• Swansea University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Durham University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Cass Business School Featured Masters Courses
National Film & Television School Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Bath Spa University Featured Masters Courses
"superconductivity"×
0 miles

Masters Degrees (Superconductivity)

We have 11 Masters Degrees (Superconductivity)

  • "superconductivity" ×
  • clear all
Showing 1 to 11 of 11
Order by 
The Department gives MSc students an opportunity to study and perform a research project under the supervision of recognized experts and to acquire specialist knowledge of one or a few topics at the cutting edge of contemporary physics. Read more
The Department gives MSc students an opportunity to study and perform a research project under the supervision of recognized experts and to acquire specialist knowledge of one or a few topics at the cutting edge of contemporary physics.

The project will be devoted to one of several topical areas of modern physics including high-temperature superconductivity, terahertz semiconductor and superconductor electronics, quantum computing and quantum metamaterials, physics of extreme conditions and astrophysics.

Core study areas currently include mathematical methods for interdisciplinary sciences, research methods in physics, superconductivity and nanoscience and a research project.

Optional study areas currently include characterisation techniques in solid state physics, quantum information, advanced characterisation techniques, quantum computing, and physics of complex systems.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/advanced-physics/

Programme modules

Compulsory Modules:
- Mathematical Methods for Interdisciplinary Sciences
- Research Methods in Physics
- Superconductivity and Nanoscience
- Research Project Part 1
- Research Project Part 2

Optional Modules:
- Characterisation Techniques in Solid State Physics
- Fundamentals of Quantum Information
- Matlab as a Scientific Programming Language
- Advanced Characterisation Techniques
- Quantum Computing
- Physics of Complex systems

Learning and teaching

Knowledge and understanding are acquired through lectures, tutorials, problem classes and guided independent study. Assessment in taught modules is by a combination of examination and coursework. The MSc includes a significant research project completed through guided independent study with a research supervisor.

Careers and further study

The aim of the course is to equip students with key skills they need for employment in industry, public service or academic research.

Why choose physics at Loughborough?

We are a community of approximately 170 undergraduates, 30 postgraduates, 16 full-time academic staff, seven support staff, and several visiting and part-time academic staff.

Our large research student population and wide international links make the Department a great place to work.

- Research
Our research strengths are in the areas of condensed matter and materials, with a good balance between theory and experiment.
The quality of our researchers is recognised internationally and we publish in highly ranked physics journals; one of our former Visiting Professors, Alexei Abrikosov, was awarded the 2003 Nobel Prize in Physics.

- Career Prospects
100% of our graduates were in employment and/or further study six months after graduating. They have gone on to work with companies such as BT, Nikon Metrology, Prysmian Group, Rutherford Appleton Laboratory ISIS and Smart Manufacturing Technology.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/advanced-physics/

Read less
We have a long history of internationally recognized research in the study and development of new materials. Read more
We have a long history of internationally recognized research in the study and development of new materials. This course gives the possibility of working with and learning from expert researchers in the physics of materials in a friendly and vibrant research atmosphere provided by the international team of scientists at the Department of Physics.

This programme contains a combination of supervised research work, development of research skills and taught material. The programme involves a set of taught modules and an experimental or theoretical research project.

The theme of the project will be dedicated to one of the topical areas in physics of materials including graphene-based materials, thin film materials, shape memory compounds or nanomaterials or experimental study of properties of materials.

Core study areas mathematical methods for interdisciplinary sciences, research methods in physics, superconductivity and nanoscience, characterisation techniques in solid state physics, and a research project.

Optional study areas include polymer properties, polymer science, advanced characterisation techniques, simulation of advanced materials and processes, and materials modelling.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/physics-materials/

Programme modules

Compulsory Modules:
- Mathematical Methods for Interdisciplinary Sciences
- Research Methods in Physics
- Superconductivity and Nanoscience
- Research Project Part 1
- Research Project Part 2
- Characterisation Techniques in Solid State Physics

Optional Modules:
- Polymer Properties
- Polymer Science
- Advanced Characterisation Techniques
- Simulation of Advanced Materials and Processes
- Materials Modelling

Learning and teaching

Knowledge and understanding are acquired through lectures, tutorials, problem classes and guided independent study. Assessment in taught modules is by a combination of examination and coursework. The MSc includes a significant research project completed through guided independent study with a research supervisor.

