• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of York Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
London Metropolitan University Featured Masters Courses
Coventry University Featured Masters Courses
University of Sussex Featured Masters Courses
University of Kent Featured Masters Courses
University College London Featured Masters Courses
"sustainable" AND "energy…×
0 miles

Masters Degrees (Sustainable Energy Development)

  • "sustainable" AND "energy" AND "development" ×
  • clear all
Showing 1 to 15 of 325
Order by 
The University of Calgary’s Master of Science in Sustainable Energy Development (SEDV) is an interdisciplinary graduate program providing a balanced education related to energy and environmental management. Read more
The University of Calgary’s Master of Science in Sustainable Energy Development (SEDV) is an interdisciplinary graduate program providing a balanced education related to energy and environmental management. A combined offering through the Haskayne School of Business, Schulich School of Engineering and the Faculties of Law and Environmental Design, SEDV is an unprecedented program designed for professionals and students who are seeking a broad-based and comprehensive education in sustainable energy.

SEDV curriculum is delivered by recognized experts, leading academics and professionals from the associated faculties. This highly qualified group works together to ensure the courses are relevant and speak to current themes seen in today’s energy sector; it is this interdisciplinary blend that provides a unique experience for our graduate students.

Upon completion, graduates leave equipped to effectively manage sustainable energy projects and operations, while minimizing impact on the environment and maximizing the socio-economic benefits to society. SEDV alumni can be found in a variety of roles within oil and gas, renewable energy, government and non-government organizations, policy-making bodies, environmental consultation, etc. As more companies move toward sustainable energy practices, your possibilities are endless!

Regardless of your background - be it design, business or law, economics, biology, or engineering - if you want to drive the future of sustainable energy development, you belong here.

Read less
Discover the real-world career opportunities in the energy sector with this MSc in Energy and Environmental Technology and Economics. Read more
Discover the real-world career opportunities in the energy sector with this MSc in Energy and Environmental Technology and Economics.

Who is it for?

Wherever you are, energy has an implication. This course is for students who want to engage with different types of settings to research and establish the energy, environmental and technological implications that exist within them. Energy and Environmental Technology and Economics students will care for the environment as a sustainable system and ultimately have a desire to improve conditions for the wider population.

Students come from a range of backgrounds including engineering, finance and economics – and from within the energy industry itself.

Objectives

This Masters degree has been designed to give you a wide perspective when it comes to analysing and forecasting the future for energy, environmental technology and economics. We engage with the industry so you gain a real-world understanding of the problems that exist, and we consider our own ethical responsibilities in relation to energy use.

Imagine a Grade 1-listed building such as the Guildhall in London. As an energy consultant your task is to analyse the site to make it more efficient. But there is a caveat: you cannot make any structural changes to the walls or the windows. The MSc Energy and Environmental Technology and Economics course gives you the tools to examine and address these kinds of challenges.

The MSc Energy and Environmental Technology and Economics course is not about learning academic theories. Instead we focus on the breadth of the subject in the real world. By engaging with practising businesses and trade associations we identify a range of perspectives, and look at the influence of a myriad of other forces at play, from regulation and government funding, to behavioural psychology and emerging technologies. Here are some of the questions the course poses:
-Does this new form of technology operate as it should?
-How does the UK relate to other European countries when it comes to energy efficiency?
-How does organisational psychology affect energy use within a company?
-How do you decide which energy contract to choose?
-What is the impact of a consumer society on personal energy use?

Placements

There is no formal requirement to do an industry-based placement as part of the programme. However, some students arrange to undertake their dissertation research within a company or within their part of the world. A recent student investigated the future of coal-fired generation in Turkey, and another student is combining a work placement at The World Energy Council with their dissertation.

Academic facilities

As part of the University of London you can become a member of Senate House Library for free with your student ID card.

Teaching and learning

Teaching is organised into modules comprising four consecutive day courses taken at a rate of one a month or so. This format makes the programme accessible for students who want to study part time while working.

Full-time students are also welcome. Whether you choose to take the course as a part-time or full-time student, we will offer a great deal of support when it comes to helping you prepare for the modules and project work. You will be expected to devote a significant part of your non-taught hours to project work as well as private study.

Our course is led by an exceptional group of experts in energy, supply, demand management and policies. As an example, one of our module leaders leads the UK contribution to writing international energy management standards and informing policy through the European Sector Forum for Energy Management. This forum looks at methodologies across the continent. There is also input to global standards development through the International Standards Organisation (ISO). At City we bring on board people with well-established academic careers as well as leaders from the energy industry. The programme has strong links with industry and commerce and involves many visiting lecturers who hold senior positions in their fields.

The Energy and Environmental Technology and Economics MSc gives you the opportunity to consider the role of International Energy Management Standards. You will explore the opportunities these standards provide for global service users and providers in relation to reducing energy costs and the environmental impact of energy use.

You will discover the range of current European and International Standards, explore why they are needed and how they are developed, and examine the benefits they deliver through case studies.

The UK has had a leading role in developing these standards in terms of both their writing and implementation. For example the Energy Audit standard, which forms part of the EU Energy Efficiency Directive, Article 8, mandates audits for private sector, non-SME organisations. In the UK this has been implemented as the Energy Savings Opportunities Scheme (ESOS).

Modules

Each course module is taught over four consecutive days of teaching with one module each month. Alongside the teaching you will have coursework to complete for each module. The modules run from October to April, and in the remaining time, you will concentrate on your dissertation, which forms a significant part of the programme.

The dissertation gives you the opportunity to create your own questions and to decide on your own area of interest. It should be a detailed investigation into a subject on energy supply and/or demand, with your own analysis and conclusions outlining the way forward. You may see the focus of your dissertation as a future career path, but whatever your area of study, these final few months of the degree should embody your vision of the future.

You will take four core modules and have six elective modules from which you can choose four topics from diverse subjects relating to energy supply and demand. These include energy in industry and the built environment, renewables, energy markets from the purchaser’s perspective and water supply and management. The latter has close parallels, and directly engages, with energy. You start the course with an introduction to energy and environmental issues and energy policies and economic dimensions in the first term, but you do not need to follow the course in any particular order from this point onwards.

If you are interested in sustainability, you have the option of taking up to two elective modules from the MSc in Environmental Strategy offered by the University of Surrey.

Completing eight modules and four examinations and four modular assessments will lead to a Postgraduate Diploma. Completing four core and four elective modules and a dissertation will lead to a Masters degree. If you are interested in this course may also be interested in the MSc Renewable Energy and Power Systems Management.

Core modules
-Introduction to energy and environmental issues (15 credits)
-Energy policies and economic dimensions (15 credits)
-The energy market from the purchaser's perspective (15 credits)
-Corporate energy management (15 credits)

Elective modules
-Energy, consumer goods and the home (15 credits)
-Transport energy and emissions (15 credits)
-Energy in industry and the built environment (15 credits)
-Renewable energy and sustainability (15 credits)
-Risk management (15 credits)
-Water supply and management (15 credits)

Career prospects

The story of energy is now part of public debate and climate change drives the international agenda. In the UK, there are additional energy supply issues, through the decline of existing nuclear capacity, growing imports of fossil fuels and challenging medium-term targets for renewables and low carbon supply.

Our priority is to make you employable in a range of sectors in which effective energy supply and demand side management has become an important consideration.

You will graduate with economic and market-based skills relevant to complying with relevant legislation and technical and engineering skills related to energy generation and management.

