• University of Bristol Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
University of London International Programmes Featured Masters Courses
University of Sheffield Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Staffordshire University Featured Masters Courses
University of Leeds Featured Masters Courses
"synthesis"×
0 miles

Masters Degrees (Synthesis)

We have 536 Masters Degrees (Synthesis)

  • "synthesis" ×
  • clear all
Showing 1 to 15 of 536
Order by 
This master's degree provides students with in-depth theoretical knowledge of the field and new techniques in product synthesis, catalyst development, management of environment-friendly chemical processes, and computational design. Read more
This master's degree provides students with in-depth theoretical knowledge of the field and new techniques in product synthesis, catalyst development, management of environment-friendly chemical processes, and computational design. It is primarily research-oriented, so graduates will be able to undertake research, development and innovation in industry. The general objectives are the following:
i) To provide high-level scientific training in the fields of: molecular synthesis, catalysis and design, so that graduates can undertake doctoral studies and pursue a scientific or academic career.
ii) To provide graduates with a capacity for innovation and the necessary skills to synthesise sustainable chemical products and processes in the professional world.

The aims of the courseg are the following:
-To enable students to use synthetic methodologies and design ways of obtaining new products with the tools of computational chemistry.
-To familiarise students with modern techniques for characterising molecular compounds, surfaces and solids.
-To provide tools for understanding the most advanced principles and applications of catalysis.
-To train students to design chemical processes on a laboratory or industrial scale through channels that meet the standards of sustainability and environmental friendliness.
-To provide students who wish to undertake doctoral studies with more advanced, specific knlowledge relevant to their research: synthesis, catalysis or modelling.

Student Profile

This master's degree is designed for students who have an official university degree in chemistry, chemical engineering or a related science.

Career Opportunities

The University Master's degree in Synthesis, Catalysis and Molecular Design is primarily research-oriented but is suitable for students who wish to pursue a career in the manufacturing sector. It provides the following career opportunities:
-Doctoral studies.
-Leading sectors of production that have interdisciplinary research groups. The spectrum is broad, as most industrial processes require catalysts. However, the sectors with which the master's degree is most involved are fine chemicals in general: synthesis of intermediates, pharmaceutical chemistry, agricultural chemistry, plant protection products and synthesis of polymers and smart materials. Graduates will be able to design and develop new products and processes in chemical companies in general.

Read less
The Master’s programme Organic Synthesis and Medicinal Chemistry provides knowledge on the design, synthesis and evaluation of low-weight organic substances. Read more

The Master’s programme Organic Synthesis and Medicinal Chemistry provides knowledge on the design, synthesis and evaluation of low-weight organic substances. It also covers protein chemistry and biomolecular design, preparing you for a career in the pharmaceutical industry.

Biologically active substances with low molecular weight represent the core of life-science research. Knowledge of molecular structures and their properties are crucial to our understanding of vast scientific areas, from pharmaceutically active compounds in designer drugs to organic electronics and their incorporation into diagnostic tools such as biosensors. Our research facilities are well equipped with all the necessary analytical and diagnostic tools found in industrial research facilities, which will advance your practical capabilities.

Organic and medicinal chemistry

This master’s programme aims to provide students with knowledge on the design, synthesis and evaluation of low molecular weight biologically active organic substances. The programme begins with courses in organic chemistry and organic synthesis, building from the basic concepts to the advanced level, followed by an introduction in medicinal chemistry and pharmaceutical technology. It also covers protein chemistry and biomolecular design, which broadens your knowledge in the field of bio-organic chemistry. A key part of the programme is a one-year degree project, undertaken either in a research group at LiU or in industry.



Read less
If you have successfully graduated with a B.Sc. degree in Chemistry or Biochemistry and wish to expand your knowledge of the molecular sciences, then the two-year elite M.Sc. Read more

The program

If you have successfully graduated with a B.Sc. degree in Chemistry or Biochemistry and wish to expand your knowledge of the molecular sciences, then the two-year elite M.Sc. „Advanced Synthesis & Catalysis“ (SynCat) of the Network of Excellence Bavaria at the University of Regensburg will be the perfect match. The thematically focused curriculum taught in English offers tailored training courses, intensive seminars, research lab rotations, technical English courses (to C1 level) and funded industry and abroad placements. Synthesis and catalysis play decisive roles in the development of sustainable production methods, new functional materials and pharmaceuticals, and hold the key to the solution of modern societal challenges such as energy, nutrition, and health.

Benefits

SynCat offers free tuition, assistance with industrial and international research stays, a fellowship program and a student counseling and individual mentoring system. Successful graduates of SynCat are equipped with the best skills to pursue a challenging academic career or assume leadership positions in chemistry, materials, and health or energy businesses.

Modules

SYNTHESIS (SYN): the basic concepts of how to make complex molecules, functional materials, natural products, and drugs

CATALYSIS (CAT): modern aspects of catalyst preparation, characterization, and application to molecule synthesis in academic and industrial contexts

TECHNIQUES (TEC): basic lab methods and tools for the preparation and analysis of molecules

ADVANCED TECHNIQUES (A TEC): modern technologies and their applications in research and industry settings

RESEARCH EXCHANGE (RES EX): study off-campus, grow your skills abroad or in a company (funding available!)

CONCLUSION (CON): choose a specialization and train special techniques for a successful Master Thesis

MASTER THESIS (MAT): become a researcher and tackle a challenging task

Application

Applications for the winter term are being accepted until June 30th, for the summer term until January 31st. The assessment considers excellent transcript of records and extracurricular activities and involves a chemical problem set and an interview.

Read less
. Research profile. Pursuing a research degree at the School of Chemistry could be one of the best experiences of your life. Read more

Research profile

Pursuing a research degree at the School of Chemistry could be one of the best experiences of your life.

In addition to gaining research skills, making friends, meeting eminent researchers and being part of the research community, a research degree will help you to develop invaluable transferable skills which you can apply to academic life or a variety of professions outside of academia.