Careers and further study

The aim of the course is to equip students with key skills they need for employment in industry, public service or academic research.

Why choose physics at Loughborough?

We are a community of approximately 170 undergraduates, 30 postgraduates, 16 full-time academic staff, seven support staff, and several visiting and part-time academic staff.

Our large research student population and wide international links make the Department a great place to work.

- Research
Our research strengths are in the areas of condensed matter and materials, with a good balance between theory and experiment.
The quality of our researchers is recognised internationally and we publish in highly ranked physics journals; one of our former Visiting Professors, Alexei Abrikosov, was awarded the 2003 Nobel Prize in Physics.

- Career Prospects
100% of our graduates were in employment and/or further study six months after graduating. They have gone on to work with companies such as BT, Nikon Metrology, Prysmian Group, Rutherford Appleton Laboratory ISIS and Smart Manufacturing Technology.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/physics-materials/

Read less
Our Physics MSc is highly flexible, giving you the opportunity to structure your course to meet your individual career aspirations. Read more

Our Physics MSc is highly flexible, giving you the opportunity to structure your course to meet your individual career aspirations.

The course gives you the opportunity to broaden and deepen your knowledge and skills in physics, at the forefront of research in the area. This will help to prepare you to progress to PhD study, or to work in an industrial or other business related area.

A key feature of the course is that you can choose to study a wide range of optional modules or focus on a particular area of research expertise according to your interests and future career aspirations.

Under the umbrella of an MSc in physics, you can specialise in astrophysics, bionanophysics, soft matter physics, condensed matter physics, quantum technology, optical materials or medical imaging. Or you can take a diverse range of modules to suit your interests and keep their options open.

Course content

The course offers you a very wide range of optional modules, giving you the opportunity to specialise in areas such as astrophysics, bionanophysics, soft matter physics, condensed matter physics, quantum technology, optical materials or medical imaging.

Modules studied may include: quantum field theory; superconductivity; general relativity; medical image analysis; cosmology; bionanophysics; magnetism in condensed matter; statistical mechanics; star and planet formation; elementary particle physics; quantum matter; and photonics.

Alongside your optional modules, you will undertake an advanced and extensive research project in one of the School of Physics and Astronomy’s internationally recognised research groups. This will enable you to develop advanced skills in research planning, execution and reporting, possibly leading to publication of your work in an international journal.

Course structure

Compulsory modules

  • MSc Project 75 credits
  • Advanced Literature Review 15 credits
  • Current Research Topics in Physics 15 credits

Optional modules

  • Cardiovascular Medical Imaging 10 credits
  • Digital Radiography and X-ray Computed Tomography 10 credits
  • Magnetic Resonance Imaging 10 credits
  • Ultrasound Imaging 10 credits
  • Radionuclide Imaging 10 credits
  • Medical Image Analysis 10 credits
  • Digital Radiography and X-ray Computed Tomography 15 credits
  • Ultrasound Imaging 15 credits
  • Radionuclide Imaging 15 credits
  • Medical Image Analysis 15 credits
  • Cosmology 15 credits
  • Photonics 15 credits
  • Molecular Simulation: Theory and Practice 15 credits
  • Star and Planet Formation 15 credits
  • Advanced Quantum Mechanics 15 credits
  • Quantum Photonics 15 credits
  • Quantum Matter 15 credits
  • Magnetism in Condensed Matter 15 credits
  • Statistical Mechanics 15 credits
  • Advanced Mechanics 15 credits
  • Bionanophysics 1 15 credits
  • Theoretical Elementary Particle Physics 15 credits
  • Soft Matter Physics: Liquid Crystals 15 credits
  • Quantum Many-Body Physics 15 credits
  • Winds, Bubbles and Explosions 15 credits
  • Bionanophysics 2: Advanced Bionanophysics Research 15 credits
  • Advanced Group Industrial Project 15 credits
  • Superconductivity 15 credits
  • Soft Matter Physics: Polymers, Colloids and Glasses 15 credits
  • Quantum Transport in Nanostructures 15 credits
  • Quantum Field Theory 15 credits
  • General Relativity 15 credits
  • Quantum Information Science 15 credits
  • Advanced Physics in Schools 15 credits

For more information on typical modules, read Physics MSc in the course catalogue

Learning and teaching

Teaching methods include a combination of lectures, seminars, supervisions, problem solving, presentation of work, independent research, and group work (depending on the modules you choose to study).

