• Goldsmiths, University of London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
University of Manchester Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Imperial College London Featured Masters Courses
University of Cambridge Featured Masters Courses
"synthetic" AND "organic"…×
0 miles

Masters Degrees (Synthetic Organic Chemistry)

We have 20 Masters Degrees (Synthetic Organic Chemistry)

  • "synthetic" AND "organic" AND "chemistry" ×
  • clear all
Showing 1 to 15 of 20
Order by 
The aim of UCLan’s Master of Science in Synthetic Organic Chemistry course is to provide an intellectually stimulating and satisfying experience of learning and studying modern aspects of organic chemistry. Read more
The aim of UCLan’s Master of Science in Synthetic Organic Chemistry course is to provide an intellectually stimulating and satisfying experience of learning and studying modern aspects of organic chemistry.

This course blends a theoretical knowledge of advanced concepts in organic synthesis and spectroscopic analysis with industrial applications but, unlike many Masters level courses of this type, does not focus students on one particular application of organic chemistry eg, medicinal chemistry. Instead it provides training, knowledge and a perspective of a broad range of chemical industries reliant upon organic chemistry.

INDUSTRY LINKS

We will be seeking accreditation from the Royal Society of Chemistry.

PROFESSIONAL ACCREDITATION

Our Chemistry department is top in the UK in terms of student satisfaction, ranking first in the Times Good University Guide 2015.

LEARNING ENVIRONMENT AND ASSESSMENT

Computing Facilities are available in the general computing suites found within the building and throughout campus. Extensive Resources are available to support your studies provided by Learning & Information Services (LIS) – library and IT staff. You are advised to take advantage of the free training sessions designed to enable you to gain all the skills you need for your research and study.

LIS provide access to a huge range of electronic resources – e-journals and databases, e-books, images and texts.
Course and module materials are not provided in ‘hard copy’ format, however, wherever practicable, lecture notes and/or presentations, seminar materials, assignment briefs and materials and other relevant information and resources are made available in electronic form via eLearn. This is the brand name for the online Virtual Learning Environment (VLE) that the University uses to support and enhance teaching and learning.

All students can access the eLearn spaces for the course and modules for which they are registered. Once logged into your eLearn area you can access material from the course and all of the modules you are studying without having to log in to each module separately.

The modules are assessed by both coursework and examination. To ensure that you do not have an excessive amount of assessment at any one time, the coursework assessment will take place uniformly throughout the course.

FURTHER INFORMATION

The theoretical aspects of the course are underpinned by an extensive series of laboratory classes. This cumulates in an 80 credit project where you have the opportunity to specialise an area of organic chemistry. This course will appeal to graduates from chemistry and related disciplines and will provide excellent preparation for anyone wishing to find employment in any organisation where a knowledge of organic synthesis or analysis is important.

Semester 1 of the course is designed to ensure that you have the basic skills needed to obtain an MSc. It is important that you enhance the skills you have that will be of benefit when you gain employment after the course. The main skills that you will enhance will be presentational skills, report writing, independent working and problem solving.

Read less
Our Chemistry Master's programme provides you with an exceptional toolbox for your future. The programme is closely associated with the research Institute for Molecules and Materials (IMM). Read more

Interdisciplinary approach

Our Chemistry Master's programme provides you with an exceptional toolbox for your future. The programme is closely associated with the research Institute for Molecules and Materials (IMM). Its mission is to fundamentally understand, design and control the functioning of molecules and materials. The institute is a centre of excellence that trains the next generation of leaders in science and entrepreneurship. Research in the IMM ranges from condensed matter science to chemical biology, and builds on novel theoretical, synthetic and spectroscopic methods. Our goal is to explore new roads proceeding from synthesis and growth to design and architecture of molecular constructs and materials with specific, desired properties. The cooperation of chemists and physicists, and increasingly biologists, in one research institute is unique worldwide. It is the secret of IMM's success and its many scientific breakthroughs.

Specialisations within the Master's in Chemistry

The Master's programme in Chemistry offers you three specialisations:
- Chemistry for Life
- Molecular Chemistry
- Physical Chemistry

Top scientists

The funding we have received for our research reflects the achievements we have made. Prof. dr. Wilhelm Huck received an ERC Grant for his research on chemical reactions in extremely small drops of water. The ultimate goal is to build a synthetic cell for this. We need to understand how complex networks function in confined spaces and how the physical environment of the cell impacts on enzymatic reactions. Prof. dr. Roeland Nolte received an ERC to do research on the development of supramolecular catalysts and materials using nature as a guide. Prof. dr. Jan van Hest received funding from the Gravitation programme for his work on self-repairing materials, materials that continually adapt to their environment. This includes the idea of how the body repairs its cells and ensures that the right substances reach the right places at the right time. They want to gain fundamental understanding of the complexity of that dynamic.

The Nijmegen approach

The first thing you will notice as you enter our Faculty of Science is the open atmosphere. This is reflected by the light and transparent building and the open minded spirit of the people that you will meet, working, exploring and studying there. It is no wonder students from all over the world have been attracted to Nijmegen. You study in small groups, in direct and open contact with members of the staff. In addition, Nijmegen has excellent student facilities, such as high-tech laboratories, libraries and study ‘landscapes'.

