• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of York Featured Masters Courses
University of Lincoln Featured Masters Courses
Cardiff University Featured Masters Courses
Coventry University Featured Masters Courses
Southampton Solent University Featured Masters Courses
Newcastle University Featured Masters Courses
"synthetic" AND "biology"…×
0 miles

Masters Degrees (Synthetic Biology)

  • "synthetic" AND "biology" ×
  • clear all
Showing 1 to 15 of 63
Order by 
This MRes programme aims to train students in the fast-growing area of synthetic bgiology, a discipline which takes the knowledge and understanding we now have of the individual parts of biological systems and uses them in a defined way to design and build novel artificial biological systems. Read more
This MRes programme aims to train students in the fast-growing area of synthetic bgiology, a discipline which takes the knowledge and understanding we now have of the individual parts of biological systems and uses them in a defined way to design and build novel artificial biological systems.

Degree information

Students develop an understanding of the areas making up synthetic biology, including engineering principles, mathematical modelling, molecular biology, biochemical engineering and chemistry. Modules also provide the necessary skills for acquisition and critical analysis of the primary scientific literature and transferrable research development skills. The programme includes a major research project that will give in-depth training in synthetic biology research methods.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (60 credits) and an extended research project (120 credits). There are no optional modules for this programme.

Core modules
-Synthetic Biology
-The Scientific Literature
-Biosciences Research Skills

Dissertation/report
All students undertake an independent laboratory-based extended research project which culminates in a dissertation of 15,000–18,000 words.

Teaching and learning
The programme is delivered through lectures, seminars and tutorials, combining research-led and skills based courses. The taught courses are assessed by assignments and coursework. The research project is assessed by an oral presentation, submission of a dissertation and is subject to oral examination.

Careers

Synthetic biology is a fast growing area of research and will have a major economic and social impact on the global economy in the coming decades. The involvement of engineers, physical scientists, chemists and biologists can create designed cells, enzymes and biological modules that can be combined in a defined manner. These could be used to make complex metabolic pathways for pharmaceuticals, novel hybrid biosensors or novel routes to biofuels. A future integration of biological devices and hybrid devices as components in the electronic industry might lead to a whole new high value industry for structured biological entities.

Top career destinations for this degree:
-Science Technician, King Richard's School
-Scientific consultant, Labcitec
-PhD Synthetic Biology, UCL
-PhD Biochemistry, University of Oxford
-PhD Bioenergy and Industrial Biotechnology, University of Cambridge

Employability
The Synthetic Biology MRes will qualify students to go on to work in the growing number of small companies engaged in synthetic biology both here in London and across the UK and the world. There are many large companies that are building their own synthetic biology potential and some of students are already working with these groups. Our students often go on to do further research in PhDs and EngDs globally. Our graduates have practical experience in unique facilities of generating novel research that makes them of great value to employers and collaborators.

Why study this degree at UCL?

UCL is recognised as one of the world's best research environments within the field of biochemical engineering and synthetic biology as well as biological and biomedical science.

UCL Biochemical Engineering is in a unique position to offer tuition and research opportunities in internationally recognised laboratories and an appreciation of the multidisciplinary nature of synthetic biology research.

Students on this new MRes programme undertake a major research project where topics can be chosen spanning the expertise in six departments across UCL.

Read less
This academically challenging and career-developing programme focuses on research and development using biological and chemical principles and systems to create new products, services and industries. Read more

Programme description

This academically challenging and career-developing programme focuses on research and development using biological and chemical principles and systems to create new products, services and industries.

You will employ elements of the developing field of synthetic biology to bring about significant changes and major innovations that address the challenges of rapidly changing human demographics, resource shortages, energy economy transition and the concomitant growth in demand for more and healthier food, sustainable fuel cycles, and a cleaner environment.

Programme structure

You will learn through a variety of activities, including:

lectures
workshops
presentations
laboratory work
field work
tutorials
seminars
discussion groups and project groups
problem-based learning activities

You will attend problem-based tutorial sessions and one-to-one meetings with your personal tutor or programme director.

You will carry out research at the frontier of knowledge and can make a genuine contribution to the progress of original research. This involves carrying out project work in a research laboratory, reviewing relevant papers, analysing data, writing reports and giving presentations.