The Chemistry/Biology Interface

This is a broad area, with particular strengths in the areas of protein structure and function, mechanistic enzymology, proteomics, peptide and protein synthesis, protein folding, recombinant and synthetic DNA methodology, biologically targeted synthesis and the application of high throughput and combinatorial approaches. We also focus on biophysical chemistry, the development and application of physicochemical techniques to biological systems. This includes mass spectrometry, advanced spectroscopy and microscopy, as applied to proteins, enzymes, DNA, membranes and biosensors.

Experimental & Theoretical Chemical Physics

This is the fundamental study of molecular properties and processes. Areas of expertise include probing molecular structure in the gas phase, clusters and nanoparticles, the development and application of physicochemical techniques such as mass spectoscropy to molecular systems and the EaStCHEM surface science group, who study complex molecules on surfaces, probing the structure property-relationships employed in heterogeneous catalysis. A major feature is in Silico Scotland, a world-class research computing facility.

Synthesis

This research area encompasses the synthesis and characterisation of organic and inorganic compounds, including those with application in homogeneous catalysis, nanotechnology, coordination chemistry, ligand design and supramolecular chemistry, asymmetric catalysis, heterocyclic chemistry and the development of synthetic methods and strategies leading to the synthesis of biologically important molecules (including drug discovery). The development of innovative synthetic and characterisation methodologies (particularly in structural chemistry) is a key feature, and we specialise in structural chemistry at extremely high pressures.

Materials Chemistry

The EaStCHEM Materials group is one of the largest in the UK. Areas of strength include the design, synthesis and characterisation of functional (for example magnetic, superconducting and electronic) materials; strongly correlated electronic materials, battery and fuel cell materials and devices, porous solids, fundamental and applied electrochemistry polymer microarray technologies and technique development for materials and nanomaterials analysis.

Training and support

Students attend regular research talks, visiting speaker symposia, an annual residential meeting in the Scottish Highlands, and lecture courses on specialised techniques and safety. Students are encouraged to participate in transferable skills and computing courses, public awareness of science activities, undergraduate teaching and to represent the School at national and international conferences.

Facilities

Our facilities are among the best in the world, offering an outstanding range of capabilities. You’ll be working in recently refurbished laboratories that meet the highest possible standards, packed with state-of-the-art equipment for both analysis and synthesis.

For NMR in the solution and solid state, we have 10 spectrometers at field strengths from 200-800 MHz; mass spectrometry utilises EI, ESI, APCI, MALDI and FAB instrumentation, including LC and GC interfaces. New combinatorial chemistry laboratories, equipped with a modern fermentation unit, are available. We have excellent facilities for the synthesis and characterisation of bio-molecules, including advanced mass spectrometry and NMR stopped-flow spectrometers, EPR, HPLC, FPLC, AA.

World-class facilities are available for small molecule and macromolecular X-ray diffraction, utilising both single crystal and powder methods. Application of diffraction methods at high pressures is a particular strength, and we enjoy strong links to central facilities for neutron, muon and synchrotron science in the UK and further afield. We are one of the world's leading centres for gas-phase electron diffraction.

Also available are instruments for magnetic and electronic characterisation of materials (SQUID), electron microscopy (SEM, TEM), force-probe microscopy, high-resolution FTRaman and FT-IR, XPS and thermal analysis. We have also recently installed a new 1,000- tonne pressure chamber, to be used for the synthesis of materials at high pressures and temperatures. Fluorescence spectroscopy and microscopy instruments are available within the COSMIC Centre. Dedicated computational infrastructure is available, and we benefit from close links with the Edinburgh Parallel Computing Centre.



Read less
This one-year taught programme offers the opportunity to study Chemistry at an advanced level, covering both the traditional core areas of chemistry, as well as more specialist courses aligned to the research groupings of the department. Read more

This one-year taught programme offers the opportunity to study Chemistry at an advanced level, covering both the traditional core areas of chemistry, as well as more specialist courses aligned to the research groupings of the department. The course provides opportunities for you to develop and demonstrate advanced knowledge, understanding, and practical/research skills.

Introducing your course

Would you like to upgrade your bachelor’s degree to a master’s and gain access to a chemistry career in industry or research? Join the MSc Chemistry and develop your lab and theoretical skills. Specialise in inorganic and materials, organic or physical chemistry, or maintain a broad portfolio, for a more detailed description of the available pathways, click the Pathways tab. Courses are available in synthesis, advanced structural, analytical and spectroscopic techniques, materials chemistry, modelling, biological and medicinal chemistry, and electrochemistry.

Overview

The MSc Chemistry course combines the opportunity for students to take modules from a wide range of cutting-edge fields in chemistry with sessions on practical, technical skills, and scientific writing, communication and presentation and a three month summer project supervised by one of Southampton’s expert academics. The course aims to:

  • Provide you with advanced knowledge the core areas of chemistry and your chosen area of specialisation;
  • Provide you with an opportunity to work in state-of-the-art laboratories dedicated both to education and also to research;
  • Develop your knowledge and research skills applicable to a career in chemistry, particularly in research project driven roles.

Find out more about the course visit the programme specification

Career Opportunities

A Chemistry masters degree will give students valuable insight into postgraduate research skills. Independent project work will support students to develop transferable skills in areas such as time management, communication and presentation skills that are key for career success in a wide range of areas such as industry, analysis, policymaking and scientific communication. Completing an MSc qualification will help individuals tackle the challenges of an advanced research degree at PhD level and prepare them for a career in academia.

Pathways

The following information summarises the typical pathways offered when choosing the MSc Chemistry degree programme:

Organic Chemistry

This area focuses on synthetic organic chemistry, total synthesis, synthetic methodology, reaction mechanism, organocatalysis, organofluorine chemistry, photochemistry and carbohydrate chemistry, both towards the synthesis of bioactive compounds and organic materials, and includes the study of organic reactions under flow conditions. This pathway offers the opportunity to specialise in the following areas

  • organic synthesis
  • medicinal chemistry
  • bio-organic chemistry

This pathway consists of advanced postgraduate courses in synthetic reaction mechanisms and is best suited to students who already have a thorough BSc level grounding in aspects of nomenclature, stereochemistry, reaction mechanisms.