Assessment

Assessment of modules are by problem solving exams and research assignments. The project is assessed on the ability to plan and conduct research and communicate the results in written and oral format.

Career opportunities

The specialist pathways offered by this course (in astrophysics, bionanophysics, soft matter physics, condensed matter physics, quantum technology, optical materials or medical imaging) allow you to tailor your course and focus on a particular area of research expertise according to your interests and future career aspirations.

Physicists are highly employable due to their high level of numeracy and mathematical competence, their computer skills, and their high level of technical academic scientific knowledge. They are employed by: industry, financial sector, defence, education, and more.

This course is also a clear route to PhD level study.

Careers support

We encourage you to prepare for your career from day one. That’s one of the reasons Leeds graduates are so sought after by employers.

The Careers Centre and staff in your faculty provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
Theoretical physics is an international and highly competitive field. For several decades, Utrecht University's Institute for Theoretical Physics has been on the forefront of research in this area. Read more

Theoretical Physics

Theoretical physics is an international and highly competitive field. For several decades, Utrecht University's Institute for Theoretical Physics has been on the forefront of research in this area.

This programme serves as a gateway to understanding the fascinating world of physics, ranging from the unimaginably small scales of elementary particles to the vast dimensions of our universe.

The central goal of the Theoretical Physics programme is to obtain a detailed understanding of the collective behaviour of many particle systems from a fully microscopic point of view. In most physical systems, microscopic details determine the properties observed. Our condensed matter theorists and statistical physicists develop and apply methods for explaining and predicting these connections.

Examples include density functional theory, renormalisation-group theory and the scaling theory of critical phenomena. Dynamical properties are studied using such methods as kinetic theory and the theory of stochastic processes. These theories can be quantum mechanical, including theories of the quantum Hall effect, superconductivity, Bose-Einstein condensation, quantum magnetism and quantum computing. More classical are relationships between chaos and transport, nucleation phenomena, polymer dynamics and phase structure and dynamics of colloids.

Read less
Our MSc Physics programme will provide you will have exposure to a very wide range of world-leading teaching and research skills in physics. Read more
Our MSc Physics programme will provide you will have exposure to a very wide range of world-leading teaching and research skills in physics. As well as the modules offered by the Department of Physics, many optional modules are available from across the University of London, such as Queen Mary University of London, Royal Holloway University of London and University College London. You will undertake an extended research project supervised by one of our academic staff.

Key benefits

- King's College London offers a unique environment for the taught postgraduate study of physics. Our size enables us to provide a welcoming environment in which all our students feel at home. The Physics Department has been built up to its current strength in the last few years, which has allowed us to design a bespoke research department focused in three areas.

- Particle physics and cosmology is led by Professor John Ellis CBE FRS, who collaborates closely with CERN, and this group provides unique lecture courses, including "Astroparticle Cosmology" as well as "The Standard Model and beyond".

- The Experimental Biophysics and Nanotechnology research group is a world-leading centre for nanophotonics, metamaterials and biological physics. Here you can study the state of the art in experimental nanoplasmonics, bio-imaging, near-field optics and nanophotonics, with access to the laboratories of the London Centre for Nanotechnology (LCN). You will be offered our flagship module in "Advanced Photonics".

- Theory and Simulation of Condensed Matter is a group of theoreticians with a critical-mass expertise in many-body physics and highly-correlated quantum systems—magnetism and superconductivity, and world-leading research in condensed matter, particularly in biological and materials physics. The group is a founding member of the prestigious Thomas Young Centre (TYC), the London centre for the theory and simulation of materials

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/physics-msc.aspx

Course detail

- Description -

The programme consists of taught components combining specialised taught material in current areas of Physics and related disciplines, general research techniques, transferable skills and specialised research techniques together with a major research project. The project starts in January carrying through to the end of the programme. Experts in the chosen field will act as project supervisors.