With strong industry links and working level experience from our exceptional team of expert lecturers, as well as the diverse modules on offer, you will be equipped to become a leader and entrepreneur in your chosen area of specialisation within the realm of energy management, supply or policy making.

Our graduates have gone on to hold high-ranking positions as energy consultants, data analysts and directors of corporate sustainability working within organisations including:
-AK Home Energy
-Enelco Environmental Technology
-Energy Institute
-Equinoxe Services Ltd
-Log Tech Consultancy
-Ofgem
-Peckham Power
-RWE NPower Renewables
-SCFG

Read less
- Compulsory modules. Read more

MSc in Sustainable Development Energy

- Compulsory modules
Interrogating Sustainable Development – This module will introduce you to, or develop your knowledge across, areas such as the history and genesis of sustainable development, an understanding of earth systems science, the social and economic systems that shape humanity and impact on the environment, and an understanding of how these systems interact.

Quantitative Research Methods in Social Sciences – This module will introduce you to various quantitative and statistical approaches used to analyse social processes and phenomena and how to apply these in sustainable development.

Master Class in Sustainable Development – This module will enable an in-depth study of a number of areas. These areas will be investigated via group work with the research being initiated by invited lecturers from the appropriate areas.

Qualitative Research Methods in Social Sciences – This module will provide you with the necessary skills of dealing with qualitative data from interviews, participant observations, questionnaires and other sources.

Postgraduate community

The postgraduate programmes in Sustainable Development have been growing very rapidly. The original MSc programme started with nine students in the 2009-2010 academic year and currently 30 students are registered. On this programme you attend an average number of 24 lectures lasting for three hours each in Semester 1 and an additional 15 lectures in Semester 2. There are also a number of tutorials, seminar presentations, student-led workshops, as well as field trips and away days. There is also a dissertation conference where you can present your research findings before you submit your dissertation.

The double MSc in Sustainable Energy takes place in both St Andrews and Moscow. The first year involves taking similar modules in the one-year programme at St Andrews with a more specific focus on energy issues. The second year challenges students to complete study abroad on a wide range of energy modules.

Sustainable Development students are extremely well catered for in several aspects. Firstly, you have the use of a dedicated postgraduate space in the Observatory. There are ports for physical laptop internet access. The room is also served by high speed WiFi connections. You have access to the room on a 24/7 basis. It offers a location for group or individual work, classes, events, receptions and even relaxation. The building is primarily for the use of Sustainable Development postgraduate students. Secondly, you have a close relationship with staff on the course. Class sizes are limited to provide a one-to-one service for students. This is a unique aspect of undertaking Sustainable Development research and teaching at St Andrews. Thirdly, the interdisciplinary nature of Sustainable Development allows you to interact with a wide range of students in other disciplines. This allows for the creation of an extended group of student and staff contacts. Fourthly, Sustainable Development students have the benefit of a number of targeted field trips, including the Glen Tanar estate trip, pictured opposite, where students reflect on issues from ecology to landownership.

Why does sustainable development matter?

Humanity faces enormous environmental and developmental challenges in the twenty-first century. The United Nations has identified five global issues of particular concern: the provision of clean water and adequate sanitation, energy generation and supply, human health, food production and distribution, and the continuing threat to biodiversity.

We are living in a time of tremendous opportunity, as people are working together across the globe to address the serious challenges facing humankind. We must learn to live within environmental limits and embrace sustainability as the key concept that will allow us to develop in the twenty-first century and beyond.

Our postgraduate programmes in Sustainable Development, co-ordinated by the School of Geography & Geosciences, will enable you to develop the knowledge and understanding you need, not only to understand all these issues from multiple perspectives but also to utilise the knowledge you gain to tackle them and realise the opportunities they create.

Transition University of St Andrews

Transition University of St Andrews was launched in 2009 and is part of the UK-based Transition initiative, which has been expanding worldwide over the last five years. Transition operates within community groups on a grassroots level, founded and operated by the communities themselves, in response to the threats of climate change and peak oil. Through working on practical projects with different community groups, the initiative helps communities minimise their impact on the planet, become more self-sustaining, and strengthens community ties. It also benefits individuals by developing their skills and encouraging re-consideration of
the aspects of life that truly promote happiness and wellbeing. A number of MSc students in Sustainable Development have participated in Transition’s activities which complement a number of themes pursued in our programmes.

Careers

Your question should not be “What can I do with a degree in Sustainable Development?” but instead “Can you imagine a future where it could not be useful?” Sustainability impacts upon almost all aspects of life, so your future career could take you in one of many different directions. For example, you could:
• Work in industry addressing sustainability aspects of business management, engineering, planning, transport, project management, construction, waste, energy or environmental management.

• Make yourself heard as a sustainability researcher or policy adviser in local, regional or national government, NGOs and campaigning groups.

• Act as an adviser to supra-national bodies such as the United Nations, World Bank, European Union, and the OECD.

• Become a sustainability adviser and assessor working directly in private sector organisations, industry or as a consultant (in both mainstream and specialist businesses).

• Help others directly through development or aid work.

• Spread the word by outreach and education in sustainable living via public or third sector organisations (e.g. Councils or NGOs).

• Stay at university for a PhD, perhaps eventually going on to a teaching or research career.

• Recent graduates now work at: UNDP; the World Bank; Christian Aid in Africa; LCI consultancy; and at a global bank in Dubai.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Power Engineering and Sustainable Energy at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Power Engineering and Sustainable Energy at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The Master's course in Power Engineering and Sustainable Energy places strong emphasis on state-of-the-art semiconductor devices and technologies, advanced power electronics and drives, and advanced power systems. The Power Engineering and Sustainable Energy course also covers conventional and renewable energy generation technologies. Exciting new developments such as wide band gap electronics, energy harvesting, solar cells and biofuels are discussed and recent developments in power electronics are highlighted.

Key Features of MSc in Power Engineering and Sustainable Energy

The College of Engineering has an international reputation for electrical and electronics research for energy and advanced semiconductor materials and devices.

Greenhouse gas emission and, consequently, global warming are threatening the global economy and world as we know it. A non-rational use of electrical energy largely contributes to these.

Sustainable energy generation and utilisation is a vital industry in today’s energy thirsty world. Energy generation and conversion, in the most efficient way possible, is the key to reducing carbon emissions. It is an essential element of novel energy power generation system and future transportation systems. The core of an energy conversion system is the power electronics converter which in one hand ensures the maximum power capture from any energy source and on another hand controls the power quality delivered to grid. Therefore the converter parameters such as efficiency, reliability and costs are directly affecting the performance of an energy system.

Transmission and distribution systems will encounter many challenges in the near future. Decentralisation of generation and storage systems has emerged as a promising solution. Consequently, in the near future, a power grid will no longer be a mono-directional energy flow system but a bi-directional one, requiring a much more complex management.

The MSc in Power Engineering and Sustainable Energy is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Power Engineering and Sustainable Energy students must successfully complete Part One before being allowed to progress to Part Two.

Part-time Delivery mode

The part-time scheme is a version of the full-time equivalent MSc in Power Engineering and Sustainable Energy scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules

Modules on the MSc Power Engineering and Sustainable Energy course can vary each year but you could expect to study:

Advanced Power Electronics and Drives
Power Semiconductor Devices
Advanced Power Systems
Energy and Power Engineering Laboratory
Power Generation Systems
Modern Control Systems
Wide Band-Gap Electronics
Environmental Analysis and Legislation
Communication Skills for Research Engineers
Optimisation

Facilities

The new home of MSc in Power Engineering and Sustainable Energy is at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.