Compulsory courses:

Applications of Synthetic Biology
Tools for Synthetic Biology
Social Dimensions of Systems & Synthetic Biology
Environmental Gene Mining & Metagenomics
Research Project Proposal
MSc Project and Dissertation

Option courses:

BioBusiness
Biochemistry
Bioinformatics
Bioinformatics Programming & System Management
Biological Physics
Biophysical Chemistry
Commercial Aspects of Drug Discovery
Data Mining & Exploration
Drug Discovery
Economics & Innovation in the Biotechnology Industry
Enzymology & Biological Production
Functional Genomic Technologies
Gene Expression & Microbial Regulation
Industry & Entrepreneurship in the Biotechnology Industry
Information Processing in Biological Cells
Intelligent Agriculture
Introduction to Scientific Programming
Molecular Modelling & Database Mining
Next Generation Genomics
Machine Learning & Pattern Recognition
Practical Skills in Biochemistry
Practical Systems Biology
Principles of Industrial Biotechnology
Stem Cells & Regenerative Medicine

Learning outcomes

By the end of the programme you will have gained:

a strong background knowledge in the fields underlying synthetic biology and biotechnology
an understanding of the limitations and public concerns regarding the nascent field of synthetic biology including a thorough examination of the philosophical, legal, ethical and social issues surrounding the area
the ability to approach the technology transfer problem equipped with the skills to analyse the problem in scientific and practical terms
an understanding of how biotechnology relates to real-world biological problems
the ability to conduct practical experimentation in synthetic biology and biotechnology
the ability to think about the future development of research, technology, its implementation and its implications
a broad understanding of research responsibility including the requirement for rigorous and robust testing of theories and the need for honesty and integrity in experimental reporting and reviewing

Career opportunities

You will enhance your career prospects by acquiring current, marketable knowledge and developing advanced analytical and presentational skills, within the social and intellectual sphere of a leading European university.

The School of Biological Sciences offers a research-rich environment in which you can develop as a scientist and entrepreneur.

Read less
We offer an opportunity to train in one of the newest areas of biology. the application of engineering principles to the understanding and design of biological networks. Read more

Programme description

We offer an opportunity to train in one of the newest areas of biology: the application of engineering principles to the understanding and design of biological networks. This new approach promises solutions to some of today’s most pressing challenges in environmental protection, human health and energy production.

This MSc will provide you with a thorough knowledge of the primary design principles and biotechnology tools being developed in systems and synthetic biology, ranging from understanding genome-wide data to designing and synthesising BioBricks.

You will learn quantitative methods of modelling and data analysis to inform and design new hypotheses based on experimental data. The University’s new centre, SynthSys, is a hub for world-leading research in both systems and synthetic biology.

Programme structure

The programme consists of two semesters of taught courses followed by a research project and dissertation, which can be either modelling-based or laboratory-based.

Compulsory courses:

Applications of Synthetic Biology
Dissertation project
Information Processing in Biological Cells
Practical Systems Biology
Social Dimensions of Systems and Synthetic Biology
Tools for Synthetic Biology

Option courses:

Biobusiness
Biochemistry
Bioinformatics Algorithms
Bioinformatics Programming & System Management
Biological Physics
Computational Cognitive Neuroscience
Drug Discovery
Economics & Innovation in the Biotechnology Industry
Environmental Gene Mining & Metagenomics
Functional Genomic Technologies
Gene Expression & Microbial Regulation
Industry & Entrepreneurship in Biotechnology
Introduction to Scientific Programming
Molecular Phylogenetics
Neural Computation
Next Generation Genomics
Practical Skills in Biochemistry
Probabilistic Modelling and Reasoning
Statistics and Data Analysis
Stem Cells & Regenerative Medicine

Career opportunities

The programme is designed to give you a good basis for managerial or technical roles in the pharmaceutical and biotech industries. It will also prepare you for entry into a PhD programme.

Read less
This course provides you with a balance of molecular biology, engineering, computing and modelling skills necessary for a career in synthetic biology. Read more

Course Overview

This course provides you with a balance of molecular biology, engineering, computing and modelling skills necessary for a career in synthetic biology. Computational design of biological systems is important as the field of synthetic biology grows. This allows the construction of complex and large biological systems.

While laboratory approaches to engineering biological systems are a major focus, the course specialises in computational design. This provides you with essential computing and engineering skills to allow you to develop software to program biological systems.

Our course is designed for students from both biological and computational backgrounds. Prior experience with computers or computer programming is not required. Students with mathematical, engineering or other scientific backgrounds are also welcome to apply. It is ideal if you are aiming for careers in industry or academia.

We provide a unique, multidisciplinary experience that is essential for understanding synthetic biology. The programme draws together the highly-rated teaching and research expertise of our Schools of Computing Science, Mathematics and Statistics, and Biology, as well as the Medical Faculty and the Institute of Human Genetics.