Studying by the ‘Nijmegen approach' is a way of living. We will equip you with tools which are valuable for the rest of your life. You will be challenged to become aware of your intrinsic motivation. In other words, what is your passion in life? With this question in mind we will guide you to translate your passion into a personal Master's programme.

Quality label

For the third time in a row, this programme was rated number one in the category Chemistry in the Netherlands by the Keuzegids Masters 2015 (Guide to Master's programmes).

Career prospects

Most of our graduates take up a PhD position, either in Nijmegen or elsewhere in the world. Our research institutes have many vacancies for PhD projects every year. Our graduates also find work as researchers and managers in industry, in business and in research institutes.

Our approach to this field

"The Republic has no need of chemists and savants", were the words with which Antoine Lavoisier, one of the founders of modern chemistry, ended up on the guillotine during the French revolution. Fortunately these days the importance of chemistry for the benefit of a sustainable society is well-recognised. As such, chemistry has been designated a key area by the Dutch "innovatieplatform". So there will be many chemistry-related innovation initiatives in both industry and academia. This will be substantiated by a steering committee formed by the Association of Dutch Chemical Industries (VNCI) and the Chemical Science division of the Netherlands' Organisation for Scientific Research (NWO/CW). These developments demand a continuous influx of well-trained chemists.

An integrated Chemistry programme was set up at the University of Nijmegen in 1962. The current Master's degree programme in Chemistry derives from the integrated programme that was established in 1999.

Radboud University Nijmegen aims to provide a Master's degree programme in Chemistry at an internationally recognised level. The programme is based on the research themes that exist within the Research Institute for Molecules and Materials (IMM) and to a somewhat lesser extent, the Radboud Institute for Molecular Life Sciences (RIMLS). In recent years, the IMM has focused on chemistry research in the areas of organic chemistry (synthetic, bio-organic, supramolecular and materials), nuclear magnetic resonance (solid state NMR and biophysical chemistry), and solid state chemistry. Furthermore, increasing research interaction with biology and physics groups has emerged to offer ample opportunities for new research and education. Based on this research, modern, high quality education can be provided within the Master's degree programme.

See the website http://www.ru.nl/masters/chemistry

Read less
The chemistry of biological processes is the basis of all life on planet Earth. On this course you will develop an understanding of the processes that are core to biological chemistry. Read more
The chemistry of biological processes is the basis of all life on planet Earth. On this course you will develop an understanding of the processes that are core to biological chemistry. We will explore aspects such as biosynthesis, retrosynthetic analysis, molecular biology and the principles of drug development. We will also look at the applications of biological chemistry in catalysts, synthetic methods and spectroscopy, giving our graduates an edge when looking for employment in academia or industry.

Distinctive features:

• Available on a one year full-time or three year part-time basis.

• Explore real life biological systems as well as applications of biological processes, for example in catalysis.

• Specialise in an area of interest to you with an end of course research project.

• Some overseas academic placements may be available for the research project.

Structure

This course may be taken on a one year full-time or three year part-time basis.

There are two parts to the degree. Part one comprises core and optional taught modules which you will take during the autumn and spring semesters. In these modules we will provide you with an understanding of the biological problems and processes at the interface of chemistry and biology. We will study real life systems and explore aspects such as natural product synthesis, biocatalysis, molecular biology, synthetic biology, enzymology, medicinal chemistry and molecular modelling.

Upon successful completion of part one of the degree you will progress to part two, the summer research project. We will make a range of project options available to you from the field of biological chemistry. For this project you may work with a research group in the School of Chemistry. You may also be able to complete this project with one of our academic partner institutions overseas.

If you are on the one year full-time degree option, you will undertake all modules and your research project in one year.

Core modules:

Structure and Mechanism in Organic Chemistry
Biosynthetic Approach to Natural Products
Biocatalysis I - Modern Approaches to Biocatalysts
Colloquium
Biocatalysis II - Industrial Applications of Biocatalysis
Medicinal Chemistry
Bioinorganic Chemistry
Advanced Techniques in Organic and Biological Chemistry
Key Skills for Postgraduate Chemists
Practical Chemical Biology
Research Project

Optional modules:

Modelling of Biological Macromolecules
Asymmetric Synthesis of Pharmaceuticals and Natural Products
Analytical and Structural Techniques in Chemical Biology
Molecular Modelling

Teaching

The methods of teaching we employ will vary from module to module, as appropriate depending on the subject matter and the method of assessment. We teach using a mixture of lectures, workshops, computational sessions, laboratory practicals and tutorials.

Your research project will be carried out in one of our laboratories under supervision of an academic member of staff with interests in a similar field, unless you choose to complete your project during a placement with one of our academic partner institutions overseas, depending on availability.

Modules relating to computing frequently take place in our computer rooms, while practical work will be undertaken in our laboratories. We frequently invite external academic speakers and industry experts to the School for seminars, which our postgraduate students are encouraged to attend.