Inorganic chemistry and materials

This area focuses on the synthesis of functional inorganic, solid-state and supramolecular materials and assemblies to address key challenges in energy, sustainability, healthcare and diagnostics and the deposition of nanostructured materials. This pathway will give you the opportunity to specialise in the following areas

  • inorganic synthesis
  • metal organic framework
  • supramolecular chemistry
  • zeolites
  • catalysis
  • materials characterisation

This pathway is best suited to students who already have a thorough BSc level grounding in the fundamentals and applications of inorganic chemisry.

Physical chemistry

This pathway is best suited to students who already have a thorough BSc level grounding in the fundamentals and applications of inorganic chemistry. This area covers a wide range of fundamental and applied topics. This pathway will give you the opportunity to specialise in the following areas

  • computational chemistry
  • spectroscopy
  • electrochemistry
  • surface science
  • magnetic resonance

This pathway is best suited to students who already have a thorough BSc level grounding in the fundamentals and applications of physical chemistry, in particular quantum chemistry, spectroscopy, thermodynamics and kinetics

General chemistry

You can choose to further your knowledge across a blend of advanced courses from organic, inorganic and/or physical chemistry (any combination). This pathway is suited to those wishing to develop an interdisciplinary expertise. If you choose this pathway you should already have a sound BSc-level grounding in the areas of chemistry in which you intend to choose modules (see other boxes).



Read less
Chemistry. Molecular Chemistry. Molecular chemistry is a creative science, where chemists synthesize molecules with new biological or physical properties to address scientific or societal challenges. Read more

Chemistry: Molecular Chemistry

Molecular chemistry is a creative science, where chemists synthesize molecules with new biological or physical properties to address scientific or societal challenges. Think of new catalytic conversions, lead compounds for future medicines or the next generation of conducting polymers. The specialisation Molecular Chemistry offers education in connection with top-level research in the Institute for Molecules and Materials (IMM), enabling you to develop in-depth knowledge of the design, synthesis and characterization of unprecedented functional molecular structures.

See the website http://www.ru.nl/masters/chemistry/molecular

Why study Molecular Chemistry at Radboud University?

- The IMM at Radboud University hosts an internationally renowned cluster of molecular chemistry groups, where you will participate in challenging research projects.

- The IMM Organic Chemistry department was recently awarded a 27 million euro NWO Gravity programme grant. Among the teaching staff are two ERC advanced grant and two ERC starting grant winners.

- Teaching takes place in small groups and in a stimulating, personal setting.

Admission requirements for international students

1. A completed Bachelor's degree in Chemistry, Science or a related area

In general, you are admitted with the equivalent of a Dutch Bachelor's degree in Chemistry, Science with relevant subjects, or a related programme in molecular science. In case of other pre-education, students must have passed preliminary examinations containing the subject matter of the following well-known international textbooks (or equivalent literature). Any deficiencies in this matter should be eliminated before you can take part in this specialisation. If you want to make sure that you meet our academic requirements, please contact the academic advisor.

- Organic chemistry: e.g. Organic Chemistry (Bruice)

- Biochemistry: e.g. Biochemistry (Lehninger)

- Physical chemistry: e.g. Physical chemistry (Atkins)

- 30 EC of chemistry or chemistry-related courses at third year Bachelor's level

2. A proficiency in English

In order to take part in this programme, you need to have fluency in both written and spoken English. Non-native speakers of English* without a Dutch Bachelor's degree or VWO diploma need one of the following:

- A TOEFL score of >575 (paper based) or >90 (internet based)

- An IELTS score of ≥6.5

- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE) with a mark of C or higher

Career prospects

Approximately 40% of our graduates take up a PhD position, either in Nijmegen or elsewhere in the world. Our research institutes, in particular the Institute for Molecules and Materials, have vacancies for PhD projects every year. Our graduates also find work as researchers and managers in the chemical industry, or in one of our spin-off companies. A small proportion will not work in science, but for instance as a policymaker at a governmental organisation.

Our approach to this field

The Master's specialisation in Molecular Chemistry offers main stream chemistry courses and research topics, for those students that aim to deepen their knowledge and experimental skills in the heart of chemistry. The Institute for Molecules and Materials offers a state-of-the-art research infrastructure and hosts world-class research groups where you can conduct independent research, under the personal guidance of a researcher. Often, this leads to a scientific publication with you as a co-author.

Besides an internship in fundamental science, you can also chose to perform research in an industrial environment. Approximately one third of our students do one of their internships in a chemical company, both large (e.g. DSM, Synthon, AkzoNobel) and small (e.g. MercaChem, FutureChemistry, Chiralix).

Interested in going abroad? Contact one of our researchers, they can easily connect you to top groups elsewhere in the world. In the past few years, molecular chemistry students did internships in Oxford (UK), Princeton (US), Berkeley (US), Karolinska Institute (Sweden), ETH Zurich (Switzerland), etc.

Our research in this field

In the Master's specialisation Molecular Chemistry, the unique research facilities that Radboud University has to offer are coupled with the top level research within the Institute for Molecules and Materials (IMM). A selection of research groups for this specialisation are:

- Synthetic organic chemistry (Prof. Floris Rutjes): The group focuses on the development of new and sustainable synthetic (multistep)reactions by using bio-, organo- or metal-catalysts or combinations thereof, synthesis of druglike compound libraries, synthesis of bio-orthogonal click-reactions and chemical synthesis in continuous flow microreactors

- Analytical chemistry (Prof. Lutgarde Buydens): Research involves new chemometric methodologies and techniques for the optimisation of molecular structures. The research programme is designed around four areas: Methodological chemometrics, spectroscopic image analysis, molecular chemometrics, and analysis of genomics, metabolomics and proteomics data.