Our new WOLFSON Foundation funded Power Electronics and Power System (PEPS) laboratory well-appointed with the state-of the-art equipment supports student research projects.

Careers

Employment in growing renewable energy sector, power electronic and semiconductor sector, electric/hybrid vehicle industry.

The MSc Power Engineering and Sustainable Energy is for graduates who may want to extend their technical knowledge and for professional applicants be provided with fast-track career development. This MSc addresses the skills shortage within the power electronics for renewable energy sector.

Links with industry

BT, Siemens, Plessey, GE Lighting, Schlumberger, Cogsys, Morganite, Newbridge Networks, Alstom, City Technology, BNR Europe, Philips, SWALEC, DERA, BTG, X-Fab, ZETEX Diodes, IQE, IBM, TSMC, IR, Toyota, Hitachi.

As a student on the MSc Power Engineering and Sustainable Energy course, you will learn about numerical simulation techniques and have the opportunity to visit electronics industries with links to Swansea.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.

Read less
This programme is aimed at students interested in making a change to society, environment and economy with a background in politics, sociology, environmental sciences, biology, mathematics or economics. Read more

MSc in Sustainable Development

This programme is aimed at students interested in making a change to society, environment and economy with a background in politics, sociology, environmental sciences, biology, mathematics or economics.

Postgraduate community

The postgraduate programmes in Sustainable Development have been growing very rapidly. The original MSc programme started with nine students in the 2009-2010 academic year and currently 30 students are registered. On this programme you attend an average number of 24 lectures lasting for three hours each in Semester 1 and an additional 15 lectures in Semester 2. There are also a number of tutorials, seminar presentations, student-led workshops, as well as field trips and away days. There is also a dissertation conference where you can present your research findings before you submit your dissertation.

The double MSc in Sustainable Energy takes place in both St Andrews and Moscow. The first year involves taking similar modules in the one-year programme at St Andrews with a more specific focus on energy issues. The second year challenges students to complete study abroad on a wide range of energy modules.

Sustainable Development students are extremely well catered for in several aspects. Firstly, you have the use of a dedicated postgraduate space in the Observatory. There are ports for physical laptop internet access. The room is also served by high speed WiFi connections. You have access to the room on a 24/7 basis. It offers a location for group or individual work, classes, events, receptions and even relaxation. The building is primarily for the use of Sustainable Development postgraduate students. Secondly, you have a close relationship with staff on the course. Class sizes are limited to provide a one-to-one service for students. This is a unique aspect of undertaking Sustainable Development research and teaching at St Andrews. Thirdly, the interdisciplinary nature of Sustainable Development allows you to interact with a wide range of students in other disciplines. This allows for the creation of an extended group of student and staff contacts. Fourthly, Sustainable Development students have the benefit of a number of targeted field trips, including the Glen Tanar estate trip, pictured opposite, where students reflect on issues from ecology to landownership.

The University is working with a range of key stakeholders to promote sustainable development across the higher education sector. As an active member of the Environmental Association for Universities and Colleges (EAUC) the University shares learning across the higher education and further education sector.

Why does sustainable development matter?

Humanity faces enormous environmental and developmental challenges in the twenty-first century. The United Nations has identified five global issues of particular concern: the provision of clean water and adequate sanitation, energy generation and supply, human health, food production and distribution, and the continuing threat to biodiversity.

Sustainable development is now widely regarded as the most promising framework within which these challenges can be addressed, moving humanity towards the creation of a more just and environmentally sustainable ‘global village’.

There is no single description of what sustainable development means, but one commonly used definition can be found in the 1987 Brundtland Report: “Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs.”

We are living in a time of tremendous opportunity, as people are working together across the globe to address the serious challenges facing humankind. We must learn to live within environmental limits and embrace sustainability as the key concept that will allow us to develop in the twenty-first century and beyond.

Our postgraduate programmes in Sustainable Development, co-ordinated by the School of Geography & Geosciences, will enable you to develop the knowledge and understanding you need, not only to understand all these issues from multiple perspectives but also to utilise the knowledge you gain to tackle them and realise the opportunities they create.

Transition University of St Andrews

Transition University of St Andrews was launched in 2009 and is part of the UK-based Transition initiative, which has been expanding worldwide over the last five years. Transition operates within community groups on a grassroots level, founded and operated by the communities themselves, in response to the threats of climate change and peak oil. Through working on practical projects with different community groups, the initiative helps communities minimise their impact on the planet, become more self-sustaining, and strengthens community ties. It also benefits individuals by developing their skills and encouraging re-consideration of
the aspects of life that truly promote happiness and wellbeing. A number of MSc students in Sustainable Development have participated in Transition’s activities which complement a number of themes pursued in our programmes.

Careers

Your question should not be “What can I do with a degree in Sustainable Development?” but instead “Can you imagine a future where it could not be useful?” Sustainability impacts upon almost all aspects of life, so your future career could take you in one of many different directions. For example, you could:
• Work in industry addressing sustainability aspects of business management, engineering, planning, transport, project management, construction, waste, energy or environmental management.

• Make yourself heard as a sustainability researcher or policy adviser in local, regional or national government, NGOs and campaigning groups.

• Act as an adviser to supra-national bodies such as the United Nations, World Bank, European Union, and the OECD.

• Become a sustainability adviser and assessor working directly in private sector organisations, industry or as a consultant (in both mainstream and specialist businesses).

• Help others directly through development or aid work.

• Spread the word by outreach and education in sustainable living via public or third sector organisations (e.g. Councils or NGOs).

• Stay at university for a PhD, perhaps eventually going on to a teaching or research career.

• Recent graduates now work at: UNDP; the World Bank; Christian Aid in Africa; LCI consultancy; and at a global bank in Dubai.

Read less
This programme is run by the Centre for Environmental Strategy (CES) – a leading centre for environmental and sustainability-related research and postgraduate teaching. Read more
This programme is run by the Centre for Environmental Strategy (CES) – a leading centre for environmental and sustainability-related research and postgraduate teaching.

CES accommodates a wide range of disciplines dedicated to resolving environmental problems, and this Masters programme prepares a new generation of environment and sustainability professionals for the challenges and opportunities ahead.

PROGRAMME OVERVIEW

This programme equips you with the tools essential for analysis of the relationship between environmental issues and human society, in order to make informed decisions. As part of this approach, you will evaluate political, socio-economic, ethical, cultural and regulatory frameworks.

You will acquire a sensitive appreciation of issues surrounding sustainable development and an understanding of the theory and application of sustainable development.

This programme provides a route to graduate membership of the Institute of Environmental Management and Assessment.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Life Cycle Thinking and the Circular Economy
-Ecological Economics
-Environmental Science & Society
-Foundations of Sustainable Development
-Corporate, Social and Environmental Responsibility
-Energy Policies and Economic Dimensions
-Energy-Consumer Goods in the Home
-The Energy Market from the Purchaser’s Perspective
-Corporate Energy Management
-Environmental Law
-Industrial Placement
-Integrated Assessment
-Environmental Auditing and Management Systems
-Sustainable Development Applications
-Transitions to a Low Carbon Economy
-Psychology of Sustainable Development
-Energy in industry and the built environment
-Risk Management
-Emissions Trading
-Life Cycle Assessment
-Renewable Energy and Sustainability
-Transport Energy and Emissions
-Dissertation

INDUSTRIAL PLACEMENT

Full-time students are able to undertake an industrial placement module which enables them to spend six to twelve weeks working for a company or NGO, doing the type of work they will aim to find on graduation.