Support

All of our students are allocated a personal tutor when they enrol on the course. A personal tutor is there to support you during your studies and can advise you on academic and personal matters that may be affecting you. You should have regular meetings with your personal tutor to ensure that you are fully supported.

You will have access to the Science Library, which holds our collection of chemistry resources, as well as to the other Cardiff University Libraries.

Feedback:

We offer written and oral feedback, depending on the coursework or assessment you have undertaken. You will usually receive your feedback from the module leader. If you have questions regarding your feedback, module leaders are usually happy to give advice and guidance on your progress. We aim to provide you with regular feedback on your work after assessments have been submitted.

Assessment

Taught modules are assessed in a variety of ways depending on the module content and learning outcomes (found in the module descriptions). We use course work, assessed workshops, posters and oral presentations or a combination of these to assess your progress on the course.

Your research project at the end of the course will be assessed through a dissertation, a presentation, and an oral exam.

Career prospects

After completing this course there are usually two career streams open to graduates, research or industry. Within these two fields there are a variety of career options. For example, many of our graduates choose to follow up their MSc and decide to complete a PhD research degree with us. Those who have chosen not to continue in academia or teaching have gone on to a wide range of employment in private industries such as Kimberley-Clark group, Thales group, and Imanova Ltd.

Placements

For the end of course research project we may have some placements available with one of our academic partner institutions overseas. Please enquire early for further details

Read less
. Research profile. Pursuing a research degree at the School of Chemistry could be one of the best experiences of your life. Read more

Research profile

Pursuing a research degree at the School of Chemistry could be one of the best experiences of your life.

In addition to gaining research skills, making friends, meeting eminent researchers and being part of the research community, a research degree will help you to develop invaluable transferable skills which you can apply to academic life or a variety of professions outside of academia.

The Chemistry/Biology Interface

This is a broad area, with particular strengths in the areas of protein structure and function, mechanistic enzymology, proteomics, peptide and protein synthesis, protein folding, recombinant and synthetic DNA methodology, biologically targeted synthesis and the application of high throughput and combinatorial approaches. We also focus on biophysical chemistry, the development and application of physicochemical techniques to biological systems. This includes mass spectrometry, advanced spectroscopy and microscopy, as applied to proteins, enzymes, DNA, membranes and biosensors.

Experimental & Theoretical Chemical Physics

This is the fundamental study of molecular properties and processes. Areas of expertise include probing molecular structure in the gas phase, clusters and nanoparticles, the development and application of physicochemical techniques such as mass spectoscropy to molecular systems and the EaStCHEM surface science group, who study complex molecules on surfaces, probing the structure property-relationships employed in heterogeneous catalysis. A major feature is in Silico Scotland, a world-class research computing facility.

Synthesis

This research area encompasses the synthesis and characterisation of organic and inorganic compounds, including those with application in homogeneous catalysis, nanotechnology, coordination chemistry, ligand design and supramolecular chemistry, asymmetric catalysis, heterocyclic chemistry and the development of synthetic methods and strategies leading to the synthesis of biologically important molecules (including drug discovery). The development of innovative synthetic and characterisation methodologies (particularly in structural chemistry) is a key feature, and we specialise in structural chemistry at extremely high pressures.

Materials Chemistry

The EaStCHEM Materials group is one of the largest in the UK. Areas of strength include the design, synthesis and characterisation of functional (for example magnetic, superconducting and electronic) materials; strongly correlated electronic materials, battery and fuel cell materials and devices, porous solids, fundamental and applied electrochemistry polymer microarray technologies and technique development for materials and nanomaterials analysis.

Training and support

Students attend regular research talks, visiting speaker symposia, an annual residential meeting in the Scottish Highlands, and lecture courses on specialised techniques and safety. Students are encouraged to participate in transferable skills and computing courses, public awareness of science activities, undergraduate teaching and to represent the School at national and international conferences.

Facilities

Our facilities are among the best in the world, offering an outstanding range of capabilities. You’ll be working in recently refurbished laboratories that meet the highest possible standards, packed with state-of-the-art equipment for both analysis and synthesis.

For NMR in the solution and solid state, we have 10 spectrometers at field strengths from 200-800 MHz; mass spectrometry utilises EI, ESI, APCI, MALDI and FAB instrumentation, including LC and GC interfaces. New combinatorial chemistry laboratories, equipped with a modern fermentation unit, are available. We have excellent facilities for the synthesis and characterisation of bio-molecules, including advanced mass spectrometry and NMR stopped-flow spectrometers, EPR, HPLC, FPLC, AA.

World-class facilities are available for small molecule and macromolecular X-ray diffraction, utilising both single crystal and powder methods. Application of diffraction methods at high pressures is a particular strength, and we enjoy strong links to central facilities for neutron, muon and synchrotron science in the UK and further afield. We are one of the world's leading centres for gas-phase electron diffraction.

Also available are instruments for magnetic and electronic characterisation of materials (SQUID), electron microscopy (SEM, TEM), force-probe microscopy, high-resolution FTRaman and FT-IR, XPS and thermal analysis. We have also recently installed a new 1,000- tonne pressure chamber, to be used for the synthesis of materials at high pressures and temperatures. Fluorescence spectroscopy and microscopy instruments are available within the COSMIC Centre. Dedicated computational infrastructure is available, and we benefit from close links with the Edinburgh Parallel Computing Centre.