- Bio-organic chemistry (Prof. Jan van Hest): This groups uses Nature as inspiration for the design of functional molecules. Research lines that fit in this specialisation include: design and synthesis of modified peptides to alter their biological function, hybrid polymers containing biomolecules for use as antibacterial materials, and smart compartmentalisation strategies to enable multi-step reactions in a single reaction flask.

- Molecular materials (Prof. Alan Rowan): The aim of the group is the design and synthesis of novel polymers, self-organising molecules and ordered crystals and the subsequent investigation of their properties. Research topics related to his specialisation are: functional systems for application in catalysis, new OLEDS (organic LEDS), and liquid crystals.

See the website http://www.ru.nl/masters/chemistry/molecular

Radboud University Master's Open Day 10 March 2018



Read less
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry. Read more
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry.

The programme provides training in pharmacokinetics, drug metabolism, drug synthesis, methods to identify potential drug targets and drug candidates, and methods to assess the biological activities of drug compounds.

Additional modules cover the key techniques in analytical chemistry used to support the pharmaceutical sciences.

Core study areas include research methods, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include separation techniques, mass spectrometry and associated techniques, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Pharmacokinetics and Drug Metabolism
- Drug Targets, Drug Design and Drug Synthesis

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Separation Techniques
- Mass Spectrometry and Associated Techniques

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries, particularly the pharmaceutical and related industries, including drug metabolism, medicinal chemistry (organic synthesis), drug screening (action / toxicity), patents and product registration; also as preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Read less
The principal component of this degree is an intensive novel research project providing 'hands-on' training in methods and techniques at the cutting edge of scientific research. Read more

The principal component of this degree is an intensive novel research project providing 'hands-on' training in methods and techniques at the cutting edge of scientific research. The programme is particularly suitable for those wishing to embark on an academic career, with a strong track record of students moving into graduate research at UCL and elsewhere.

About this degree

Students develop a systematic approach to devising experiments and/or computations and gain familiarity with a broad range of synthetic, analytical and spectroscopic techniques, acquiring skills for the critical analysis of their experimental and computational observations. They also broaden their knowledge of chemistry through a selection of taught courses and are able to tailor the programme to meet their personal interests.

Students undertake modules to the value of 180 credits.

The programme consists of one core module (30 credits), four optional modules (15 credits each) and a research project (90 credits).

Core modules

All students undertake a literature project (30 credits) and a research dissertation (90 credits), which are linked.

  • Literature Project

Optional modules

Students choose four optional modules from the following:

  • Advanced Topics in Energy Science and Materials
  • Advanced Topics in Physical Chemistry
  • Biological Chemistry
  • Concepts in Computational and Experimental Chemistry
  • Frontiers in Experimental Physical Chemistry
  • Inorganic Rings, Chains and Clusters
  • Intense Radiation Sources in Modern Chemistry
  • Microstructural Control in Materials Science
  • Numerical Methods in Chemistry
  • Pathways, Intermediates and Function in Organic Chemistry
  • Principles of Drug Design
  • Principles and Methods of Organic Synthesis
  • Simulation Methods in Materials Chemistry
  • Stereochemical Control in Asymmetric Total Synthesis
  • Structural Methods in Modern Chemistry
  • Synthesis and Biosynthesis of Natural Products
  • Topics in Quantum Mechanics
  • Transferable Skills for Scientists

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 15,000 words and a viva voce examination (90 credits).

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials, laboratory classes and research supervision. Assessment is through the dissertation, unseen written examinations, research papers, a written literature survey, and an oral examination. All students will be expected to attend research seminars relevant to their broad research interest.

Further information on modules and degree structure is available on the department website: Chemical Research MSc

Careers

This MSc is designed to provide first-hand experience of research at the cutting-edge of chemistry and is particularly suitable for those wishing to embark on an academic career (i.e. doctoral research) in this area, although the research and critical thinking skills developed will be equally valuable in a commercial environment.

Recent career destinations for this degree

  • Project Manager, Jiang Clinic
  • Secondary School Teacher (Chemistry), Loyang Secondary School
  • PhD in Engineering, Imperial College London

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

With departmental research interests and activities spanning the whole spectrum of chemistry, including development of new organic molecules, fundamental theoretical investigations and prediction and synthesis of new materials, students are able to undertake a project that aligns with their existing interests.

Students develop crucial first-hand experience in scientific methods, techniques for reporting science and using leading-edge research tools, as well as further essential skills for a research career.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Chemistry

94% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
What is the Master of Chemistry all about?. The overall aim of the Master of Chemistry programme is to train students to . Read more

What is the Master of Chemistry all about?

The overall aim of the Master of Chemistry programme is to train students to conduct research in an academic or industrial setting.

Students apply the knowledge and skills they have acquired by identifying a research question, situating it in its proper chemical and social context and designing a study that addresses this research question.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Structure

The full programme comprises 120 ECTS (European Credit Transfer System), including 18 ECTS for compulsory courses and 54 ECTS for electives. In addition, students develop advanced practical skills in an internship at KU Leuven to the value of 18 ECTS, while the remaining 30 ECTS are allocated to the Master’s thesis.

There are five majors to choose from:

  • Quantum Chemistry and Physical Chemistry.
  • Molecular Design and Synthesis.
  • Molecular Imaging and Photonics.
  • Polymer Chemistry and Materials.
  • Biochemistry, Molecular and Structural Biology

Department

The Department of Chemistry consists of five divisions, all of which conduct high quality research embedded in well-established collaborations with other universities, research institutes and companies around the world. Its academic staff is committed to excellence in teaching and research. Although the department's primary goal is to obtain insight into the composition, structure and properties of chemical compounds and the design, synthesis and development of new (bio)molecular materials, this knowledge often leads to applications with important economic or societal benefits.