The programme is run by the Department of Physics with some modules provided by the Department of Mathematics, the Randall Division of Cell and Molecular Biophysics and other University of London Colleges.

Topics include: nanotechnology, biophysics, photonics, cosmology and particle physics.

- Course purpose -

The MSc programme provides experience of research in rapidly developing areas of physics and related disciplines. Provides experience of the planning, administration, execution and dissemination of research, and equips students with the background knowledge and transferable and generic skills required to become an effective researcher.

- Course format and assessment -

From October to March you will study specialised taught material, attend lectures and seminars, carry out related assessed tasks, prepare an assessed research proposal, select your project topic and plan how your project will be performed. Lecture courses attended between October and March will be assessed by examination in May. Other assessments include a project plan and a patent draft. You will carry out your project full-time from April with a mid-project review and submission and oral presentation in September. Your project will contribute 50 per cent of the marks for your degree and you must also achieve at least 50 per cent in each module. The taught material is also assessed by essays and exercises.

Career prospects

Many students go on to do a PhD in Physics, work in scientific research, teaching or work in the financial sector.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
The Graduate Diploma is designed for graduates whose first degree may be inappropriate for direct entry to an MSc in Physics at a UK university. Read more
The Graduate Diploma is designed for graduates whose first degree may be inappropriate for direct entry to an MSc in Physics at a UK university. Though it may be taken as a free-standing qualification, most students take this programme as a pathway to the MSc. This pathway forms the first year of a two-year programme with successful students (gaining a merit or distinction) progressing onto the MSc Physics in second year.

Key benefits

- King's College London offers a unique environment for the taught postgraduate study of physics. Our size enables us to provide a welcoming environment in which all our students feel at home. The Physics Department has been built up to its current strength in the last few years, which has allowed us to design a bespoke research department focused in three areas.

- Particle physics and cosmology is led by Professor John Ellis CBE FRS, who collaborates closely with CERN, and this group provides unique lecture courses, including "Astroparticle Cosmology" as well as "The Standard Model and beyond".

- The Experimental Biophysics and Nanotechnology research group is a world-leading centre for nanophotonics, metamaterials and biological physics. Here you can study the state of the art in experimental nanoplasmonics, bio-imaging, near-field optics and nanophotonics, with access to the laboratories of the London Centre for Nanotechnology (LCN). You will be offered our flagship module in "Advanced Photonics".

- Theory and Simulation of Condensed Matter is a group of theoreticians with a critical-mass expertise in many-body physics and highly-correlated quantum systems—magnetism and superconductivity, and world-leading research in condensed matter, particularly in biological and materials physics. The group is a founding member of the prestigious Thomas Young Centre (TYC), the London centre for the theory and simulation of materials.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/physics-grad-dip.aspx

Course detail

- Description -

Students will undertake a total of 120 credits, from the following modules:

- Mathematical Methods in Physics III
- Statistical Mechanics
- Spectroscopy and Quantum Mechanics
- Particle Physics
- Optics
- Solid State Physics
- General Relatvity and Cosmology
- Fundamentals of Biophysics and Nanotechnology
- Introduction to Medical Imaging
- Laboratory Physics II
- Computational Lab
- Nuclear Physics
- Quantum Mechanics for Physics I
- Mathematical methods in Physics
- Symmetry in Physics
- Electromagnetism
- Astrophysics

- Course purpose -

For students with an undergraduate degree or equivalent who wish to have the experience of one year in a leading UK Physics Department, or who may not be immediately eligible for entry to a higher degree in the UK and who wish to upgrade their degree. If you successfully complete this programme with a Merit or Distinction we may consider you for the MSc programme.

- Course format and assessment -

The compulsory modules are assessed via coursework. The majority of the other optional modules avaiable are assessed by written examinations.