Modules

For detailed module information see http://www.ncl.ac.uk/postgraduate/courses/degrees/synthetic-biology-msc/#modules

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/synthetic-biology-msc/#howtoapply

Read less
The course provides graduate students from the life sciences, engineering and physical sciences with a platform to overcome traditional barriers and collaboratively work on the ‘big problems’ and applications in synthetic and systems biology. Read more
The course provides graduate students from the life sciences, engineering and physical sciences with a platform to overcome traditional barriers and collaboratively work on the ‘big problems’ and applications in synthetic and systems biology.

Students gain intensive hands-on experience in a combination of experimental biology and modelling to understand, predict and redesign biological pathways.

There is a link with the BIOS Centre at King’s College to facilitate the integration of this research with emerging ethical, legal and societal issues.

Read less
How can biological processes and organisms be used in the development of new technologies? Biotechnology enables us to improve practices in diverse fields including genetics, agriculture, bioremediation, immunology, diagnostics, energy production, and age-assisted living. Read more
How can biological processes and organisms be used in the development of new technologies? Biotechnology enables us to improve practices in diverse fields including genetics, agriculture, bioremediation, immunology, diagnostics, energy production, and age-assisted living.

Our course provides you with knowledge, understanding and hands-on experience in modern biotechnology, and with practical insights into current commercial applications. It creates access to a broad range of career opportunities in this rapidly growing key technology.

You will learn about and appraise the approaches that can be used to address the challenges facing our planet, including:
-The development of biofuels, pharmaceuticals and crops to support and feed the growing human population
-Industrial, plant and medical biotechnology
-Gene and protein technology
-Synthetic biology
-Bioinformatics

The course has a very high proportion of practical work that provides valuable experience for your career, and in addition to this, our optional module Creating and Growing a New Business Venture challenges you to think creatively. This increases your value to organisations, including small enterprises, which are a growing part of the biotechnology sector.

Your research project is a major component of this course, for which you perform novel laboratory and/or bioinformatic research in one of our academic laboratories, or (subject to approval) carry out research in an industrial or hospital setting.

Two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you learn from and work alongside our expert staff.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high quality teaching. You benefit from our academics’ wide range of expertise and research on important national and international problems using cutting-edge techniques.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology, and imaging biological systems. On our course you have the opportunity to:
-Work in an open and friendly department, with shared staff-student social spaces
-Conduct your research alongside leading academics and PhD students in shared labs
-Learn to use state-of-the-art equipment

Your future

Our graduates are well placed to find employment in the ever-growing bio-based economy, and postgraduate study is often a requirement for becoming a researcher, scientist, academic journal editor and to work in some public bodies or private companies.

Many of our Masters students progress to study for their PhD, and we offer numerous studentships to support our students in their studies.

We work with our university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

Postgraduate study is the chance to take your education to the next level. The combination of compulsory and optional modules means our courses help you develop extensive knowledge in your chosen discipline, whilst providing plenty of freedom to pursue your own interests. Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field, therefore to ensure your course is as relevant and up-to-date as possible your core module structure may be subject to change.

Biotechnology - MSc
-Research Project: MSc Biotechnology
-Protein Technologies
-Gene Technology and Synthetic Biology
-Genomics
-Professional Skills and the Business of Biotechnology
-Creating and Growing a New Business Venture (optional)
-Industrial Biotechnology: Enzymes, Biochemicals and Biomaterials (optional)
-Molecular Medicine and Biotechnology (optional)
-Plant Biotechnology (optional)
-Rational Drug Design (optional)

Read less
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Read more
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Combining contemporary medical studies with biochemistry and molecular biology, this rapidly advancing area creates a bridge between the subjects, and draws on other fields such as physics, chemistry, biology and medicine.

This course examines how normal cellular processes are affected by disease. You gain an understanding of the core foundations of molecular medicine, studying the topics most relevant to the real world, and how this science may be used in the prevention, diagnosis, and treatment of diseases.

You learn about and appraise the approaches that can be used to address global health problems, including cancer as well as genetic and infectious diseases. The foundations that support investigations of molecular disease mechanisms and the search for new diagnostic tools and treatments will be laid, as you explore topics including:
-Gene and protein technology.
-Synthetic biology
-Bioinformatics
-Genomics

This course has a very high proportion of practical and bioinformatic work that provides valuable experience for your career. This includes our optional module Creating and Growing a New Business Venture, which challenges you to think creatively and increases your value to organisations, including small enterprises, which are a growing part of the biopharmaceutical sector.