Read less
This MSc allows you to build on your undergraduate training in Chemistry to develop a deeper understanding of the subject, whilst building advanced knowledge in aspects of Organic Chemistry; including organic reaction mechanisms, spectroscopy, and synthetic strategy. Read more
This MSc allows you to build on your undergraduate training in Chemistry to develop a deeper understanding of the subject, whilst building advanced knowledge in aspects of Organic Chemistry; including organic reaction mechanisms, spectroscopy, and synthetic strategy.

This kind of high-level training is sought after by employers in the chemical industry as well as top academic institutions working on fundamental research. You’ll receive specialised lectures, seminars and laboratory classes which are tailored to the needs of pharmaceutical, agrochemical, speciality and fine organic chemicals industries.

You’ll also complete an in-depth research project, which allows you to work closely with our pioneering, award-winning academics on a topic of your choice. The School of Chemistry was ranked 4th in the UK for the quality of its research output (REF 2014), so you’ll be taught by some of the best researchers in the country.

Read less
How can I make a flexible and cheap solar cell out of organic molecules? Can I build a car engine on a molecular level? How do I make a colour television that can be folded up?. Read more
How can I make a flexible and cheap solar cell out of organic molecules? Can I build a car engine on a molecular level? How do I make a colour television that can be folded up?

You will encounter such questions in the Master's degree programme in Chemistry at the University of Groningen.

The programme is embedded in an internationally respected research environment; it is related to the Zernike Institute of Advanced Materials and to the Stratingh Institute. Both are officially recognized as national centres of leading research in materials science.

With a cross-disciplinary approach, this programme will study the following fields of chemistry:

- Molecular Science
This area develops the understanding of molecular aspects and applies it to the fields of nanotechnology, supramolecular chemistry, synthetic chemistry, catalysis and the chemistry of life sciences.

- Chemical Physics
This field studies the physical and chemical properties of atoms, molecules and condensed matter through experimental techniques and theoretical methods. You can choose between theoretical chemistry and solid state chemistry.

- Polymer Science
This domain helps you to gain a deeper understanding of the physical and chemical structure and properties of polymer. It focuses on the development of thin films, surfaces and biomaterials.

Why in Groningen?

- Research programme of chemistry is embedded in leading research institute in Materials Science
- Chemistry field in Groningen has CHE Excellence Label
- Cross-disciplinary approach

Job perspectives

This degree programme in Chemistry is primarily meant for students who want to become researchers. Some graduates will, after obtaining their Master's degree, continue with a PhD project, either in Groningen or elsewhere. Some find jobs all over Europe in major companies, including DSM, Akzo Nobel, Corus or Philips.

Nevertheless, many chemists who are trained as researchers find jobs that are less research-oriented. This is because the programme also pays attention to communication skills, teamwork, presentation techniques and IT skills. During their training as researchers in chemistry, students develop general competences that make them highly versatile and widely employable. In practice chemistry graduates can be found in consulting agencies, commercial functions, product research and development, product management or teaching.

Job examples

- PhD research project
- Work for a major multinational such as Akzo Nobel or Philps
- Consulting agencies
- Product management or commercial positions

Read less
This course is specifically designed for applicants from a pharmacy or pharmaceutical sciences background and those without an in-depth coverage of organic chemistry and organic spectroscopy as part of their previous degree courses. Read more
This course is specifically designed for applicants from a pharmacy or pharmaceutical sciences background and those without an in-depth coverage of organic chemistry and organic spectroscopy as part of their previous degree courses.

It gives you the practical skills and knowledge to design and synthesise molecules that have therapeutic actions within the body.

The ultimate aim is to invent more selective and safer drugs to fight and cure disease. We also want to fully exploit the opportunities from identification of genes associated with a range of cancers, inherited disorders and agents of disease.

Specialist classes focus on:
-Disease targets
-Design of selectively-acting prototype drugs
-Synthetic and mimetic strategies in producing drug prototypes
-The refinement of activity when a promising compound is identified
Case studies of well-known drugs are used to illustrate the principles

You’ll study

The course consists of three theory and three practical modules running between October and April. These are followed by exams. If you pass all exams and want to proceed to MSc you’ll undertake a 10-week research project and submit a thesis at the end of August.

There is a six-week preliminary conversion course starting 1 August that covers basic and underpinning organic chemistry and organic spectroscopy. Successful completion and examination results in the conversion course will allow you to transfer to the MSc in Medicinal Chemistry.

Facilities

The Department of Pure & Applied Chemistry carries out world-leading research with modern state-of-the-art facilities. You’ll have access to the full range of analytical instrumentation used in the pharmaceutical industry:
-Nuclear Magnetic Resonance (NMR)
-Ultra-Violet (UV)
-Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR_FTIR)
-High Pressure Liquid Chromatography (HPLC)
-Gas Chromatography (GC)
-Liquid Chromatograph/Gas Chromatography Mass Spectrometry (LC/GC-MS)
-X-ray crystallography

Teaching staff

Course material is taught by experts based in the Department of Pure & Applied Chemistry and the Strathclyde Institute for Pharmacy & Biomedical Sciences.