The department aims to develop and maintain leading, internationally renowned research programmes dedicated to solving fundamental and applied problems in the fields of:

  • the design, synthesis and characterisation of new compounds (organic-inorganic, polymers).
  • the simulation of the properties and reactivity of (bio)molecules, polymers and clusters by quantum chemical and molecular modelling methods.
  • the determination of the chemical and physical properties of (bio)molecules, and polymers on the molecular as well as on the material level by spectroscopy, microscopy and other characterisation tools as related to their structure.

Objectives

Knowledge and understanding

  • has extensive knowledge and understanding of a number of chemical fields of expertise and at least one advanced or specialized chemical topic;
  • can acquire autonomously chemical insights and methods;
  • has advanced theoretical and practical knowledge of methods of specialised chemical synthesis and characterisation.

Research

  • knows to organize and carry out original chemical research;
  • can delineate a research topic, postulate a research question and revise this question in the course of the research;
  • can select and apply autonomously proper experimental and theoretical methods;
  • can find, use and interpret with intent specialized literature.

Acquire, use and form an opinion about information

  • has insight in the strategies of acquiring and using knowledge that are central to the domain of the exact sciences;
  • can acquire, adapt, interpret and evaluate quantitatively information and data;
  • can adapt and interpret research results in a multidisciplinary context, position it in the international context and report about this;
  • can apply his knowledge, understanding and problem solving capacities in a broader context;
  • can critically evaluate complex problems in the field of chemistry and formulate scientifically sound solutions.

Communication and social skills

  • can express verbally and in written form the results of research for a group of people of experts and laymen;
  • can take a scientific viewpoint and defend it for a public of fellow students, lecturers and specialist;
  • can function in a heterogeneous environments and teams;
  • has English communication skills;
  • can be in the lead and run a team;
  • can work autonomously.

Motivation and attitudes

  • is open to complementary input from other disciplines;
  • can take responsibility for and give direction to his personal professional development;
  • has professional behavior;
  • can autonomously function and contribute to research.

Employment

  • has competency that gives access to the PhD study and to employment in chemical and various other fields.

Career perspectives

The Master of Science in Chemistry offers a wide range of specialisations and, as such, many career options are available to our graduates. More than half of our alumni work in industry, while others work in academia or other research institutes.

Within industry, graduates can opt for a technical, a commercial, or research-oriented career. Since the chemical industry is also a major industrial sector throughout Europe and the rest of the world, employment opportunities are enhanced by obtaining a PhD. A few examples of professional domains where chemists are needed include industry (chemistry, petrochemistry, medical sector, pharmaceutical industry, agrochemistry, food industry etc.), government or public administration, and research institutes.



Read less
The MSc in Audio and Music Technology is a one-year full-time taught course for graduates who wish to enhance their skills to go on to a career or further research in the varied fields of audio processing, room acoustics, interactive music and audio applications, voice analysis and synthesis, audio programming and other music technology related areas. Read more
The MSc in Audio and Music Technology is a one-year full-time taught course for graduates who wish to enhance their skills to go on to a career or further research in the varied fields of audio processing, room acoustics, interactive music and audio applications, voice analysis and synthesis, audio programming and other music technology related areas.

The MSc is designed for:
-Graduates of courses in Music Technology or Tonmeister
-Graduates of courses in technology, mathematics, science, engineering or computing who can demonstrate music performance or music production skills
-Graduates of a related subject who can demonstrate an understanding of music theory/digital audio, skills in music production or performance and technical experience or an aptitude for the technical aspects of audio

The course aims to:
-Provide students with a thorough grounding in scientific theory and engineering techniques as applied to digital audio technology
-Develop an understanding of audio processing and acoustic analysis as it relates to speech, singing, music and room/environmental acoustics
-Provide practical experience of audio software programming in a variety of coding languages and a creative approach to audio analysis and synthesis
-Develop communication skills for academic and public engagement purposes, in a variety of writing styles, or for oral presentations

There is a particular emphasis on practical application of theoretical aspects of audio signal processing and acoustic analysis and the programme also helps students to develop other skills such as critical analysis and evaluation, synthesis of theory and practice, creative problem-solving, design and implementation and oral and written communication skills.

The course is also designed to enhance your employability and to prepare you for entering the world of work or research after graduation. Some of the ways we do this are:
-Personal Professional Practitioner module dedicated to enhancing your employability, self-promotion and transferable skills, whether you go on to work in industry or running your own business.
-Hands-on experience of event and project management including the opportunity to design and deliver two events on campus.
-Project Development module furthers your skills in promoting your work/research to the public, presenting to an audience and developing a project plan.
-A substantial piece of individual research or development project, which you undertake over the summer under supervision from a staff member.
-Student section of the Audio Engineering Society regularly runs events with external speakers from the industry - a chance to network with the professionals.
-Group work in some modules allowing you to put your team work and management skills into practice.

Facilities

The course is supported by a wide range of facilities including:
-Three recording studios and Digital Audio Workstation production rooms
-Dedicated listening space with surround sound loudspeaker array
-6-sided anechoic chamber
-Newly equipped Mac Workstation suite specifically for audio app development
-State-of-the art equipment for voice analysis and synthesis
-The opportunity to access audio facilities across campus including the 3Sixty (immersive audio visual space) and the Arthur Sykes Rymer Auditorium (Music Research Centre) as availability allows

Read less
Chemistry is a fundamental science that underpins a vast array of topics. At Lincoln, the School of Chemistry is focused on advancing the chemical sciences to address real-world problems in society and industry. Read more
Chemistry is a fundamental science that underpins a vast array of topics. At Lincoln, the School of Chemistry is focused on advancing the chemical sciences to address real-world problems in society and industry.

Research students in Chemistry can benefit from an interdisciplinary environment and may have the opportunity to work with colleagues from across the University’s College of Science, national and international academic collaborators, and an array of industry partners. You will have full access to a range of facilities including high-throughput preparative methods, bespoke molecular and nanomaterials laboratories, and analytical and structural instrumentation.