Your research project is a major component of your course, in which you perform novel laboratory and/or bioinformatic research in one of our academic laboratories or (subject to approval) carry out research in an industrial or hospital setting.

Two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you learn from and work alongside our expert staff.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high quality teaching. You benefit from our academics’ wide range of expertise and research on important national and international problems using cutting-edge techniques.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Work in an open and friendly department, with shared staff-student social spaces
-Conduct your research alongside academics and PhD students in shared labs
-Learn to use state-of-the-art research facilities, from protein purification, to cell culture and imaging, to molecular modelling

Your future

Contribute to a growing industry and gain the skills and knowledge to pursue a career in biomedical research and industry, or continue your studies further in postgraduate science and medical degrees.

Advances in molecular medicine will continue to drive growth of new services and products in health care, biomedical and pharmaceutical organisations and companies, and our graduates are well placed to take advantage of employment opportunities in the life science, biotech and pharmaceutical industries and hospitals.

Many of our Masters students progress to study for their PhD, and we offer numerous studentships to support our students in their studies.

We work with our university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Research Project: MSc Molecular Medicine
-Protein Technologies
-Gene Technology and Synthetic Biology
-Professional Skills and the Business of Molecular Medicine
-Molecular Medicine and Biotechnology
-Genomics
-Advanced Medical Microbiology (optional)
-Human Molecular Genetics (optional)
-Cancer Biology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)
-Molecular and Developmental Immunology (optional)
-Cell Signalling (optional)
-Mechanisms of Neurological Disease (optional)

Read less
This Masters in Biotechnology programme provides you with an advanced practical knowledge of biotechnology and molecular genetic technologies underpinning modern biotechnology and how they can be applied to solve real world problems. Read more
This Masters in Biotechnology programme provides you with an advanced practical knowledge of biotechnology and molecular genetic technologies underpinning modern biotechnology and how they can be applied to solve real world problems. The programme offers training in a broad range of topics including; environmental biotechnology, synthetic biology, plant engineering, stem cell therapies and vaccine development.

Why this programme

-If you wish to improve your knowledge of modern molecular, biochemical, cell biological and genetic techniques for biotechnological applications, this programme is designed for you.
-You will gain a sound understanding of the nature of business based on bioscience knowledge and research, their opportunities for innovation and regulatory requirement constraints, intellectual property and ethical issues.
-We have exciting scholarship opportunities.
-You will learn how to assess the current literature, be encouraged to form opinions based on scientific merit, and implement these ideas in future research planning.
-You will be taught by experts in the field of Biotechnology who run active, internationally recognised, research groups here at Glasgow.
-The course involves extensive interaction with industry, through site visits, guest lectures and an "Industrial Networking Symposium" where representatives from the European biotechnology and pharmaceutical industry will discuss their companies and answer your questions on working in the industrial sector.
-This course has a strong laboratory component, with courses that run throughout the year, giving you hands on experience of diverse biotechnological research skills.
-The flexible independent research project provides valuable training for students wishing to proceed to a Ph.D. or into an industrial career; this may also be completed as a business based project.
-Additional programme components include industrial networking sessions and a dedicated career workshop on progression planning.
-Our Masters in Biotechnology provides an advanced practical knowledge of how research and industry are being applied to solve real world problems.

Programme structure

The programme is made up of five teaching modules and a dissertation project. Each module explores different aspects of Biotechnology. The dissertation allows you to specialise the degree through a chosen field of research. You will undertake this project with the support and guidance of your chosen academic expert.

The aims of the course are:
-To enable students to study a wide range of biotechnology topics in depth;
-Allow students to benefit from leading-edge research-led teaching;
-To enhance students' conceptual, analytical and generic skills and to apply them to biotechnology problems;
-To prepare students for leading positions in the biotechnology industry or entry into PhD programmes.

Core and optional courses

-Molecular Biotechnology Lab Skills
-Industrial and Environmental Microbiology
-Biotechnology Business Skills
-Current Technologies in Biotechnology
-Omics Technologies
-Synthetic Biology
-Biotechnology Research Project

Career prospects

This programme will prepare you for a career in the pharmaceutical or biotechnology industrial sectors or for entry into PhD programmes.

Read less
Biophysics provides structural and mechanistic insights into the biological world and uses this knowledge to create solutions for major global problems, such as food production, climate change, environmental damage and drug production. Read more
Biophysics provides structural and mechanistic insights into the biological world and uses this knowledge to create solutions for major global problems, such as food production, climate change, environmental damage and drug production. It spans the distance between the vast complexity of biological systems and the relative simplicity of the physical laws that govern the universe.