Career prospects

Many students go on to do a higher Physics degree, work in scientific research, teaching or work in the financial sector.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study High Performance and Scientific Computing at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study High Performance and Scientific Computing at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc in High Performance and Scientific Computing is for you if you are a graduate in a scientific or engineering discipline and want to specialise in applications of High Performance computing in your chosen scientific area. During your studies in High Performance and Scientific Computing you will develop your computational and scientific knowledge and skills in tandem helping emphasise their inter-dependence.

On the course in High Performance and Scientific Computing you will develop a solid knowledge base of high performance computing tools and concepts with a flexibility in terms of techniques and applications. As s student of the MSc High Performance and Scientific Computing you will take core computational modules in addition to specialising in high performance computing applications in a scientific discipline that defines the route you have chosen (Biosciences, Computer Science, Geography or Physics). You will also be encouraged to take at least one module in a related discipline.

Modules of High Performance and Scientific Computing MSc

The modules you study on the High Performance and Scientific Computing MSc depend on the route you choose and routes are as follows:

Biosciences route (High Performance and Scientific Computing MSc):

Graphics Processor Programming

High Performance Computing in C/C++

Operating Systems and Architectures

Software Testing

Programming in C/C++

Conservation of Aquatic Resources or Environmental Impact Assessment

Ecosystems

Research Project in Environmental Biology

+ 10 credits from optional modules

Computer Science route (High Performance and Scientific Computing MSc):

Graphics Processor Programming

High Performance Computing in C/C++

Operating Systems and Architectures

Software Testing

Programming in C/C++

Partial Differential Equations

Numerics of ODEs and PDEs

Software Engineering

Data Visualization

MSc Project

+ 30 credits from optional modules

Geography route (High Performance and Scientific Computing MSc):

Graphics Processor Programming

High Performance Computing in C/C++

Operating Systems and Architectures

Software Testing

Programming in C/C++

Partial Differential Equations

Numerics of ODEs and PDEs

Modelling Earth Systems or Satellite Remote Sensing or Climate Change – Past, Present and Future or Geographical Information Systems

Research Project

+ 10 credits from optional modules

Physics route (High Performance and Scientific Computing MSc):

Graphics Processor Programming

High Performance Computing in C/C++

Operating Systems and Architectures

Software Testing

Programming in C/C++

Partial Differential Equations

Numerics of ODEs and PDEs

Monte Carlo Methods

Quantum Information Processing

Phase Transitions and Critical Phenomena

Physics Project

+ 20 credits from optional modules

Optional Modules (High Performance and Scientific Computing MSc):

Software Engineering

Data Visualization

Monte Carlo Methods

Quantum Information Processing

Phase Transitions and Critical Phenomena

Modelling Earth Systems

Satellite Remote Sensing

Climate Change – Past, Present and Future

Geographical Information Systems

Conservation of Aquatic Resources

Environmental Impact Assessment

Ecosystems

Facilities

Students of the High Performance and Scientific Computing programme will benefit from the Department that is well-resourced to support research. Swansea physics graduates are more fortunate than most, gaining unique insights into exciting cutting-edge areas of physics due to the specialized research interests of all the teaching staff. This combined with a great staff-student ratio enables individual supervision in advanced final year research projects. Projects range from superconductivity and nano-technology to superstring theory and anti-matter. The success of this programme is apparent in the large proportion of our M.Phys. students who seek to continue with postgraduate programmes in research.

Specialist equipment includes:

a low-energy positron beam with a highfield superconducting magnet for the study of positronium

a number of CW and pulsed laser systems

scanning tunnelling electron and nearfield optical microscopes

a Raman microscope

a 72 CPU parallel cluster

access to the IBM-built ‘Blue C’ Supercomputer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

The Physics laboratories and teaching rooms were refurbished during 2012 and were officially opened by Professor Lyn Evans, Project Leader of the Large Hadron Collider at CERN. This major refurbishment was made possible through the University’s capital programme, the College of Science, and a generous bequest made to the Physics Department by Dr Gething Morgan Lewis FRSE, an eminent physicist who grew up in Ystalyfera in the Swansea Valley and was educated at Brecon College.