There’s additional specialised lectures from visiting professors and world-renowned scientists who are working in the pharmaceutical industry.

Course content

-Conversion Course
-Advanced Organic Chemistry
-Chemical Biology
-Principles of Modern Medicinal Chemistry
-Advanced Biochemical Methods
-Project & Dissertation

Learning & teaching

Teaching of theory and applications is through lectures and tutorials. The material is further reinforced with practical sessions, which provide hands-on experience with a wide range of modern instrumental techniques.

Assessment

Assessment is through both written and practical exams and submission of a thesis.

Careers

Graduates from this course will be ideal for positions in the pharmaceutical and chemical industries or may continue their studies into PhD research.

Read less
The School of Chemistry is one of the largest in the UK and an internationally recognised centre of teaching and research. Currently there are over 250 postgraduate and postdoctoral researchers, from many different countries, working with more than 60 academic staff on a wide range of research themes. Read more
The School of Chemistry is one of the largest in the UK and an internationally recognised centre of teaching and research. Currently there are over 250 postgraduate and postdoctoral researchers, from many different countries, working with more than 60 academic staff on a wide range of research themes. Extensive collaborations with science-based industries and leading international academic centres ensure that research in Bristol remains at the frontier of science.

The School of Chemistry is housed in spacious, modern laboratories, which are well equipped with state-of-the-art facilities. There is a comprehensive graduate programme to ensure you have the opportunity to build a wide range of skills, both in chemistry and other transferable skills.

The School of Chemistry hosts or participates in a number of Centres for Doctoral Training (CDTs) and Doctoral Training Partnerships (DTPs). Training opportunities in these national flagship centres are available in the following disciplines:
-Chemical synthesis
-Functional nanomaterials
-Catalysis
-Theory and modelling in chemical sciences
-Science and technology of diamond
-Synthetic biology
-Advanced composites
-Earth and environmental sciences
-Quantum engineering
-Future autonomous and robotic systems
-Bioscience
-Condensed matter physics

Research groups

The School of Chemistry maintains a traditional managerial structure with three sections, namely Inorganic and Materials, Organic and Biological, and Physical and Theoretical. However, the school’s research profile is defined according to nine themes, each with a critical mass of researchers. Further information on the school's research profile can be found at Explore Bristol Research (http://research-information.bristol.ac.uk/).

-Atmospheric and Global Change Chemistry
-Biological and Archaeological Chemistry
-Catalysis
-Computational and Theoretical Chemistry
-Materials for Energy
-Soft Matter, Colloids and Materials
-Spectroscopy and Dynamics
-Supramolecular and Mechanistic Chemistry
-Synthesis

Researchers in the School of Chemistry are engaged in a number of collaborative centres and research institutes, with broader engagement from researchers across the Faculty of Science, the University and beyond.

Careers

Many of our PhD graduates are successful in securing postdoctoral positions at universities in the UK and abroad. A PhD in chemistry is valued in many employment sectors worldwide, including pharmaceutical sciences, polymers, coatings, agrochemicals, instrumentation manufacturers and management consultancy. Your skills will be in high demand from the chemical and allied industries, as well as the public sector.

Read less
The principal component of this degree is an intensive novel research project providing 'hands-on' training in methods and techniques at the cutting edge of scientific research. Read more
The principal component of this degree is an intensive novel research project providing 'hands-on' training in methods and techniques at the cutting edge of scientific research. The programme is particularly suitable for those wishing to embark on an academic career, with a strong track record of students moving into graduate research at UCL and elsewhere.

Degree information

Students develop a systematic approach to devising experiments and/or computations and gain familiarity with a broad range of synthetic, analytical and spectroscopic techniques, acquiring skills for the critical analysis of their experimental and computational observations. They also broaden their knowledge of chemistry through a selection of taught courses and are able to tailor the programme to meet their personal interests.

Students undertake modules to the value of 180 credits.

The programme consists of one core module (30 credits), four optional modules (15 credits each) and a research project (90 credits).

Core modules - all students undertake a literature project (30 credits) and a research dissertation (90 credits), which are linked.
-Literature Project

Optional modules - students choose four optional modules from the following:
-Advanced Topics in Energy Science and Materials
-Advanced Topics in Physical Chemistry
-Biological Chemistry
-Concepts in Computational and Experimental Chemistry
-Frontiers in Experimental Physical Chemistry
-Inorganic Rings, Chains and Clusters
-Intense Radiation Sources in Modern Chemistry
-Microstructural Control in Materials Science
-Numerical Methods in Chemistry
-Pathways, Intermediates and Function in Organic Chemistry
-Principles of Drug Design
-Principles and Methods of Organic Synthesis
-Simulation Methods in Materials Chemistry
-Stereochemical Control in Asymmetric Total Synthesis
-Structural Methods in Modern Chemistry
-Synthesis and Biosynthesis of Natural Products
-Topics in Quantum Mechanics
-Transferable Skills for Scientists

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 15,000 words and a viva voce examination (90 credits).