Our Biophysics and Molecular Life Sciences MSc provides interdisciplinary training by bringing together concepts from chemistry, physics and the life sciences. It is taught by staff actively pursuing research in these areas and from members of BrisSynBio, a flagship centre for synthetic biology research in the UK.

The programme gives you an opportunity to gain knowledge and practical experience by studying molecular interactions and mechanisms at the level of the cell to the single molecule. Topics for study include molecular structure determination, dynamic molecular mechanisms, molecular simulation, molecular design and single-molecule technologies. You can also choose an additional unit that reflects your personal interests, allowing you to broaden your knowledge of biomedical subjects whilst focusing on biophysics. You will also learn about the commercialisation of research outcomes, including intellectual property, setting up a business, getting investment, marketing and legal issues.

Graduates from this programme will be well-prepared for a PhD programme in biophysics or related fields. Additionally, the numerical, problem-solving, research and communication skills gained on this programme are highly desired by employers in a variety of industries.

Robust evidence is the cornerstone of science and on this programme you will gain research experience in laboratories equipped with state-of-the-art equipment, including atomic force and electron microscopy, biological and chemical NMR, x-ray crystallography and mass spectrometry.

Your learning will be supported throughout the programme in regular, small-group tutorials.

Programme structure

Core units
Biophysics and Molecular Life Sciences I
-The unit begins with a short series of lectures that introduce the general area of molecular life sciences for the non-specialist. The remaining lectures cover a variety of molecular spectroscopies, molecular structure determination, an introduction to systems approaches using proteomics, and the mechanistic characterisation of biomolecules using a variety of biophysical techniques.

Biophysics and Molecular Life Sciences II
-The unit describes highly specialised techniques at the interface of physics, chemistry and the life sciences. This includes techniques for studying biomolecules at the level of a single-molecule, synthetic biology, bioinformatics and molecular simulations.

Core Skills
-A series of practical classes, lecture-based teaching sessions, and tutorials that prepare you for the practical project, provide a foundation for further studies and develop a range of transferable skills.

Literary Project
-An extended essay on a subject chosen from an extensive list covering the topics described above. You work independently under the guidance of a member of staff.

Project Proposal and Research Project
-You work independently under the guidance of a member of staff to produce a written project proposal. This is followed by a 12-week research project investigating your chosen topic. The research project forms the basis for a dissertation.

Lecture-based option
You will study one lecture-based unit from:
-Cancer Biology
-Cardiovascular Research
-The Dynamic Cell
-Infection, Immunology and Immunity
-Neuroscience
-Pharmacology

Careers

Typically, biophysics careers are laboratory-based, conducting original research within academia, a government agency or private industry, although the transferable skills gained on the course are ideal for many other careers outside of science, including business and finance.

Read less
The Interdisciplinary Approaches in Life Sciences (AIV) Master (M.Sc) of Paris Diderot and Descartes universities is an interdisciplinary two- year program tackling quantitative approaches on different interfaces with Life Sciences. Read more
The Interdisciplinary Approaches in Life Sciences (AIV) Master (M.Sc) of Paris Diderot and Descartes universities is an interdisciplinary two- year program tackling quantitative approaches on different interfaces with Life Sciences. It aims at training creative and talented students to develop their research in an environment as enriching as the best world graduate programs. The program is based on learning through research pedagogy – rich with research internships and collaborative projects. The program is funded by the Bettencourt Schueller Foundation.

The 1st year of the AIV Master is the first in France to teach systems biology and synthetic biology. The training is focused at the interface of life sciences and physics, mathematics and computer science. Apart from systems and synthetic biology, students discover methods of mathematical modelling, statistical analysis and as well state-of-the-art technologies (fluorescence microscopy, nano-fabrication, molecular forces measurements, etc.) used to quantify the properties of living systems. They also gain skills in scientific communication and may want to participate in external modules to acquire or strengthen a specific knowledge.

During the second year students deepen their knowledge of life sciences, develop their ability to critically analyze scientific works and discover the Research world. The M2 curriculum is devoted to research, through three internships, with at least one theoretical internship and one experimental internship. For those willing to pursue in a PhD program, the last semester will give them the opportunity to prepare a thesis project.

Students can follow the second year from the master’s first year program or apply directly, having fulfilled previously an equivalent of 4 years post-high school education, including at least one internship in a research settings.

AIV Master Program

Each AIV year class brings it’s novel mix of biologists, computer scientists, physicists and engineers. This diversity in academic paths is an exceptional opportunity for students to discover the power and efficiency of collaborative and mutual teaching and learning.