Read less
This unique interdisciplinary Professional Science Masters programme, developed in partnership between The School of Physics and Astronomy and Leeds University Business School, offers you the opportunity to develop both high level physics competencies and key business management skills. Read more

This unique interdisciplinary Professional Science Masters programme, developed in partnership between The School of Physics and Astronomy and Leeds University Business School, offers you the opportunity to develop both high level physics competencies and key business management skills.

The programme will be especially relevant to you if you are working in, or seeking a career within, the SME advanced technology sector, where a strong background in both applied fundamental science, and an understanding of commercial and business environments is highly desirable. However, the programme will equally be of value to those seeking a more commercially focussed role in larger organisations.

Employers regularly state that STEM graduates lack commercial awareness - this programme will seek to address this skills deficit.

Course content

A unique feature of this programme is that you will not study the Physics and Business Management elements in isolation of each other. The large research project will form a capstone for the programme that brings together both the business and scientific elements to solve a business-specified problem. The research project will be carried out in conjunction with industry and will bring together both business and scientific elements to solve a business-specific problem.

You will benefit from:

  • the highest standards of research informed teaching
  • internationally excellent research quality
  • academic staff at the forefront of their subjects
  • a variety of teaching and assessment methods
  • state-of-the-art facilities
  • working in an active, interdisciplinary environment, with researchers from physics, mathematics, computer science, engineering and business backgrounds.

Course structure

Compulsory modules

  • Strategic Management 15 credits
  • Research Design and Analysis 15 credits
  • Interdisciplinary Research Project 45 credits
  • Current Research Topics in Physics 15 credits

Optional modules

  • Entrepreneurship and Enterprise Creation 15 credits
  • Effective Decision Making 15 credits
  • Managing for Innovation 15 credits
  • Advanced Management Decision Making 15 credits
  • Business Analytics and Decision Science 15 credits
  • Forecasting and Advanced Business Analytics 15 credits
  • Innovation Management in Practice 15 credits
  • Soft Matter Physics: Liquid Crystals 15 credits
  • Quantum Many-Body Physics 15 credits
  • Winds, Bubbles and Explosions 15 credits
  • Bionanophysics 2: Advanced Bionanophysics Research 15 credits
  • Superconductivity 15 credits
  • Soft Matter Physics: Polymers, Colloids and Glasses 15 credits
  • Quantum Transport in Nanostructures 15 credits
  • General Relativity 15 credits
  • Quantum Information Science 15 credits

For more information on typical modules, read Physics and Business Management MSc in the course catalogue

Learning and teaching

Teaching methods involve a combination of lectures, tutorials, case studies, workshops and contact with relevant industries. The final stage of study is an individual extended research project which is typically carried out within a research group and may also include external industrial involvement.

Assessment

Assessment is based on course work, research project performance and written exams which take place at the end of the semester in which the module is taught.

Career opportunities

You’ll receive sector-specific training to suit your own career objectives and be given the guidance to apply your knowledge by experts from both the business and science communities.

You’ll be well-placed for senior roles in industry, whether that be within small high technology companies looking to develop new markets, or large corporate organisations looking to manage growth and change, in sectors such as Aerospace, Consumer Electronics, Energy and Power, Healthcare, IT and Telecommunications.

Many such organisations need skilled employees with the ability to apply their scientific knowledge in a business management capacity. Furthermore, graduates are increasingly finding careers in companies that are applying digital technologies to improve their business.

Careers support

We encourage you to prepare for your career from day one. That’s one of the reasons Leeds graduates are so sought after by employers.

The Careers Centre and staff in your faculty provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
Revealing the ‘terra incognita’ between quantum mechanics and the classical world and inspiring new technologies. As a scientist, you’re a problem solver. Read more

Master's specialisation in Physics of Molecules and Materials

Revealing the ‘terra incognita’ between quantum mechanics and the classical world and inspiring new technologies.
As a scientist, you’re a problem solver. But how do you tackle a problem when there are no adequate theories and calculations become far too complicated? In the specialisation in Physics of Molecules and Materials you’ll be trained to take up this challenge in a field of physics that is still largely undiscovered: the interface between quantum and classical physics.
We focus on systems from two atoms to complete nanostructures, with time scales in the order of femtoseconds, picoseconds or nanoseconds. One of our challenges is to understand the origin of phenomena like superconductivity and magnetism. As theory and experiment reinforce each other, you’ll learn about both ‘research languages’. In this way, you’ll be able to understand complex problems by dividing them into manageable parts.