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials, laboratory classes and research supervision. Assessment is through the dissertation, unseen written examinations, research papers, a written literature survey, and an oral examination. All students will be expected to attend research seminars relevant to their broad research interest.

Careers

This MSc is designed to provide first-hand experience of research at the cutting-edge of chemistry and is particularly suitable for those wishing to embark on an academic career (i.e. doctoral research) in this area, although the research and critical thinking skills developed will be equally valuable in a commercial environment.

Top career destinations for this degree:
-Analyst and Adviser, Silver Peak
-Sales Associate, Sino Chen
-Phd in Nanoparticle Synthesis, UCL
-Secondary School Teacher (GCSE), Ministry of Education
-PhD in High Performance Organic Coating for Aerospace, University of Surrey

Why study this degree at UCL?

With departmental research interests and activities spanning the whole spectrum of chemistry, including development of new organic molecules, fundamental theoretical investigations and prediction and synthesis of new materials, students are able to undertake a project that aligns with their existing interests.

Students develop crucial first-hand experience in scientific methods, techniques for reporting science and using leading-edge research tools, as well as further essential skills for a research career.

Read less
This scientifically rigorous Master’s programme is designed to provide extensive training in the latest techniques being employed in forensic science laboratories around the world. Read more
This scientifically rigorous Master’s programme is designed to provide extensive training in the latest techniques being employed in forensic science laboratories around the world.

At Lincoln, you will be taught by experienced academics and practitioners with specialist expertise in analytical and organic chemistry, pharmacy, entomology, anthropology and molecular biology. You will be encouraged to engage in the interdisciplinary research culture at the University of Lincoln and to work alongside academics who are striving to advance forensic science techniques.

Teaching incorporates forensic principles, operating within the context of legal considerations, the role of the expert witness and presentation of evidence. You will have the opportunity to learn about the processes involved in providing impartial evidence in criminal investigations, from crime scenes to laboratory and, finally, to the courtroom.

Research Areas, Projects & Topics

Research in the School is organised around six main themes, although collaboration and cross-disciplinary research between these groups occurs at all levels:
-Analytical Chemistry
-Biological Chemistry
-Environmental Chemistry
-Forensic Chemistry
-Materials
-Organic Synthesis

How You Study

Students on this course should expect to typically receive 350 hours of contact time over the duration of the programme. The amount of contact time will vary depending on the various module option choices chosen.

Postgraduate study involves a significant proportion of independent study, exploring the material covered in lectures and seminars. As a general guide, for every hour in class students are expected to at least spend two - three hours in independent study.

The composition and delivery for the course breaks down differently for each module and may include lectures, seminars, workshops, independent study, laboratory practicals, research and one-to-one learning.

How You Are Assessed

The grading system for modules and award will follow the standard regulations for postgraduate taught degrees. The pass mark for modules is 50% or above and the distinction mark is 70% or above.

The module mark will be awarded based on different assessment methods: coursework, examinations, presentations, practical sessions or work contributions to the module. Details will be provided a module handbook given to students at the beginning of the academic year.

The University of Lincoln's policy on assessment feedback aims to ensure that academics will return in-course assessments to you promptly – usually within 15 working days after the submission date.

Modules

-Advanced Forensic Biology (Option)
-Advanced Forensic Toxicology (Option)
-Fire and Explosions (Option)
-Forensic Anthropology (Option)
-Forensic Entomology (Option)
-Method Development and Validation (Option)
-Project Preparation
-Research Project (Forensic Science)
-Sensors in Forensic Science (Option)
-Statistics in Forensic Science
-Synthetic Chemistry for Forensic Science (Option)

Facilities

The course will use specialist instrumentation in anthropology, molecular biology, toxicology, forensic and analytical chemistry, organic chemistry and the teaching facilities in the Science Building and the Joseph Banks Laboratories.

Career and Personal Development

This programme aims to prepare students for a career in forensic science. The specialist skills and technical knowledge that students have the opportunity to acquire may be transferable to roles in laboratory research, law enforcement, customs and excise and investigatory agencies in the private sector. This programme can be excellent preparation for advanced study at doctoral level.

The University Careers and Employability Team offer qualified advisors who can work with you to provide tailored, individual support and careers advice during your time at the University. As a member of our alumni we also offer one-to-one support in the first year after completing your course, including access to events, vacancy information and website resources; with access to online vacancies and virtual and website resources for the following two years.

This service can include one-to-one coaching, CV advice and interview preparation to help you maximise your future opportunities.
The service works closely with local, national and international employers, acting as a gateway to the business world.

Visit our Careers Service pages here http://bit.ly/1lAS1Iz.

Read less
This twelve month chemistry MSc is designed primarily for international students, either to act as a preparation for PhD studies or for students wishing to broaden their research experience and knowledge of chemistry within the context of the English language. Read more
This twelve month chemistry MSc is designed primarily for international students, either to act as a preparation for PhD studies or for students wishing to broaden their research experience and knowledge of chemistry within the context of the English language.