We encourage creativity, original projects and ideas. So, students are urged to interact with the teaching staff, with the other students, to participate to extra curriculum activities such as the CRI scientific clubs. Students can also organize events, create or participate to scientific clubs, invite researchers to attend to the Friday sessions or give a talk, etc… Being involved, sharing your knowledge and expertise is the best way of spending a very fruitful year with us.

AIV first year - http://cri-paris.org/master-aiv/aiv-general-program/

AIV second year - http://cri-paris.org/master-aiv/aiv-general-program/

Guidelines -

There is a lot of diversity in this Master, but for this to work we have to share several common values and adopt a few rules. Let’s list some of them.

1. Students have priority to express themselves during the class.

2. Discussions should remain at all time argumentative and, needless to say polite. The important point here is that it is not useful to say that you disagree with one idea. What’s useful is to explain why you disagree and if possible to propose your own reflexion and idea on the topic.

3. Be proactive in class. There’s no point for you to attend the Friday sessions if you do not try to participate to the discussion. We know it’s difficult to ask questions, but it is worth trying again and again. As a rule of thumb, if you don’t understand something, just ask !

4. Come prepared. Read the article or the reviews that are being presented several times and earlier than on Friday morning. Participate to the Moodle, engage in discussion before and during the sessions.

5. Be on time and respect deadlines. You have to meet the deadlines so that everyone can prepare before the Friday session. This is true for both the students that will present and for those that will listen to them. Sending a post the day before is not relevant and does not help. If you think you cannot meet the deadlines, let us know as soon as possible.

6. Students have a lot of autonomy, and we encourage a level of independency. This does not mean that you are alone in your study endeavours, teachers can always be contacted in times of need.

7. Respect the work of your fellow students. At several occasion you will have a choice between finishing your experiments in the lab and attending the presentation made by two of your co-students. The priority should be given to the Master. At all times. It’s up to you to organize your schedule so that all Friday afternoons are free. During internships defense, you are all expected to attend at all time, and not only for your talk, which is very disrespectful for your colleagues.

That being said, everything is possible providing that you discuss with us in advance. Also and importantly, we encourage creativity. You can organize events, create or participate to scientific clubs, invite researchers to attend to the Friday sessions or to give a talk, etc… Be involved, share your knowledge and you will spend a very interesting year with us.

Admission

Each class is composed of up to thirty students with a high level background in one of the following disciplines: mathematics, physics, computer sciences, chemistry, biology, medicine, cognitive sciences, philosophy, sociology, or history of science.

Selection -

The selection is based on proven interest in interdisciplinarity, previous record and an interview.

If you have any questions, do not hesitate to contact us by email: , or call us on + 33 1 76 53 11 25.

FREQUENTLY ASKED QUESTIONS

http://cri-paris.org/master-aiv/faq/

People

http://cri-paris.org/master-aiv/people/

Read less
Do you want to unravel the fundamental processes in living cells? Do you want to understand 'life' at a molecular level? Do you want to explore applications based on basic molecular research?. Read more
Do you want to unravel the fundamental processes in living cells? Do you want to understand 'life' at a molecular level? Do you want to explore applications based on basic molecular research?

Molecular Biology and Biotechnology are internationally oriented research and business areas that profit from a strong multidisciplinary knowledge on structural biology, biochemistry, molecular cell biology, genetics, microbiology and systems biology. During this programme, you acquire in-depth knowledge and skills via upperlevel theoretical and practical training. You become highly competent in the field of Molecular Biology and Biotechnology, with excellent perspectives for an independent career in an academic or industrial research environment.

The programme is mainly organized by the Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and is closely related to research institute. Research is fundamental and curiosity-driven and contains specialisation in the following areas:
- Molecular Systems Biology
- Molecular Cell Biology of Complex Biological Processes
- Membrane Proteins
- Structure-function Relationships of Proteins
- Microbial Biotechnology and Biocatalysis
- Chemical and Synthetic Biology

Why in Groningen?

- Connected to research institute GBB, which maintains a strong international reputation and covers the field of systems, chemical, and synthetic biology
- Internationally oriented research and business area
- Excellent MSc students from Molecular Biology & Biotechnology may apply during their first year for the selective Top programme Biomolecular Sciences

Job perspectives

Biomolecular scientists, graduates of the Master's degree programme in Molecular Biology and Biotechnology, can pursue a career in:
- PhD in the areas of Biomolecular Sciences, Life Science, Biochemistry, Biomedical Sciences, and Bio(nano-)technology
- R&D position within Life Sciences Industry
- Scientific Advisor within a company

Read less
The Top Programme Biomolecular Sciences is part of the Master's degree programme in Molecular Biology and Biotechnology and will educate you at an advanced level. Read more
The Top Programme Biomolecular Sciences is part of the Master's degree programme in Molecular Biology and Biotechnology and will educate you at an advanced level.