The chemistry team is currently involved in studies including collaborative projects with the pharmaceutical, environmental, fine chemicals and instrumentation sectors. You will have the opportunity to engage with the team on projects that have real-world impact using fundamental chemistry research.

How You Study

Due to the nature of postgraduate research programmes, the vast majority of your time will be spent in independent study and research. You will have meetings with your academic supervisors, however the regularity of these will vary depending on your own individual requirements, subject area, staff availability and the stage of your programme.

How You Are Assessed

A PhD is usually awarded based on the quality of your thesis and your ability in an oral examination (viva voce) to present and successfully defend your chosen research topic to a group of academics. You are also expected to demonstrate how your research findings have contributed to knowledge or developed existing theory or understanding.

Special Features

Ongoing research projects in the School include novel molecular imprinted polymers for precious metal recovery, design of organic crystals for nanoelectronic applications, nanometals for spectroscopic enhancement, materials degradation and preservation of precious artefacts, and pharmaceutical materials discovery. The bespoke design of our postgraduate programmes aims to address real-world challenges using fundamental chemistry research.

The environment for chemical research at the University of Lincoln recently benefited from a £6.8m grant from the Higher Education Funding Council for England Catalyst Fund. Systematic investment includes specialist instrumentation in the University’s Analytical Centre and specialist facilities for molecular synthesis, nano and materials synthesis and crystal engineering that uses automated synthesis tools.

Researchers in the School of Chemistry are working to develop new methods to rapidly profile ‘legal high’ preparations with novel chromatographic methods. Other projects include work to design new materials for remediation of precious and toxic metals from industrial waste.

Career and Personal Development

You have the opportunity to develop the in-depth knowledge and expertise necessary for careers in and across the broad spectrum of chemistry-related industries. This programme aims to provide foundation for further research or a career in teaching or academia.

Read less
Our MClin Res Clinical Research course is aimed at nurses, midwives, allied health professionals and other non- medical/dental healthcare professionals who want to work in clinical research, or are already working in this area and want to develop the skills needed for other positions where research plays a key role. Read more

Our MClin Res Clinical Research course is aimed at nurses, midwives, allied health professionals and other non- medical/dental healthcare professionals who want to work in clinical research, or are already working in this area and want to develop the skills needed for other positions where research plays a key role.

You will develop in-depth knowledge of the theoretical underpinnings of clinical research and skills in research methods relevant to applied research in a range of contemporary clinical practice settings.

The course is mainly delivered online, but is complemented by two compulsory four-day campus-based introductory and winter study schools, and one mid-semester study day in Semesters 1 and 2.

Most of the units that make up this course are shared with other students on master's and postgraduate research programmes at Manchester.

Aims

Our course has been designed to provide health professionals with the skills needed to manage and deliver research in clinical and health and social care settings, and to develop careers in clinical research, clinical and academic practice, or academic research with a strong clinical practice component.

The aims of the course are to:

  • enable you to further develop systematic, in-depth knowledge and critical understanding of the nature, purposes, methods and application of research relevant to clinical practice at an individual and/or organisational level;
  • contribute to building capacity and capability for research and evidence-based practice by equipping you with in-depth knowledge and essential skills to critically appraise, apply, design and undertake high quality research in a range of clinical settings;
  • enhance the quality and evidence base for clinical research, practice and service development through the provision of robust research training in a stimulating, challenging and supportive learning environment that draws on outstanding resources and research and practice expertise;
  • promote lifelong learning in students and enhance opportunities to pursue a variety of research careers and/or further research training which support and advance clinical knowledge, research and practice;
  • equip you with key transferable skills in critical reasoning and reflection, effective communication, team and multi-disciplinary working, use of IT/health informatics, logical and systematic approaches to problem-solving and decision-making.

Special features

Interdisciplinary learning

You will learn from renowned lecturers and practitioners from various fields including nursing, midwifery, physiotherapy, social work, speech and language therapy, audiology, psychology, and medicine.

Strong collaborations

We have strong links with other courses at Manchester and with experts from the Manchester Academic Health Science Centre (MAHSC) and the Manchester Academy for Healthcare Scientist Education (MAHSE).

Teaching and learning

The course content is primarily delivered online, giving you more flexibility over how you learn. You will also attend two four-day introductory and winter study schools and two mid-semester study days, allowing you to learn face-to-face and meet other students and staff at Manchester.

We use digital technology to ensure our supervision of and communications with students meet the high standards required for the learning process to work. This includes:

  • individual and group web-based audio-visual tutorials;
  • web-based collaboration areas and discussion boards
  • shared digital documents;
  • online, phone and face-to-face support from supervisors and academic advisors;
  • peer support through course-specific discussion boards and face-to-face meetings.

Find out more about postgraduate teaching and learning at Manchester.

Coursework and assessment

We will assess your progress using a variety of summative assessment methods that enable the integration of theory and practice. They also build on the continuous formative assessment exercises that come with each individual unit, which include interactive, stimulating online exercises with regular self-assessment and feedback.

Course unit details

Our MClin Res  comprises six taught units (90 academic credits in total) and a 90-credit dissertation unit comprising a thesis derived from the undertaking of a supervised, clinical research project.

The PGDip Clin Res  comprises six taught units from (90 academic credits in total) and a mini-dissertation (30 academic credits).

The PGCert Clin Res  comprises four taught units (60 academic credits in total).

Year 1

Full-time study

Six taught units in the following areas, plus a dissertation:

  • Research design
  • Managing research in the clinical setting OR Foundations of research
  • Critical appraisal and evidence synthesis
  • Quantitative research design and analysis
  • Qualitative research design and analysis
  • Statistics

Part-time study

Four taught units from the following areas:

  • Research design
  • Managing research in the clinical setting OR Foundations of research
  • Critical appraisal and evidence synthesis
  • Quantitative research design and analysis
  • Qualitative research design and analysis
  • Statistics

Year 2

Part-time study

Two taught units from the following areas, plus a dissertation:

  • Critical appraisal and evidence synthesis
  • Quantitative research design and analysis
  • Qualitative research design and analysis
  • Statistics

Course collaborators

We collaborate with other courses at Manchester and with experts from the Manchester Academic Health Science Centre (MAHSC) and the Manchester Academy for Healthcare Scientist Education(MAHSE).