The programme consists of six taught modules, worth a total of 90 credits, delivered in the first six months of the course followed by a substantial research project, also worth 90 credits.

The modules will include both analytical and synthetic topics and a research project from a wide range of areas may be selected.

Aims

To provide students with essential skills in the characterisation of materials by spectroscopic, structural and analytical techniques. This will be achieved with reference to organic, organometallic and polymeric materials.

To give students an in-depth experience of chemical research through individual, extended Masters research projects.

To develop confidence in the use of English oral and written skills within a chemical context.

Read less
This course provides advanced training in modern organic and medicinal chemistry from conception to production of novel drugs. It enables you to understand and experience the way modern small molecule medicine is developing. Read more
This course provides advanced training in modern organic and medicinal chemistry from conception to production of novel drugs. It enables you to understand and experience the way modern small molecule medicine is developing. You will gain hands-on experience of working within a medicinal chemistry team during your research project.

The course is suitable if you have a background in the chemical or pharmaceutical sciences. It includes 120 credits of taught modules and a 60 credit practical project.

Themes include drug design, metabolism and toxicology with an understanding of synthetic organic chemistry. Building on University research strengths, specialist topics include bio-imaging and modern approaches to chemotherapy. You will develop expertise in drug design as practised in the pharmaceutical industry and in academia.

You will also gain knowledge of modern and experimental therapies developing in the Northern Institute for Cancer Research.

Delivery

The course is delivered through the School of Chemistry in collaboration with the Northern Institute of Cancer Research and the Faculty of Medical Sciences. The School will provide personal study support throughout your course.

Your work is in chemistry and biology laboratories using modern analytical equipment with access to computer clusters, specialist computer software, online resources, an extensive library and dedicated study areas. All teaching takes place at the university's campus in the centre of Newcastle upon Tyne.

Facilities

The School of Chemistry has modern teaching and research facilities along with major research strengths in drug and medicinal chemistry. Our new teaching laboratories, costing £1.9 million, have recently opened.

Read less
Medicinal and Biological Chemistry requires a thorough understanding of molecules, their structures, properties and synthesis, but it also demands the chemical understanding of the nature of biological structures, from macromolecules to cells, the design of pharmaceutical materials in the laboratory and their function in clinical settings. Read more

Medicinal and Biological Chemistry requires a thorough understanding of molecules, their structures, properties and synthesis, but it also demands the chemical understanding of the nature of biological structures, from macromolecules to cells, the design of pharmaceutical materials in the laboratory and their function in clinical settings.

The knowledge and skills acquired in the course will leave graduates well equipped to compete for positions related to 'drug discovery' in chemical, pharmaceutical or biotechnological companies.

The degree consists of advanced lecture courses in:

  • Synthetic Organic Chemistry
  • Chemical Biology
  • Medicinal Chemistry
  • Biophysical Chemistry

These are studied concurrently with a predominantly practical based course offering an introduction to research methods.

Students then proceed to a period of full-time research project work, leading to the submission of their Masters dissertation.

Programme structure

Lectures are given by leading researchers in the area of medicinal and biological chemistry.

The lecture courses are supported by tutorial sessions and assessed by examination in May.

The Introduction to Research Methods course includes an exciting problem solving exercise where you learn important skills such as Communicating Science, Innovation, Dealing with Intellectual Property and Grant Application Writing, together with a literature survey and written report, defining the scope of the subsequent individual research project work.

Learning outcomes

On completion of the course, students should have developed a depth of comprehension and critique in the core elements of their subject area, including:

  • critical analysis and management of data;
  • judging the relationship between theory and methodology;
  • assessment of the appropriate methods of data collection/analysis to address the research question;
  • assessment of relevance of previous studies;
  • critical thinking.

Additionally they will have enhanced their professional/practical skills through:

  • experience of research design and management;
  • advanced instrumentation or techniques;
  • production of scientific reports.

Students will also have the opportunity to develop transferable skills such as:

  • written, visual and oral delivery and dissemination of research findings;
  • interpersonal and communication skills;
  • computing proficiency;
  • organisation skills.

Career opportunities

Graduates are well suited to take up roles in the chemical and pharmaceutical industries, either in research and development or sales and marketing. You will gain valuable work experience in a real-life research environment.

Alternatively, a Masters degree is a precursor to a PhD degree.

Our courses teach students the valuable skills they need to also move into other areas outside chemistry. Careers in IT, management or finance are possibilities after completing your degree.



Read less
The Organic Chemistry. Drug Discovery MRes at UCL offers students the opportunity to follow an integrated course of research and interdisciplinary study. Read more
The Organic Chemistry: Drug Discovery MRes at UCL offers students the opportunity to follow an integrated course of research and interdisciplinary study. Students gain outstanding training in synthetic organic chemistry applied to drug design, together with a breadth of experience in several areas of synthetic methodology and chemical biology.

Degree information

The programme provides a thorough foundation in drug design, advanced organic synthesis and molecular modelling, together with modules on research techniques, professional development and entrepreneurship. Students will carry out a substantial research project on organic/medicinal chemistry or chemical biology over a ten-month period.

MRes students undertake modules to the value of 180 credits.