The Top Programme in the MSc Molecular Biology & Biotechnology prepares you for conducting top quality research in the field of Molecular Biology and Biotechnology. The research you will be engaged in during the programme is closely connected to the Groningen Biomolecular Sciences and Biotechnology Institute (GBB), This research institute has an international reputation within the covering field of synthetic biology.

During this programme you get the chance to contribute on biobased solutions for societal challenges in chemistry, energy, and health. You will acquire top quality research competences and become highly attractive for a research career in the area of Biomolecular Sciences. Your career will either start with a PhD research or at an R&D institution.

One semester of comprehensive courses must be successfully completed in order to receive the special annotation of the Top Programme on the diploma supplement for Molecular Biology and Biotechnology. Admission is highly selective.

Why in Groningen?

- Highly selective study programme with emphasis on research.
- Prepares you for conducting top quality research in the field of molecular biology and biotechnology.
- Connected to the research institute GBB, which has a strong international reputation and also covers the field of systems, chemical, and of synthetic biology.

Job perspectives

When you have finished the Top Programme in Biomolecular Sciences, you have excellent opportunities to continue your academic career via a subsequent PhD study. Various Top programme students even received offers for PhD positions during their Master's research projects.

You will also have an excellent background to obtain a position in R&D laboratories in Life Sciences industries.

Job examples

- PhD research position
- R&D position in Applied Sciences institutions or Life Sciences industries

Read less
Biochemical Engineering concerns the use of biological organisms or processes by manufacturing industries. Read more
Biochemical Engineering concerns the use of biological organisms or processes by manufacturing industries. It is a multidisciplinary subject, requiring the integration of engineering and bioscience knowledge to design and implement processes used to manufacture a wide range of products; from novel therapeutics such as monoclonal antibodies for treating cancer, vaccines and hormones, to new environmentally-friendly biofuels. It is also essential in many other fields, such as the safe manufacture of food and drink and the removal of toxic compounds from the environment..

This course will provide you with the skills you need to start an exciting career in the bioprocess industries, or continue research in the area of bioprocessing or industrial biotechnology.

Industry involvement

As this is a highly industrially-led subject area, we have secured guest lectures from Cobra Biologics (contract manufacturing), Biocats Ltd (Enzyme manufacture) and the Centre for Process Innovation Ltd (biological process development) and are currently seeking additional industrial lectures.

Academics working at Birmingham have strong links with industry, through collaborative projects, so allow students to make contact with companies. Graduates from the MSc programme have gone on to careers in biochemical engineering world-wide, in large and small companies working in diverse areas.

There are also guest lectures from academics working at other institutions.

Practical experience

You will gain practical experience of working with industrially applicable systems, from fermentation at laboratory scale to 100 litre pilot scale, in the Biochemical Engineering laboratories. Theory learned in lectures will be applied in practical terms. In addition, theoretical aspects will be applied in design case studies in a number of modules, including the Design Project.

All MSc students complete a summer research project, working on a piece of individual, novel research within one of the research groups in the school. These projects provide an ideal experience of life as a researcher, from design of experimental work, practical generation of data, analysis and communication of findings. Many students find this experience very useful in choosing the next steps in their career.

Special Features

The lecture courses are supplemented with tutorials, seminars and experimental work. Industrial visits and talks by speakers from industrial and service organisations are also included in the course programme.

Pilot Plant

The Biochemical Engineering building houses a pilot plant with large-scale fermentation and downstream processing equipment. The newly-refurbished facility includes state-of-the-art computer-controlled bioreactors, downstream processing equipment and analytical instruments.

Course structure

The MSc is a 12-month full-time advanced course, comprising lectures, laboratory work, short experimental projects and a research project. You will take an introductory module, four core modules, and then choose 50 credits of optional themed modules. The course can also be taken on a part-time basis. The Postgraduate Diploma (PGDip) lasts for 8 months from the end of September until June.

For the first eight months you have lectures, tutorials and laboratory work. Core module topics include:

Fermentation and cell culture
Bioseparations
Process monitoring and control
Systems and synthetic biology approaches
Optional module include:

Biopharmaceutical development and manufacture
Food processing
Business skills for the process industries
The programme is strongly design-orientatedand you complete a full process plant design exercise. You also have practical experience of working in the newly-refurbished pilot plant of the Biochemical Engineering building.