Facilities

We are based in Jean McFarlane Building, which houses seminar rooms, IT facilities, clinical and interpersonal skills laboratories, and lecture theatres.

The University of Manchester also offers extensive library and online services to help you get the most out of your studies.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

This course is predominantly aimed at health professionals from a range of disciplines who wish to enhance their skills and knowledge in clinically focused research.

It is aimed at those who wish to pursue clinical/academic research careers eg research nurses, clinical trials coordinators and principal investigators.

The course provides comprehensive training in research, providing an excellent foundation for students who wish to go on to study for a PhD.



Read less
Our MRes Health and Social Care course is designed to give you an in-depth understanding of and skills in theoretical underpinnings and research methods relevant to applied research in contemporary health and social care contexts. Read more

Our MRes Health and Social Care course is designed to give you an in-depth understanding of and skills in theoretical underpinnings and research methods relevant to applied research in contemporary health and social care contexts.

The course is designed for those who want to pursue a career in health and/or social care where research is a core component. Most of the units on this course are shared with other MSc and PhD programmes.

You will learn how to conduct and apply health and social care research to practice at both an individual and organisational level, drawing on the expertise of renowned lecturers and practitioners from fields including social work, nursing, midwifery, speech and language therapy, audiology, psychology and medicine.

The bulk of the course content is delivered online and is complemented by two compulsory four-day campus-based introductory and winter study schools, and one mid-semester study day in both Semester 1 and 2.

Aims

This course aims to:

  • enable you to further develop systematic, in-depth knowledge and critical understanding of the nature, purposes, methods and application of research relevant to health and social care practice at an individual and/or organisational level;
  • contribute to building capacity and capability for research and evidence-based practice by equipping you with in-depth knowledge and essential skills to critically appraise, apply, design and undertake high-quality research in a range of health and social care settings;
  • enhance the quality and evidence base for health and social care research, practice and service development through the provision of robust research training in a stimulating, challenging and supportive learning environment that draws on outstanding resources and expertise in research and practice;
  • promote lifelong learning and enhance opportunities to pursue a variety of research careers and/or further research training that support and advance clinical and health and social care knowledge, research and practice;
  • equip you with key transferable skills in critical reasoning and reflection, effective communication, team and multi-disciplinary working, use of IT/health informatics and logical and systematic approaches to problem-solving and decision-making.

Special features

Interdisciplinary focus

You will learn from nationally and internationally renowned lecturers and practitioners from fields including nursing, midwifery, social work, speech and language therapy, physiotherapy, audiology, psychology and medicine.

Strong collaborations

This course has strong links with other subjects within the Faculty of Biology, Medicine and Health, as well as the NHS and social care organisations.

Teaching and learning

This course is primarily delivered online to maximise access and increase flexibility. Online components are complemented by opportunities for face-to-face learning and networking between students, course and research staff through two four-day campus-based introductory and winter study schools and two mid-semester study days.

The relationship and communication between academic staff and students is recognised as an essential element of the learning process. We maintain high standards of supervision and communication through:

  • individual and group web-based audio-visual tutorials;
  • web-based collaboration areas and discussion boards;
  • shared digital documents;
  • online, telephone and face-to-face support from supervisor and academic advisors;
  • peer support through course-specific discussion boards and face-to-face meetings.

Coursework and assessment

We use a variety of summative assessment methods that enable the integration of theory and practice. These methods build on continuous formative assessment exercises that are part of each unit with a variety of interactive, stimulating online exercises, with regular self-assessment and feedback being a key feature.

Course unit details

The MRes route comprises six taught units (90 academic credits in total) and a 90-credit dissertation unit comprising a thesis derived from a supervised, research project relevant to health and/or social care.

The PGDip route comprises six taught units (90 academic credits in total) and a mini-dissertation (30 academic credits).

The PGCert comprises four taught units (60 academic credits in total).

Year 1

Full-time study

Six taught units in the following areas, plus a dissertation:

  • Foundations of research or Managing research in a clinical setting
  • Research design
  • Critical appraisal and evidence synthesis
  • Quantitative research design and analysis
  • Qualitative research design and analysis
  • Statistics

Part-time study

Four taught units from the following areas:

  • Foundations of research or Managing research in a clinical setting
  • Research design
  • Critical appraisal and evidence synthesis
  • Quantitative research design and analysis
  • Qualitative research design and analysis
  • Statistics

Year 2

Part-time study

Two taught units from the following areas, plus a dissertation:

  • Critical appraisal and evidence synthesis
  • Quantitative research design and analysis
  • Qualitative research design and analysis
  • Statistics

Facilities

This course is based in Jean McFarlane Building, which houses seminar rooms, IT facilities, clinical and interpersonal skills laboratories and lecture theatres.

The University of Manchester offers extensive library and online services to help you get the most out of your studies.

Disability support

Practical support and advice for current students and applicants is available from the Disability and Advisory Support Service 

Career opportunities

This course is designed for health and social care professionals and others who seek a research career or require research training as a constituent part of their current or future roles. It is also for researchers who want research training focused on health and social care.

The course provides a comprehensive education and training in health and social care research as an excellent foundation for PhD study.

Associated organisations



Read less
This intensive programme offers an exciting opportunity to learn from world leaders in both informatics and linguistics. Read more

This intensive programme offers an exciting opportunity to learn from world leaders in both informatics and linguistics. Drawing from our cutting-edge research, the programme’s content covers all areas of speech and language processing, from phonetics, speech synthesis and speech recognition to natural language generation and machine translation.