The programme consists of two modules from the Wolfson Institute for Biomedical Research (30 credits), one Master's level chemistry module (15 credits) two transferable/research skills modules (30 credits) and the research project (105 credits).

Core modules - students take 30 credits of transferable/research skills and submit a research dissertation (105 credits).
-Transferable/Research Skills
-Research Dissertation

Optional modules - students take 45 credits from the following options:
-Bioinformatics
-Target Identification
-Cheminformatics
-Biological Molecules
-Biophysical Screening
-Fragment Based Drug Design
-Target Selection (Scientific)
-Target Selection (Commercial)
-Principles of Drug Design
-Biological Chemistry
-Stereochemical Control in Asymmetric Synthesis
-Synthesis and Biosynthesis of Natural Products
-Organometallics and Catalysis
-Structural Methods in Modern Chemistry

Dissertation/report
Students will undertake a laboratory-based research project lasting ten months. An interim report is submitted after five months, and at the end of the project each student writes a dissertation, gives a short presentation and has a viva voce examination.

Teaching and learning
The programme is delivered through a combination of lectures, problem classes, workshops and projects. Assessment is through unseen written examination, coursework, project reports and presentations.

Careers

The MRes has been developed in response to the needs of the pharmaceutical and biotechnology sectors for highly qualified students as leaders in the discovery of new medicines. The pharmaceutical sector is a major employer in the UK and high-quality graduates with an understanding of the sector are always in demand. Our recent graduates have taken up PhD positions, are working in industry and have entered teacher training.

Top career destinations for this degree:
-PHD Chemical Biology, University College London (UCL)
-PhD Radiochemistry, University College London (UCL)

Why study this degree at UCL?

This programme is taught in collaboration with the Wolfson Institute of Biomedical Research (WIBR) which brings together scientists and clinicians from both academic and pharmaceutical industry backgrounds. The institute's strength is in its multidisciplinary approach to research, with the goal of identifying novel targets for drug development.

Read less
This specialisation involves studying the design and synthesis of complex molecular systems, and addressing challenging problems, such as wound healing and drug delivery. Read more

Master's specialisation in Chemistry for Life

This specialisation involves studying the design and synthesis of complex molecular systems, and addressing challenging problems, such as wound healing and drug delivery. At the interface of biology and chemistry you will get a solid foundation in modern synthetic organic chemistry, physical organic chemistry and chemical biology. This multidisciplinary knowledge is essential for industries of the future, where chemistry and the life sciences become more and more intertwined. As a Chemistry for Life Master's student you will obtain the knowledge and skills you need to develop the next generation of medicines.

Programme courses

The Master’s specialisation in Chemistry for Life is taught at the Faculty of Science. It has a course load of 120 EC* (two years). The track consists of:
- 15 EC of compulsory courses
- 15 EC of electives
- Two internships of in total total 90 EC

If you can handle the studyload and want to add another course to personalise your Master’s programme, you are certainly free to do so.

Societal Master's tracks

You can either follow the above-mentioned research Master's specialisation as a whole (2 years), or you can combine the first year of the research track with an additional year of one of three societal Master’s specialisations, namely:
- Science in Society
- Science, Management and Innovation
- Science and Education (in Dutch only)

* European Credit Transfer System (ECTS)
The workload of an academic year is equivalent to 60 European credits (EC), where 1 EC point is 28 hours of study. This system allows you to check whether the courses you have followed in a particular year (along with other activities that earn credits) meet the European requirements.

Proficiency in English

In order to take part in the programme, you need to have fluency in English, both written and spoken. Non-native speakers of English without a Dutch Bachelor’s degree or VWO diploma need one of the following:
- TOEFL score of ≥575 (paper based) or ≥90 (internet based);
- An IELTS score of ≥6.5;
- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE), with a mark of C or higher

Career prospects

Career perpectives of chemical biologists are very broad: our graduates work in the pharmaceutical, biotech and life sciences industries. High tech start-ups are also an option. There are numerous opportunities for PhD positions, including at the national Graduate School in Chemical Biology.
We stimulate our Master's students to develop a critical mind and a problem solving attitude. Some of them will become the next generation of top scientists, all of them will have a job within a few months after graduation:
- 40% become PhD students at a university
- 60% work at a research institute, in the (bio)chemical industry or in one of our spin-off companies
- A small proportion do not work in science but for instance as a policymaker at a governmental organisation.

Our research in this field

Teachers and researchers at Radboud University are very open and approachable for students, and the student-teacher ratio is low. The teachers also introduce you to their research: the knowledge from their lab is your course material. During your internships, you'll get to know them even better, as you'll become member of one of their research groups.

Research

Research internships can be performed at the Institute of Molecules and Materials (IMM), the Radboud Institute of Molecular Life Sciences (RIMLS), or other institutes and companies. Possible research subjects are:
- Drug delivery using nanocapsules
- Developing hydrogels for wound healing
- Designing new responsive biocompatible materials
- Unraveling the structure and function of proteins

See the website http://www.ru.nl/masters/chemistryforlife

Read less

Show 10 15 30 per page



Cookie Policy    X