From June to September you gain research training on your own project attached to one of the teams working in the bioprocessing research section.

About the School of Chemical Engineering

Birmingham has one of the largest concentrations of Chemical Engineering expertise in the UK, with an excellent reputation in learning, teaching and research.
Investment totalling over £3.5 million in our buildings has resulted in some of the best teaching, computing and laboratory facilities anywhere in the UK.
We have achieved an excellent performance in the Research Excellence Framework (REF) – the system for assessing the quality of research in UK higher education institutions. 87% of the research in the School was rated as world-leading or internationally excellent. It was ranked joint fourth overall in the UK for its research prowess and first nationally for research impact.
The enthusiasm that the academic staff have for their research comes through in their teaching and ensures that they and you are at the cutting edge of chemical engineering.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The rapid transformation in the nature of drug discovery means that knowledge of related disciplines, and the technologies used, is essential for those considering a career in commercial or academic research. Read more

Programme description

The rapid transformation in the nature of drug discovery means that knowledge of related disciplines, and the technologies used, is essential for those considering a career in commercial or academic research.

This MSc will help you explore the latest methods of developing drugs and therapeutic compounds for humans and animals and disease control agents for plants.

You will learn about marketing, licensing and regulations, which are all part of the development process. Our multidisciplinary approach links structural biology, bioinformatics, chemistry and pharmacology.

You will investigate the fundamental scientific problems and techniques of drug discovery and design, alongside the challenges of developing principles for new therapeutic strategies.

You will have hands-on experience of crystallographic computer programming and computation for bioinformatics.

You will consider the moral and ethical aspects of the agrochemical and pharmaceutical industries through case studies, seminars and discussions.

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Compulsory courses:

Applicable Mathematics
Commercial Aspects of Drug Discovery
Drug Discovery
Molecular Modelling and Database Mining
Protein Structure Determination
Project Proposal and Literature Review
Preparative Methods for Structural Biology
Quantitating Drug Binding


Optional courses:

Biobusiness
Biochemistry
Bioinformatics 1
Bioinformatics 2
Bioinformatics Algorithms
Bioinformatics Programming & System Management
Biophysical Chemistry for MSc Biochemistry
Chemical Medicine
Detailed Characterisation of Drug or Ligand Interactions Using Surface Plasmon Resonance (SPR)
Functional Genomic Technologies
Information Processing in Biological Cells
Introduction to Scientific Programming
Introduction to Website and Database Design for Drug Discovery
Practical Skills in Biochemistry
Tools for Synthetic Biology

Career opportunities

This MSc is designed to help you pursue a career in the pharmaceutical industry or relevant government agencies, and it will provide a good background for managerial or technical roles in research, design and development. It is also a solid basis from which to continue your studies to PhD level.

Read less
Accredited by the the Institution of Chemical Engineers. Develop the essential skills for a career in bioindustry or for further advanced research in next-horizon biotechnologies. Read more

About the course

Accredited by the the Institution of Chemical Engineers

Develop the essential skills for a career in bioindustry or for further advanced research in next-horizon biotechnologies. You’ll learn from world-class researchers, including staff from Biomedical Science and Materials Science and Engineering. Our graduates work in biotechnology, biopharmaceutical and bioprocess organisations.

Take advantage of our expertise

Our teaching is grounded in specialist research expertise. Our reputation for innovation secures funding from industry,
UK research councils, the government and the EU. Industry partners, large and small, benefit from our groundbreaking work addressing global challenges.

You’ll have access to top facilities, including modern social spaces, purpose-built labs, the Harpur Hill Research Station for large-scale work, extensive computing facilities and a modern applied science library. There are high-quality research facilities for sustainable energy processes, safety and risk engineering, carbon capture and utilisation, and biological processes and biomanufacturing.

Studentships

Contact us for current information on available scholarships.

Course content

Four core modules including research project, a conversion module, and three optional modules.

Core modules

Biopharmaceutical Bioprocessing
Biosystems Engineering and Computational Biology
Bioanalytical Techniques
Research Project

Examples of optional modules

Any three from:

Microfluidics
Bio-energy
Synthetic Biology
Tissue Engineering Approaches to Failure in Living Systems
Bionanomaterials
Stem Cell Biology
Proteomics and Bioinformatics

Conversion modules:

Principles in Biochemical Engineering or
Principles in Biomolecular Sciences.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X