Examples of organisations at which recent industrial placements have taken place include:
-Minimise Solutions
-Portsmouth City Council
-GAP
-Diocese of London
-The Radisson
-LC Energy
-AECOM
-Solar Aid
-NUS

CAREER PROSPECTS

Graduates go on to a diverse range of careers implementing sustainable development and dealing with the real environmental challenges facing humanity.

Recent examples include working as an energy efficiency officer for a local government, an environmental officer in multi-national chemical company, a sustainability advisor for a national television / radio station, an environmental consultant for an engineering consultancy, and a programme officer with a sustainability charity.

Other graduates use the research skills they developed to go on and do PhDs.

EDUCATIONAL AIMS OF THE PROGRAMME

-To provide participants with a thorough conceptual framework and the skills necessary to understand the concept of Sustainable Development, and make judgements about Sustainable Development policies and their implementation
-To equip participants to evaluate existing political, socio-economic, ethical, cultural and regulatory frameworks to inform decisions regarding Sustainable Development
-To encourage participants to develop a sensitive appreciation of the significance of the contextual settings of sustainable development, especially as they relate to developing countries
-To develop and enhance participants' research and data handling skills

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-The concept of sustainable development, and awareness of current debates
-Ecological principles and processes and how they are affected by human activities
-How to integrate sustainable development into the day-to-day management and functioning of organisations, and on-going performance monitoring
-Accessing and using environmental data

Intellectual/cognitive skills
-Absorb complex information and communicate them effectively through logically constructed arguments
-Critical reading and analysis of sustainable development principles
-Learn the value of teamwork to solve problems that require multi-disciplinary engagement
-Independent learning and study through self-directed assignments and dissertation
-Inductive reasoning: using specific examples/observations and forming a more general principal
-Deductive reasoning: use stated general premise to reason about specific examples

Professional practical skills
-Evaluate technical, social, environmental, economic and political aspects of sustainable development
-Adapt economic and social assessment tools to support decision-making
-Incorporate ethical dimensions to project design and implementation
-Give coherent presentations
-Lead discussions on complex subject areas
-Competently handle environment information
-Self-motivation, self-regulation and self-assurance

Key/transferable skills
-Independent learning capacity
-Deliver a structured and successful presentation
-Team work (group)
-The use of analytical approaches appropriately in different decision-making situations
-Write effectively as a means of communicating important ideas
-Communication of findings and presentation of research to a non-specialist audience
-Lead discussion of small/large groups
-Organise and manage a research project
-Basic to advanced IT skills

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This programme is aimed at those looking to pursue further research in sustainable development or develop their research skills within an employment context. Read more

MRes in Sustainable Development

This programme is aimed at those looking to pursue further research in sustainable development or develop their research skills within an employment context.

Postgraduate community

The postgraduate programmes in Sustainable Development have been growing very rapidly. The original MSc programme started with nine students in the 2009-2010 academic year and currently 30 students are registered. On this programme you attend an average number of 24 lectures lasting for three hours each in Semester 1 and an additional 15 lectures in Semester 2. There are also a number of tutorials, seminar presentations, student-led workshops, as well as field trips and away days. There is also a dissertation conference where you can present your research findings before you submit your dissertation.

The double MSc in Sustainable Energy takes place in both St Andrews and Moscow. The first year involves taking similar modules in the one-year programme at St Andrews with a more specific focus on energy issues. The second year challenges students to complete study abroad on a wide range of energy modules.

Sustainable Development students are extremely well catered for in several aspects. Firstly, you have the use of a dedicated postgraduate space in the Observatory. There are ports for physical laptop internet access. The room is also served by high speed WiFi connections. You have access to the room on a 24/7 basis. It offers a location for group or individual work, classes, events, receptions and even relaxation. The building is primarily for the use of Sustainable Development postgraduate students. Secondly, you have a close relationship with staff on the course. Class sizes are limited to provide a one-to-one service for students. This is a unique aspect of undertaking Sustainable Development research and teaching at St Andrews. Thirdly, the interdisciplinary nature of Sustainable Development allows you to interact with a wide range of students in other disciplines. This allows for the creation of an extended group of student and staff contacts. Fourthly, Sustainable Development students have the benefit of a number of targeted field trips, including the Glen Tanar estate trip, pictured opposite, where students reflect on issues from ecology to landownership.

St Andrews is Scotland’s first university and the third oldest in the English speaking world, founded in 1413. As well as celebrating its long history, the University of St Andrews embraces its responsibilities for the future, by placing sustainable development at the heart of its operations along four integrated fronts: governance, teaching, research and sustainable estates management. The idea is to integrate sustainability into day-to-day thinking and decision-making processes of the University. New buildings and major refurbishments of existing buildings are being designed to meet strict environmental standards. The £1.7m SALIX energy fund is helping us to achieve this. The dedicated Estates Environment Team of professionals works closely with Schools and Units to raise awareness and understanding of operational sustainability issues.

The University is working with a range of key stakeholders to promote sustainable development across the higher education sector. As an active member of the Environmental Association for Universities and Colleges (EAUC) the University shares learning across the higher education and further education sector.

Why does sustainable development matter?

Humanity faces enormous environmental and developmental challenges in the twenty-first century. The United Nations has identified five global issues of particular concern: the provision of clean water and adequate sanitation, energy generation and supply, human health, food production and distribution, and the continuing threat to biodiversity.

We are living in a time of tremendous opportunity, as people are working together across the globe to address the serious challenges facing humankind. We must learn to live within environmental limits and embrace sustainability as the key concept that will allow us to develop in the twenty-first century and beyond.

Our postgraduate programmes in Sustainable Development, co-ordinated by the School of Geography & Geosciences, will enable you to develop the knowledge and understanding you need, not only to understand all these issues from multiple perspectives but also to utilise the knowledge you gain to tackle them and realise the opportunities they create.

Transition University of St Andrews

Transition University of St Andrews was launched in 2009 and is part of the UK-based Transition initiative, which has been expanding worldwide over the last five years. Transition operates within community groups on a grassroots level, founded and operated by the communities themselves, in response to the threats of climate change and peak oil. Through working on practical projects with different community groups, the initiative helps communities minimise their impact on the planet, become more self-sustaining, and strengthens community ties. It also benefits individuals by developing their skills and encouraging re-consideration of
the aspects of life that truly promote happiness and wellbeing. A number of MSc students in Sustainable Development have participated in Transition’s activities which complement a number of themes pursued in our programmes.

Careers

Your question should not be “What can I do with a degree in Sustainable Development?” but instead “Can you imagine a future where it could not be useful?” Sustainability impacts upon almost all aspects of life, so your future career could take you in one of many different directions. For example, you could:
• Work in industry addressing sustainability aspects of business management, engineering, planning, transport, project management, construction, waste, energy or environmental management.

• Make yourself heard as a sustainability researcher or policy adviser in local, regional or national government, NGOs and campaigning groups.

• Act as an adviser to supra-national bodies such as the United Nations, World Bank, European Union, and the OECD.

• Become a sustainability adviser and assessor working directly in private sector organisations, industry or as a consultant (in both mainstream and specialist businesses).

• Spread the word by outreach and education in sustainable living via public or third sector organisations (e.g. Councils or NGOs).

