic and wearable computing hardware

We have moved to the new £58m purpose-built Urban Sciences Building. Our new building offers fantastic new facilities for our students and academic community. The building is part of Science Central, a £350 million project bringing together:

  • academia
  • the public sector
  • communities
  • business and industry.


Read less
This course is one of the first of its kind in the UK and has a graduate employment rate of 97%. It prepares you for careers as software architects, project managers or software developers. Read more

This course is one of the first of its kind in the UK and has a graduate employment rate of 97%. It prepares you for careers as software architects, project managers or software developers. You may also operate as a software consultant or do further research.

In collaboration with a number of high profile industrial leaders and computer game innovators, we have created an advanced course producing graduates with the potential to become future leaders in the global computer games industry.

The course is for honours graduates in computing science or a discipline with significant computing and/or mathematical content, such as computing, information systems, mathematics, engineering, systems engineering or physics.

You will benefit from:

-An industrial advisory board made up from high profile UK games companies

-Industrial placements at leading game studios

-Industry-sponsored prizes each year in categories such as Best Team, Best Project and Best Student

-A technical focus on game engineering

Newcastle has a first class record of research related to the development of computer game technologies and 97% of our graduates are in employment following graduation. Our graduates have gone on to work as programmers for a wide range of companies including:

-Ubisoft Reflections

-Fluid Pixel

-Nosebleed Interactive

The staff delivering this course have international reputations for their contributions to the fields of online gaming, graphics and simulation, artificial intelligence, programming and human computer interaction.

You will be encouraged to play a full part in the life of the School, participating in seminars delivered by distinguished external speakers. The experienced and helpful staff at Newcastle will be happy to offer support with all aspects of your course from admissions to graduation and developing your career beyond.

Delivery

The course is available over one year full time, leading to an MSc award. We will equip you with the skills and knowledge required to develop computer game software. We will also provide an international perspective on advancements in computer game development.

There are three phases in the course. Phase one (60 credits) consists of 20 hours per week of lectures. We will introduce core knowledge and skills through modules in:

-Programming

-Graphics

-Game technologies

You will also undertake a substantial amount of supervised and unsupervised practical work.

During phase two (30 credits), we emphasise the practice of computer game development through modules in:

-Research methods for gaming innovations

-Entrepreneurial skills for the game industry

-The development and assessment of an actual computer game (team exercise)

Phase three (90 credits) is the individual system development or research project.

Accreditation

We have a policy of seeking British Computer Society (BCS) accreditation for all of our degrees, so you can be assured that you will graduate with a degree that meets the standards set out by the IT industry. Studying a BCS-accredited degree provides the foundation for professional membership of the BCS on graduation and is the first step to becoming a chartered IT professional.

Our Computer Game Engineering MSc has Creative Skillset Accreditation as well as being officially recognised as a NVidia CUDA Training Center.

The School of Computing Science at Newcastle University is an accredited and a recognised Partner in the Network of Teaching Excellence in Computer Science.

Facilities:

You will have dedicated computing facilities in the School of Computing. You will have access to the latest tools for system analysis and development, as well as an allocated PC and desk space in a project lab. For certain projects, special facilities for networking can be set up.

You will enjoy access to specialist IT facilities to support your studies, including:

  • a high specification PC with gaming quality discrete graphics, processing unit and dual monitors 
  • Sony Playstation development kit and software
  • NVidia development kit and software
  • Kinect 
  • Oculus Rift 
  • Vive VR systems
  • the latest consoles within the project lab
  • multiple large video screens for game demos and presentations

We have moved to the new £58m purpose-built Urban Sciences Building. Our new building offers fantastic new facilities for our students and academic community. The building is part of Science Central, a £350 million project bringing together:

  • academia
  • the public sector
  • communities
  • business and industry.


Read less
This course provides you with a balance of molecular biology, engineering, computing and modelling skills necessary for a career in synthetic biology. Read more

This course provides you with a balance of molecular biology, engineering, computing and modelling skills necessary for a career in synthetic biology. Computational design of biological systems is important as the field of synthetic biology grows. This allows the construction of complex and large biological systems.

While laboratory approaches to engineering biological systems are a major focus, the course specialises in computational design. This provides you with essential computing and engineering skills to allow you to develop software to program biological systems.

Our course is designed for students from both biological and computational backgrounds. Prior experience with computers or computer programming is not required. Students with mathematical, engineering or other scientific backgrounds are also welcome to apply. It is ideal if you are aiming for careers in industry or academia.

We provide a unique, multidisciplinary experience that is essential for understanding synthetic biology. The programme draws together the highly-rated teaching and research expertise of our Schools of Computing Science, Mathematics and Statistics, and Biology, as well as the Medical Faculty and the Institute of Human Genetics.

Research is a large component of this course. The emphasis is on delivering the research training you will need in the future to meet the demands of industry and academia effectively. Newcastle's research in life sciences, computing and mathematics is internationally recognised.

The teaching staff are successful researchers in their field and publish regularly in highly-ranked systems synthetic biology journals.

Our experienced and friendly staff are on hand to help you. You gain the experience of working in a team in an environment with the help, support and friendship of fellow students.

Project work

Your five month research project gives you real research experience in Synthetic Biology. You will have the opportunity to work closely with a leading research team in the School and there are opportunities to work on industry led projects. You will have one-to-one supervision from an experienced member of the faculty, supported with supervision from associated senior researchers and industry partners as required.

The project can be carried out:

-With a research group at Newcastle University

-With an industrial sponsor

-With a research institute

-At your place of work

Accreditation

We have a policy of seeking British Computer Society (BCS) accreditation for all of our degrees, so you can be assured that you will graduate with a degree that meets the standards set out by the IT industry. Studying a BCS-accredited degree provides the foundation for professional membership of the BCS on graduation and is the first step to becoming a chartered IT professional.

The School of Computing Science at Newcastle University is an accredited and a recognised Partner in the Network of Teaching Excellence in Computer Science.

Facilities:

You will have dedicated computing facilities in the School of Computing. You will have access to the latest tools for system analysis and development. For certain projects, special facilities for networking can be set up.

You will enjoy access to specialist IT facilities to support your studies, including:

  • a dedicated virtual Linux workstation
  • a dedicated virtual Windows workstation
  • high specification computers only for postgrduates
  • over 300 PC's running Windows, 120 just for postgraduates
  • over 300 Raspberry Pi devices 
  • high-performance supercomputers
  • the latest Windows operating system and development tools
  • 27" monitors with high resolution (2560X1440) display
  • high-capacity database servers
  • motion capture facilities
  • 3D printing facilities

You will have access to a Linux based website that you can customise with PHP hosting services.

We have moved to the new £58m purpose-built Urban Sciences Building. Our new building offers fantastic new facilities for our students and academic community. The building is part of Science Central, a £350 million project bringing together:

  • academia
  • the public sector
  • communities
  • business and industry.


Read less

Show 10 15 30 per page



Cookie Policy    X