This flexible programme provides research or vocational training and can be either freestanding or lead to PhD study. The modular nature of the programme allows you to tailor it to your own interests.

Taught by leading researchers from Linguistics & English Language, the Centre for Speech Technology Research and the School of Informatics, this programme combines elements of linguistics, computer science, engineering and psychology.

You will develop up-to-date knowledge of a broad range of areas in speech and language processing and gain the technical expertise and hands-on skills required to carry out research and development in this challenging interdisciplinary area.

Programme structure

You study two semesters of taught courses, followed by a dissertation.

Most core compulsory courses have both computational and mathematical content. A few optional courses need a stronger mathematical background. Courses in the second semester can be tailored to your own interests and abilities.

Compulsory courses:

  • Accelerated Natural Language Processing
  • Computer Programming for Speech and Language Processing
  • Speech Processing
  • Univariate Statistics and Methodology Using R

Option courses may include:

  • Introduction to Phonology and Phonetics
  • Automatic Speech Recognition
  • Machine Learning and Pattern Recognition
  • Machine Translation
  • Natural Language Understanding
  • Simulating Language
  • Speech Synthesis

Learning outcomes

This programme aims to equip you with the technical knowledge and practical skills required to carry out research and development in the challenging interdisciplinary arena of speech and language technology.

You will learn about state-of-the-art techniques in speech synthesis, speech recognition, natural language processing, dialogue, language generation and machine translation.

You will also learn the theory behind such technologies and gain the practical experience of working with and developing real systems based on these technologies. This programme is ideal preparation for a PhD or working in industry.

Career opportunities

This programme will provide you with the specialised skills you need to perform research or develop technology in speech and language processing. It will also serve as a solid basis for doctoral study.



Read less
At the nexus of creativity, technology and business, this postgraduate degree is designed for graduates who want to further develop their music engineering and production skills, to establish a career as a professional producer in the music industry or related fields. Read more
At the nexus of creativity, technology and business, this postgraduate degree is designed for graduates who want to further develop their music engineering and production skills, to establish a career as a professional producer in the music industry or related fields.

As the music industry is constantly evolving, students on this course are equipped to deal with an ever-changing commercial landscape, while developing their personal potential. Key areas of the industry are studied from a wide variety of angles, but without losing sight of the primary goal to develop a sustainable career within music production.

An important element of the course is the practical application of your knowledge to generate highly creative work. Allied areas are also examined, which allows graduates to apply their skills in many other media-related fields, including film and animation. Such a strategic approach to your higher-level study engenders responsibility, critical thinking, problem-solving, and the highly creative generation of musical and visual tangibles.

In addition, our graduates will be trained in the use of Apple Logic Pro and Avid Pro Tools.

If you choose to study on a creative postgraduate course at the University of South Wales, you will also benefit from being part of a vibrant international student community.

See the website http://courses.southwales.ac.uk/courses/131-msc-music-engineering-and-production

What you will study

The MSc Music Engineering and Production includes:
- Recording or Professional Music Production
- Music Post-Production
- Sequencing/Synthesis/Sampling
- History, Analysis, Repertoire and Theory
- Remixing Production
- Major Individual Research Project (or Learning Through Employment Research Project)

Common Modules:
The Faculty understands the importance of a strong grounding in research knowledge and skills, enterprise and innovation as part of a balanced postgraduate education.

We also recognise that each student has different requirements of their postgraduate experience.

You can choose to study one of the following three, 20 credit common modules. Each of these has a different focus, enabling you to select the module that will be most beneficial to you.

- Creative and Cultural Entrepreneurship
This module aims to develop your knowledge of the methods to identify, develop and manage enterprise and innovation in the creative sector. It will then help you apply this to your own entrepreneurial project.

- Research and Practice in the Creative and Cultural Industries
The focus of this module is on the development of research knowledge and skills, while also encouraging critical engagement with approaches to creative practice. You will also explore ideas, debates and issues in the creative and cultural industries.

- Research Paradigms
This module focuses on research paradigms and their theoretical underpinnings. It also looks at key conceptual tools drawn from a wide range of subject areas relevant to postgraduate research in the creative industries.

NOTE: Modules are subject to change.

Learning and teaching methods

The MSc Music Engineering and Production degree is taught through lectures, seminars and workshops, with emphasis on the practical application of your knowledge.

All assessments are coursework-based, allowing a detailed application of your knowledge and experience. Assessment is through continuous assignments, seminars and a dissertation based on real-life scenarios. The final major project is presented through written submission alongside an oral examination.

The Masters project may be in any area derived from, or related to, the course or the general discipline of music engineering and production, e.g, sound design in animation, music video, album recording and release, and sound synthesis. There are also opportunities to work on academic staff research projects, or with one of several PhD researchers in the Faculty’s Division of Music and Sound.

Work Experience and Employment Prospects

Engineering and production professionals work as music producers, sound engineers, writers and arrangers, sound designers and mixers/remixers in surround. Career opportunities will vary according to an individual’s capabilities and passion, but it is expected that graduates of USW’s MSc Music Engineering and Production should play a full role in shaping the future of music and sound in the UK and further afield.

Assessment methods

Learning Through Employment:
Learning Through Employment is a University of South Wales framework that offers students who are already in employment the opportunity to gain credits towards a postgraduate qualification.

The programme is structured so that the majority of learning takes place through active and reflective engagement with your work activities, underpinned by the appropriate academic knowledge and skills. As such, it has been is designed for practising professionals to provide them with the tools to succeed in the workplace.

This truly flexible approach means that final projects can be based on an agreed area of work, benefitting students and employers, and because the majority of the project is carried out in the workplace, it can potentially be undertaken anywhere in the world.

The MSc project may be in any area derived from, or related to, the course or general discipline of Music Engineering and Production. For example, sound design in animation, music video, album recording and release, and sound synthesis. There are also opportunities to work on academic staff research projects, or with one of several PhD researchers in the Division of Music and Sound.

Read less

Show 10 15 30 per page



Cookie Policy    X