• Stay at university for a PhD, perhaps eventually going on to a teaching or research career.

• Recent graduates now work at: UNDP; the World Bank; Christian Aid in Africa; LCI consultancy; and at a global bank in Dubai.

Read less
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Read more

Mission and goals

Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc.
The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Professional opportunities

Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_MI.pdf
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are
systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc. The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.
Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas. The programme is taught in English.

Subjects

- Five tracks available: Power Production; Heating, Ventilation and Air-Conditioning; Oil and Gas Engineering; Energy Engineering for an Environmentally Sustainable World (offered on Piacenza campus, see separate leaflet); Energy for Development.

- Subjects and courses common to all the tracks: Heat and Mass Transfer; Fundamentals of Chemical Processes; Advanced Energy Engineering and Thermoeconomics;; Combustion and Safety; Energy Conversion or Refrigeration, Heat Pumps and Thermal Power Systems and Components; Energy Economics or Project Management or Management Control Systems; Graduation Thesis.

- Optional subjects according to the selected track: Development Economy; Engineering and Cooperation for Development; Power Production from Renewable Sources; Engineering of Solar Thermal Processes; Petroleum Reservoir Engineering; Petroleum Technology and Biofuel; Transport Phenomena in the Reservoirs; CFD for Energy Engineering Analysis; System and Electrical Machines; Advanced Energy Systems; Dynamic Behavior and Diagnostics of Machines; Materials for Energy; Turbomachinery; Internal Combustion Engines; Air Conditioning and Room Pollutant-Controlling Plants, Energy Savings and Renewable Energies in Buildings; Applied Acoustics and Lighting; Design of Thermal Systems; Energy Systems and Low-Carbon Technologies; Air Pollutions and Control Engineering; Operation and Control of Machines for Power Generation; Bio-energy and Waste-to-Energy Technologies; Smart Grids and Regulation for Renewable Energy Sources.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The Master of Science programme in Energy Engineering for an Environmentally Sustainable World (EEE-SW) is taught in English and offers a broad overview of the various technical issues related to energy and the environment. Read more

Mission and Goals

The Master of Science programme in Energy Engineering for an Environmentally Sustainable World (EEE-SW) is taught in English and offers a broad overview of the various technical issues related to energy and the environment. This special programme aims to prepare technicians capable of following and actively directing technological advances, operating effectively in a competitive and multi-disciplinary industrial context.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

Career Opportunities

Graduates find employment in numerous industrial sectors, including industries producing and distributing energy, thermal, thermal-electric, air-conditioning and refrigeration plant design and management companies, energy management in companies or bodies with production objectives which may be far-removed energy. A Master of Science Engineer has openings in research and development as well as in activities related to the feasibility study and design of large-scale plant, innovative processes and development of technologically advanced machines and components.

For the academic year 2014-2015 prospective students with a university qualification obtained abroad can apply only for the 1st semester. This study course does not accept applications for the 2nd semester.
Applicants are required to take the GRE test (Graduate Record Examination) through ETS DI code 6939 in due time to have test scores sent to Welcome Desk Piacenza (welcome.piacenza(at)polimi.it) within the last day of the application period.

Recommended minimum GRE scores to be achieved for admission:
Verbal Reasoning: 155
Quantitative Reasoning: 155
Analytical Writing: 4.0

Only students with a Degree earned at an Italian University can apply without taking GRE test and they can also apply for admission at the 2nd semester.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_01.pdf
The programme provides a mix of design, operational and management skills, with particular emphasis on system and process engineering related to the production of basic energy carriers (electricity, heat and fuels) under tight environmental constraints. Students will learn how to evaluate and solve engineering issues (thermal, environmental, mechanical, chemical, electrical) raised by energy conversion systems, as well as analyze and assess operational and maintenance issues. Particular attention will be devoted to renewable energy sources, non-conventional energy technologies, emission control, electric systems with distributed power generation, etc. Teaching is organized around 3 core aspects: modeling and simulation tools; interdisciplinary vision; problem-solving approach. The programme is taught in English.

Subjects*

1st year – 1st semester
- Advanced Mathematical methods for energy engineering
- Advanced Thermodynamics and Heat Transfer
- Fundamentals of chemical processes for energy and the environment
1st year – 2nd semester
- Turbomachinery and internal combustion engines
- Energy and environmental technologies for building systems
- Electric conversion of renewable energy sources
- Materials and manufacturing process for energy

2nd year – 1st semester
- Energy systems and low-carbon technologies
- Air pollution and control engineering
- Operation and control of machines for power generation
2nd year – 2nd semester
- Bio-energy and waste-to-energy technologies
- Smart grids and regulation for renewable energy sources
- Major independent project work

* The list and titles of the courses to be followed is undergoing a revision aimed at enhancing the focus of the programme on the connection between Energy and the Environment. This will entail a reduction of the credits devoted to manufacturing, operation and control of machines and an increase of the credits devoted to optimization methods, renewable energy, industrial ecology. The final list of courses to be taken for the Academic Year 2016-17 will be available in January 2016.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The Masters in Sustainable Energy is an interdisciplinary programme that will equip you for employment within the international energy sector. Read more
The Masters in Sustainable Energy is an interdisciplinary programme that will equip you for employment within the international energy sector. This programme addresses all the key aspects of sustainable energy, from the most advanced technologies through to ethical and economic considerations.

Why this programme

◾This programme provides an in-depth knowledge of the social and economic drivers of the current UK and international energy industry, and insights in the behavioural, business and technical aspects concerned with energy production and distribution.
◾Students will learn a range of technical knowledge in the science and engineering of energy production and use, with emphases towards chemical, electrical and mechanical engineering, dependent on the students’ preferences and past experience.
◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾Students will graduate from this programme with a complete scientific knowledge and appreciation of the relevance of traditional and emerging energy technologies.
◾Learning will be underpinned with regular industrial lectures and commentary so that the context is maintained and highlighted throughout the year.

Programme structure

Modes of delivery of the MSc in Sustainable Energy include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

You will take a combination of core and optional courses, and a project which you will select from a list of standard projects or you can suggest a project of your own choosing.

Core courses
◾Energy and environment
◾Energy conversion systems
◾Energy from waste
◾Integrated system design project
◾Renewable energy
◾MSc project.

Optional courses
◾Electrical energy systems
◾Environmental biotechnology
◾Environmental ethics and behavioural change
◾Impacts of climate change
◾Introduction to wind engineering
◾Nuclear power reactors
◾Power electronics
◾Project planning, appraisal and implementation
◾Theory and principles of sustainability.

Projects

-◾To complete the MSc degree you must undertake a project worth 60 credits, which will integrate subject knowledge and skills that you acquire during the MSc programme
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Sustainable Energy. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾You will be taught by academic staff with expertise from across a range of disciplines within the Colleges of Science & Engineering and Social Sciences. This interdisciplinary approach will provide you with high quality teaching of contemporary, industrially relevant courses which will together provide an excellent background in sustainable energy.
◾You will benefit from significant input from industry to our teaching programme, including teaching on some courses, guest lectures and seminars. There are also informal opportunities to meet people from industry at open events and visits to company offices. Projects may be carried out in conjunction with industry.
◾Many of the courses within the programme will be backed up by specific project work and much of this will be linked in to research activities across the University.