See the website http://www.ru.nl/masters/physicsandastronomy/physics

Why study Physics of Molecules and Materials at Radboud University?

- At Radboud University there’s a strong connection between theory and experiment. Theoretical and experimental physicists will teach you to become acquainted with both methods.
- In your internship(s), you’ll have the opportunity to work with unique research equipment, like free electron lasers and high magnetic fields, and with internationally known scientists.
- We collaborate with several industrial partners, such as Philips and NXP. This extensive network can help you find an internship or job that meets your interests.

If you’re successful in your internship, you have a good chance of obtaining a PhD position at the Institute for Molecules and Materials (IMM).

Admission requirements for international students

1. A completed Bachelor's degree in Physics
2. A proficiency in English
In order to take part in this programme, you need to have fluency in both written and spoken English. Non-native speakers of English* without a Dutch Bachelor's degree or VWO diploma need one of the following:
- A TOEFL score of ≥575 (paper based) or ≥90 (internet based
- An IELTS score of ≥6.5
- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE) with a mark of C or higher.

Career prospects

This Master’s specialisation is an excellent preparation for a career in research, either at a university or at a company. However, many of our students end up in business as well. Whatever job you aspire, you can certainly make use of the fact that you have learned to:
- Solve complex problems
- Make accurate approximations
- Combine theory and experiments
- Work with numerical methods

Graduates have found jobs as for example:
- Consultant Billing at KPN
- Communications advisor at the Foundation for Fundamental Research on Matter (FOM)
- Systems analysis engineer at Thales
- Technical consultant at UL Transaction Security
- Business analyst at Capgemini

PhD positions

At Radboud University, we’re capable of offering many successful students in the field of Physics of Molecules and Materials a PhD position. Many of our students have already attained a PhD position, not just at Radboud University, but at universities all over the world.

Our approach to this field

In this specialisation, you’ll discover the interface between quantum mechanics and the classical world, which is still a ‘terra incognita’. We focus on two-atom systems, multi-atom systems, molecules and nanostructures. This is pioneering work, because these systems are often too complex for quantum calculations and too small for the application of classical theories.

- Theory and experiment
At Radboud University, we believe that the combination of theory and experiments is the best way to push the frontiers of our knowledge. Experiments provide new knowledge and data and sometimes also suggest a model for theoretical studies. The theoretical work leads to new theories, and creative ideas for further experiments. That’s why our leading theoretical physicists collaborate intensively with experimental material physicists at the Institute for Molecules and Materials (IMM). Together, they form the teaching staff of the Master’s specialisation in Physics of Molecules and Materials.

- Themes
This specialisation is focused on two main topics:
- Advanced spectroscopy
Spectroscopy is a technique to look at matter in many different ways. Here you’ll learn the physics behind several spectroscopic techniques, and learn how to design spectroscopic experiments. At Radboud University, you also have access to large experimental infrastructure, such as the High Magnetic field Laboratory (HFML), the FELIX facility for free electron lasers and the NMR laboratory.
- Condensed matter and molecular physics
You’ll dive into material science at the molecular level as well as the macroscopic level, on length scales from a single atom up to nanostructure and crystal. In several courses, you’ll get a solid background in both quantum mechanical and classical theories.

- Revolution
We’re not aiming at mere evolution of current techniques, we want to revolutionize them by developing fundamentally new concepts. Take data storage. The current data elements are near the limits of speed and data capacity. That’s why in the IMM we’re exploring a completely new way to store and process data, using light instead of electrical current. And this is but one example of how our research inspires future technology. As a Master’s student you can participate in this research or make breakthroughs in a field your interested in.