Career prospects

The degree is designed to develop future leaders and decision makers in the growing international energy business. Graduates may expect to forge careers in established energy generation and transmission companies (for instance in the UK, National Grid, Scottish and Southern Energy, etc.), energy consultancy businesses, traditional oil, gas and construction companies who are moving rapidly into renewables, or fresh new companies in the wind, marine, solar or biomass sectors. Scotland, in particular, has seen great expansion in sustainable energy businesses in the last decade, with some of the best worldwide potential for wind, wave and tidal generation.

Graduates of this programme have gone on to positions such as:
Research Assistant at a university
Geothermal Energy Engineer at Town Rock Energy
Hydropower Engineer at Renewables First
Research Analyst at Cognolink
Research and Development Consultant.

Accreditation

The MSc Sustainable Energy is accredited by the Institution of Mechanical Engineering. An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Read less
This course is uniquely broad in its coverage, reflecting the range of knowledge and skills required to address the challenges of energy, climate change and sustainable development. Read more

About the course

This course is uniquely broad in its coverage, reflecting the range of knowledge and skills required to address the challenges of energy, climate change and sustainable development. Business, society and policy makers are recognising that change is required at all levels of society if we are to address the challenge of sustainable energy and development that meets the needs of future generations.

This course will allow you to understand how sustainable development can be achieved and how we can deal with global climate change through sustainable energy, more efficient design and manufacturing, better management of buildings, organisations and behaviour change. You are able to choose from a range of modules to focus either on more general sustainable development, policy and behaviour change or consider strategies for business and industrial sustainability. If you want to be equipped, challenged or re-trained to lead communities, organisations and governments in responding to this challenge then this course is for you.

The course is suitable for graduates from a variety of disciplines with either a social science or physical science background. It is also suitable for mid-career professionals with relevant experience. The course has been accredited by both the Chartered Institute of Building Services Engineers (CIBSE) and the Energy Institute for completing the educational requirements for chartered engineer registration.

Reasons to Study:

• Academic and research expertise
With more than 30-year’s research experience, our Institute of Energy and Sustainable Development (IESD) research and teaching staff provide students with a unique opportunity to learn from scientists actively involved in furthering knowledge and sharing expertise

• Flexible study options
the course is designed to be flexible and fit around you with on campus, part-time or full-time or distance learning options, and multiple exit awards from a full master’s to a single module

• Course content relevant to modern day practice
This course has evolved from input from established courses delivered by the IESD, relevant research projects and industry-related issues are covered to ensure you gain the relevant knowledge and expertise required for when you graduate

• Study a wide range of specialist modules
course content is regularly reviewed and modules have been specifically developed to address skills gaps in the industry

• Excellent graduate prospects
graduates have gone on to work for global companies including the Carbon trust, BMW, National Grid and the European Commission; as well as a variety of other energy and environmental consultancies, central and local government and multinational organisations

Course Structure

Modules

• Sustainable Development
• Sustainable Energy
• Energy in Buildings
• Resource-Efficient Design
• Energy Analysis Techniques
• Research Methods

Optional Modules:
• Integrated Environmental Strategies
• Leading Change for Sustainability
• Low-Impact Manufacturing
• Green Business

You will complete the MSc by undertaking a research project on a topic of your choice, supervised by an experienced member of research staff.

Teaching and assessment

Full-time students attend for two days each week and receive formal lectures from experienced researchers and teaching staff, complemented by informal seminars and group discussions. Part-time students attend one day per week. You will also be expected to undertake self-directed study.

Distance learning students follow a structured study plan provided on the VLE, supported by discussion forums with other students, and email and telephone conversations with the module leader.

All assessment is by coursework. Each taught module has two items of coursework. The first is a smaller assignment, on which prompt feedback is given while the module is being studied. A second, major assignment is submitted after the material has been assimilated.

As well as the eight taught modules, students complete either an individual dissertation or a team-based design project, and all students get to attend the annual MSc conference, where final year students present.

Contact and learning hours

You will normally attend two-four hours of timetabled taught sessions each week for each module undertaken during term time; for full time study this would be 12 hours per week during term time. You can also expect to typically undertake a further hours of six hours independent study and assignments as required per week.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
The Master of Science course in Energy Engineering is aimed at students trained as general engineers with skills on the new technologies relevant to the energy conversion and its rational use. Read more
The Master of Science course in Energy Engineering is aimed at students trained as general engineers with skills on the new technologies relevant to the energy conversion and its rational use. Candidates will be required to plan, design and manage energy systems blending creative solutions with up-to-date technologies relative to energy conversion and efficiency enhancement.

At the end of the course, engineers will be good at operating in the current technological/industrial environment - i.e. a dynamic and competitive one - and sensitive to the main industry, environment and security issues and standards.

The main aim of the course is to offer an in-depth theoretical and practical understanding of the most advanced energy conversion technologies, including renewable energy generation and energy storage.

Please visit http://www.en2.unige.it for any further information.

The Course is held at Savona Campus, in the city of Savona.

WHAT WILL YOU STUDY AND FUTURE PROSPECTS

The course consists of modules that include thermo-fluid dynamics and thermo-chemical dynamics, as well as fluid machinery and energy conversion systems (co-generation, fuel cells, power plants from renewable energy sources and smart grids), traditional energy and civil engineering plants, electric networks, economics, available and emerging technologies for reducing greenhouse gas emissions and environmental monitoring.

A rising interest in and increased urge for 20/20/20 policies in Europe has resulted in a growing industrial demand for highly qualified Energy Engineers with a sound knowledge and specific skills to analyze, design and develop effective solutions in a broad range of contexts. Furthermore, in the last few years both emerging industrial countries and developing ones have increased their awareness of environmental issues and energy production and started implementing large energy engineering projects thus boosting the job opportunities worldwide. The course is aimed at students seeking high qualification in the following main fields:

Energy conversion processes from chemical, bio-chemical, thermal sources into mechanical and electrical ones

Sustainable & Distributed Energy: renewable energy (solar, geothermal, wind, hydro), fuel cells, bio-fuels, smart power grids, low emission power plants Sustainable Development: C02 sequestration, LCA analysis, biomass exploitation, Energy Audit in buildings, energy from waste, recycling, modeling and experimental techniques devoted to optimum energy management.

The MSc course work in partnership with industries and research institutes in Liguria, in Italy and abroad.

WHAT DOES THE MASTER IN ENERGY ENGINEERING OFFER TO ITS STUDENTS

In the last years both industrialization and population growth have brought to a higher demand for sustainable energy, smart energy management with reduced environmental impact. As a result the MSc Energy Engineering was born out of the need to better cope with Sustainable Development issues and progress in energy conversion technologies, in including renewable energy generation and energy storage, NZE buildings, with an increasing attention devoted to greenhouse gas emissions reduction through a multidisciplinary approach.

This MSc course is taught in English and students are supported in achieving higher English language skills. The University of Genoa set its modern campus in Savona and in the last few years, public and private funds have been invested to improve its infrastructures, sport facilities, hall of residence, library and an auditorium.

The University of Genoa and Siemens jointly developed a smart polygeneration microgrid in Savona Campus – officially commissioned on February 2014.

Since then the campus has largely generated enough power to satisfy its own needs with the help of several networked energy producers, i.e. total capacity 250Kw of electricity and 300kW of heating.

The grid includes microgasturbines, absorption chillers, a photovoltaic plant, a solar power station and electrochemical and thermal storage systems.

This huge facility together with a series of laboratories located at the Campus (e.g. Combustion Lab, Energy Hub Lab) offer the students a unique opportunity for hands-on activities, e.g. to measure and investigate the performance of real scale innovative energy systems.

Read less
This course is for engineers who wish to develop their skills and knowledge in energy systems that will meet future energy needs. Read more
This course is for engineers who wish to develop their skills and knowledge in energy systems that will meet future energy needs. Such energy systems will need to be designed and implemented in accordance with principles of sustainability.

The course content is designed to be relevant to international, national and local government energy policies and strategies, and will be of value to anyone working in an energy related engineering discipline. The primary focus of the course is for graduates in building services, mechanical, electrical and chemical engineering.

The aims of the course are to:
- Present and take forward arguments for sustainability in the design and implementation of energy delivery systems

- Provide you with a broad basis of advanced understanding in the technologies that deliver high quality energy services with minimum environmental impact

- Design appropriate decentralised energy delivery systems, based on a range of criteria including environment, cost and engineering potential

- Develop your understanding of policy, market and institutional factors that promote or constrain innovation.

Excellent scholarship opportunity

Students who have accepted an offer for a full-time place on this course are encouraged to apply for LSBU's Kevin Herriott scholarship. Find out more about the Kevin Herriott scholarship.

Students on this course are also eligible to apply for a bursary from the Panasonic Trust fellowship scheme, worth £8,000.

See the website http://www.lsbu.ac.uk/courses/course-finder/sustainable-energy-systems-msc

Modules

An indicative list of topics covered on this course are:

- Renewable energy technologies 1
This module provides the necessary knowledge and skills to analyse the technical performance, environmental impact and economic feasibility of a variety of solar and wind powered systems. The module provides a systematic understanding of current knowledge, and a critical awareness of current problems and new insights at the forefront of professional practice; train students to evaluate critically current research and advanced scholarship in the field of solar and wind power; enables students to evaluate solar and wind power technologies, develop critiques of them and, where appropriate, to propose novel solutions.

- Renewable energy technologies 2
The module provides the necessary knowledge and skills to analyse the technical performance, environmental impact and economic feasibility of a number renewable energy technologies such as fuel cells, biofuels, geothermal, and micro-hydropower systems.

- Energy resource and use analysis
This module is designed to develop strategic and operational management skills in the fields of infrastructure asset management and project appraisal. It covers design life extensions, risk and asset management techniques for infrastructure, and techniques for physical appraisal of infrastructure, and their economic, environmental and social impacts.

- Electrical power
The module covers electrical power engineering as applied to the design of systems in buildings. In particular, this includes the connection of, and the effects of, small-scale embedded generation as might be employed to exploit renewable energy sources. The module aims to provide appreciation and understanding of electrical services design in buildings with particular reference to safety requirements and the effects of embedded generation on the supplier and the consumer.

- Sustainable refrigeration
The module introduces the principles of thermodynamics, and applies them to the study and design of energy efficient refrigeration systems. Vapour compression, absorption and other novel cycles are analysed and modelled Practical applications of sustainable refrigeration are investigated through case studies.

- Environmental management
The module is designed to develop understanding of the way in which human social and economic activities impact on the environment. The emphasis is on how managers can assess and influence the environmental impact of their particular organisation, with reference to key technologies and the political and legal constraints within which organisations must operate.

- Energy engineering project

Employability

The emergence of sustainable energy technologies, together with targets for implementation, mean that specialist engineers will increasingly be in demand to specify, design and install these systems. Many engineering consultancies and energy service companies are developing specialist sustainability teams, and already there is a shortage of skilled personnel.

Professional accreditation

The course provides the Masters level academic requirements leading to Chartered Engineer status when following on from an appropriate accredited BEng degree.

The course is accredited on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

Accreditation:
This course is accredited by the Chartered Institution of Building Services Engineers (CISBE) and the Energy Institute as masters further learning to meet the academic requirements of becoming a Chartered Engineer (with a suitable first degree).

The course is accredited on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

The Chartered Institution of Building Services Engineers (CIBSE) is the standard setter and authority on building services engineering in the UK and overseas. It speaks for the profession and supports career development.

The Energy Institute is the professional members' body for the energy industry, delivering good practice and professionalism across the sector. Its purpose is to develop and disseminate knowledge, skills and good practice towards a safer, more secure and sustainable energy system.

Read less
Renewable energy production is increasing rapidly and there is a global shortage of trained engineers. With this master’s course you’ll have a highly relevant qualification that’s accredited by the Engineering Council via the Institution of Mechanical Engineers (IMechE). Read more
Renewable energy production is increasing rapidly and there is a global shortage of trained engineers. With this master’s course you’ll have a highly relevant qualification that’s accredited by the Engineering Council via the Institution of Mechanical Engineers (IMechE).

The course covers topics such as photovoltaic, wind, thermo-mechanical energy conversion systems, hybrid renewable energy systems, energy efficiency, building energy modelling and engineering optimisation.

The University has a well-established reputation for renewable and sustainable energy technologies.

You’ll benefit from excellent technical facilities including specialist workshops. We also have a laboratory that’s dedicated to power networks, wind energy, photovoltaics and battery testing for electric vehicles.

For more information about the January start for this course, please view the website: https://www.northumbria.ac.uk/study-at-northumbria/courses/renewable-and-sustainable-energy-technologies-msc-ft-dtfrws6/

Learn From The Best

Our teaching team includes experts from Renewable and Sustainable Energy Research Group. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent (Research Excellence Framework 2014).

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. Our industrial links help inform our curriculums and ensure a variety of site visits and input from practitioners via guest lectures.

Teaching And Assessment

Our teaching methods include lectures, seminars, workshops, individual tutorials, and group projects. As this is a master’s course there is a significant element of independent learning and self-motivated reflection.

You’ll undertake a master’s project that will hone your skills in evaluating and applying research techniques and methodologies. The topic of the project will reflect your own unique interests.

Assessments are designed to give feedback as well as to monitor your level of achievement. The assessed projects will enable you to test your skills in ways that relate to current industrial practice. Specific assessment methods include assignments, exams, technical reports and presentations.

Module Overview
KB7003 - Building Energy and Environmental Modelling (Core, 20 Credits)
KB7030 - Research Methods (Core, 20 Credits)
KB7040 - Sustainable Development for Engineering Practitioners (Core, 20 Credits)
KB7042 - Thermo-Mechanical Energy Conversion Systems (Core, 20 Credits)
KB7043 - Multidisciplinary Design & Engineering Optimisation (Core, 20 Credits)
KB7045 - Wind, Photovoltaic and Hybrid Renewable Energy Systems (Core, 20 Credits)
KB7052 - Research Project (Core, 60 Credits)

Learning Environment

Northumbria University provides outstanding facilities for renewable and sustainable energy technologies. For example our New and Renewable Energy Laboratory is an excellent resource for research into power networks, wind energy, photovoltaics and battery testing for electric vehicles. All our facilities are backed up by a team of technicians who will give support and advice when you need it.

Technology Enhanced Learning (TEL) is embedded throughout the course with tools such as the ‘Blackboard’ eLearning Portal and electronic reading lists that will guide your preparation for seminars and independent research. Our use of lecture capture software will help you revise challenging material.

To facilitate group projects there is a working space called The Hub that’s well equipped for meetings and working with IT. The Zone is another area that’s popular with students undertaking group work or individual study.

Research-Rich Learning

Northumbria’s strong research ethos is an essential aspect of how you will develop as a critical, reflective and independent thinker. With our problem-solving approach you’ll acquire a wide range of research and analytical skills as you progress through the course. These skills will come together in the master’s project that you’ll undertake, which will require independent research and appropriate techniques of inquiry, critical evaluation and synthesis.

Throughout the course your learning will be directly impacted by the teaching team’s active research. One of Northumbria’s signature research themes is ‘Future Engineering’, which is about innovation in the engineering industry so that it’s fit for purpose in the 21st century. We also have particular interests in smart materials and sustainable technologies.

Give Your Career An Edge

MSc Renewable and Sustainable Technologies has been accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirements for registration as a Chartered Engineer. Chartered status is associated with improved employability and higher salaries.

The course will equip you with the expertise to design, optimise, apply and evaluate renewable and sustainable energy technologies. Your master’s project will extend your practical experience of industry-standard hardware and software tools. At the same time you’ll develop transferable key skills and personal attributes that promote employability and lifelong learning.

When it comes to applying for jobs our Careers and Employment Service offers resources and support that will help you find roles matching your interests and skills. You will be able to access a range of workshops, one-to-one advice, and networking opportunities.

Your Future

By the end of this course you’ll be in an excellent position to start or continue a career in renewable and sustainable energy technologies. Renewable energy production could increase by up to 1,000% by 2050 compared to 2010, according to the UN Intergovernmental Panel on Climate Change, so there will be a pressing need for well-trained professionals.

You could also undertake a postgraduate research degree such as an MPhil, PhD and Professional Doctorate. If you decide to start up your own business, it’s good to know that the combined turnover of our graduates’ start-up companies is higher than that of any other UK university.

Whatever you decide to do, you will have the transferable skills that employers expect from a master’s graduate from Northumbria University. These include the ability to tackle complex issues through conceptualisation and undertaking research, the ability to contribute to new processes and knowledge, and the ability to formulate balanced judgements when considering incomplete or ambiguous data.

Read less
The School of Civil and Building Engineering at Loughborough has an outstanding research reputation, 75% or its research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework. Read more
The School of Civil and Building Engineering at Loughborough has an outstanding research reputation, 75% or its research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

This programme is aimed at students training for a research career in energy and related areas, in either academia or industry. It focuses on energy demand reduction in the built environment, examining technical solutions within the wider social and economic context.

The course is closely linked with the London-Loughborough Centre for Doctoral Research in Energy Demand (the ‘LoLo CDT’) and is led by internationally-leading research staff at Loughborough University and the Energy Institute at University College, London.

The programme capitalises on the world-class building energy modelling and monitoring expertise in the Building Energy Research Group and the Royal Academy of Engineering Centre of Excellence in Sustainable Building Design. Students make use of our extensive laboratory and full-scale testing facilities, enriched by site visits, conferences, workshops and seminars by external experts. The programme begins with an intensive residential week studying Energy Demand in Context. Students attend lectures from energy experts in different fields, while working to produce a pathway satisfying the goal of a national 80% emissions reduction by 2050.

This is an intensive but rewarding course for future leaders in energy demand research; we accept approximately ten high calibre students each year.

Key Facts

- Research-led teaching from international experts. This unique programme is taught by acknowledged world experts in the field.

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015.

- The MRes is an integral part of the London-Loughborough Centre for Doctoral Research in Energy Demand, which has just been funded by the Engineering and Physical Sciences Research Council for a further eight years.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/energy-demand-studies/

Programme modules

- Energy Demand in Context
The aim of this module is to provide an introduction into the many issues of energy demand in the built environment, setting them in the wider context of climate change policy and the history of energy use. Why is energy demand deduction complex? How did we get to where we are? What are the options for the future, and what is your possible role?

- Building Energy Systems and Models
This module will provide students with a thorough understanding of how systems and models of systems work at various levels, from heat transfer in materials and energy systems to the national building stock. They will understand approaches to modelling buildings, systems of energy demands and the influence of people. Students will be taught how to use building energy models and to interpret the results.

- Energy Theory, Measurement and Interpretation
The aims of this module are: to develop students understanding of the principles of measurement in the context of energy demand and associated factors; to explain how to interpret and represent the results accounting for uncertainties and limitations; and to apply this knowledge at different scales from individual components, to building, urban and national scale.

- Research Development and Dissemination
The module aims to provide students with the knowledge and skills needed to devise, plan and disseminate research projects. The module will provide skills in defining research questions and hypotheses; critically reviewing literature; planning a programme of research; communicating to different stakeholders including academia, industry and the public; preparing conference presentations and academic papers; engaging with the public; and producing an MRes Research Dissertation proposal. The module also includes project administration skills including, research ethics and confidentiality.

- Energy Demand: Society Economics and Policy
This module is delivered in the second semester in a series of weekly sessions at UCL. Its aim is to provide a broad understanding of the social, economic, and policy determinants of energy demand, taking into account areas such as pricing and demand, market structure, cost-benefit analysis, social environment and lifestyle, individual attitudes and behaviour, public-private goods, externalities and the policy cycle.

- Quantitative and Qualitative Research Methods
This module will provide students with the grounding in quantitative and qualitative research methods that they need to become effective researchers. The module will provide: skills in statistical analysis and use of the SPSS software; an ability to make informed choices about ways of handling data and to assess the appropriateness of particular analytical procedures; an understanding of questionnaire, interview and focus group design, delivery and analysis; and an ability to critically assess and evaluate the research of others. Whilst case-study applications will be relevant to building energy demand, the skills and knowledge acquired will be generic.

- Energy Demand Studies Research Dissertation
The aims of this module are to train students in the planning, execution and evaluation of a substantive research project; to train them in the art of persuading others of the importance of the research and outcomes and to project their work through academic writing. The dissertation enables students to explore a topic of interest in great depth.

Facilities

MRes students make use of the extensive laboratory facilities and test houses operated by the School of Civil and Building Engineering. The MRes combines measurements in buildings with modelling studies, allowing students to experience at first hand the ‘performance gap’ – the difference between modelling and real world behaviour.

Lectures at University College London provide access to world-class experts in energy economics and the societal context. Our staff pride themselves on their enthusiasm and availability to students, who often comment on this aspect of the course in their feedback.

How you will learn

The programme has a strong student-centred and research focus. Four taught modules set the context and provide subject-specific knowledge, whilst two further modules provide training in relevant research methods. A research dissertation forms half of the total credits and can lead to publishable work.

The MRes in Energy Demand Studies can be studied as a 1-year standalone programme and also forms the first year of the 4-year course for students accepted into the LoLo CDT, who then go on to study for a PhD. The opportunity exists for strong MRes students to join the LoLo Centre at the end of their MRes year.

- Assessment
The MRes is assessed entirely by coursework. A group presentation forms part of the assessment in the initial residential module; with the remainder assessed by an individual essay. Other modules include assessment by presentations and written work, including essays, reports and press releases.

The research project is assessed by a dissertation, an academic paper and a viva at which students present the work to an expert panel.

Careers and further study

Both the School of Civil and Building Engineering and the LoLo CDT have strong links with industry (e.g. Willmott Dixon, B&Q), policy makers (e.g. DECC), and the wider stake-holder community.
Dissertation projects are often linked to our industry sponsors’ interests, which provides a natural pathway to future employment and our visiting Royal Academy Professors and industry partners provide practice-based lectures and workshops.

Scholarships

This is a sought-after course, with a small intake, which ensures students’ access to highly qualified tuition. No scholarships are available for the standalone MRes.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/energy-demand-studies/

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X