See the website http://www.ru.nl/masters/physicsandastronomy/physics

Read less
The MSc in Compound Semiconductor Electronics has been designed to provide you with advanced level knowledge and skills in compound semiconductor engineering, fabrication and applications, and to develop related skills, enhancing your engineering competency and employability. Read more
The MSc in Compound Semiconductor Electronics has been designed to provide you with advanced level knowledge and skills in compound semiconductor engineering, fabrication and applications, and to develop related skills, enhancing your engineering competency and employability.

This programme is jointly delivered with the School of Physics and Astronomy and the Institute for Compound Semiconductors (ICS). The ICS is an exciting new development at the cutting edge of compound semiconductor technology. The Institute has been established in partnership with IQE plc, to capitalise on the existing expertise at Cardiff University and to move academic research to a point where it can be introduced reliably and quickly into the production environment. It is unique facility in the UK, and aims to create a global hub for compound semiconductor technology research, development and innovation.

As a student on this programme, you will have the opportunity to undertake a 3-month summer project which will be based either within the Institute for Compound Semiconductors, or in placement with one of our industrial partners. We have strong, long-established industrial links with companies such as National Instruments and Mesuro and are therefore able to offer a portfolio of theoretical, practical, fabrication and applications-centred projects in both academic and industrial placement environments.

Our flexible curriculum contains a robust set of required modules and a number of elective modules which include the latest results, innovations and techniques and are designed to incorporate the most effective teaching and learning techniques.

Upon graduation, you will have the training, skill-sets and hands-on experience you need to succeed in the dynamic and highly competitive fields of compound semiconductors and advanced communications systems. Given the University’s unique position at the forefront of compound semiconductor technology, you will have a distinct advantage when applying for PhD studentships or employment in industry.

Structure

The MSc in Compound Semiconductor Electronics is a two-stage programme delivered over three semesters (autumn, spring, and summer) for a total of 180 credits.

• Stage 1: Autumn/Spring terms (120 credits, taught)

You will undertake required modules totaling 70 credits, covering essential skills.

You will additionally have the choice of 50 credits of optional modules from a total of 100 credits, with each module covering specialist skills.

You must successfully complete the 120 credits of the taught component of the course before you will be permitted to progress to the research project component.

• Stage 2: Summer term (60 credits, dissertation/research project)

The summer semester consists of a single 60 credit research project module of 3 months’ duration. You will be required to produce a research dissertation to the required standard in order to complete this module. Students completing Stages 1 and 2 will qualify for the award of the MSc degree.

Core modules:

High Frequency Device Physics and Design
RF Circuits Design & CAD
RESEARCH STUDY
Management in Industry
Software Tools and Simulation
Compound Semiconductor Fabrication
Compound Semiconductors Research Project

Optional modules:

Commercialising Innovation
Fundamentals of Micro- and Nanotechnology
High Frequency Electronic Materials
HF and RF Engineering
Optoelectronics
Magnetism, Superconductivity and their Applications
Low Dimensional Semiconductor Devices
Quantum Theory of Solids
Compound Semiconductor Application Specific Photonic Integrated Circuits

Teaching

A wide range of teaching styles will be used to deliver the diverse material forming the curriculum.

Lectures can take a variety of forms depending on the subject material being taught. Generally, lectures are used to convey concepts, contextualise research activities in the School and to demonstrate key theoretical, conceptual and mathematical methods.

You will practice and develop critique, reflective, analytical and presentational skills by participating in diverse learning activities such as research group meetings, seminars and open group discussions. At all times you will be encouraged to reflect on what you have learned and how it can be combined with other techniques and concepts to tackle novel problems.

In the practical laboratory sessions, you will put the breadth of your knowledge and skills to use, whether that be using your coding skills to automate a laboratory experiment, designing components for a large piece of equipment or troubleshooting research hardware. The emphasis on the MSc in Compound Semiconductor Electronics is squarely on acquiring and demonstrating practical skills which will be of use in a research environment and hence highly sought-after by employers.

When working on your dissertation you will be allocated a supervisor from among our teaching staff. Dissertation topics are typically chosen from a range of project titles proposed by academic staff, usually in areas of current research interest, although students are encouraged to put forward their own project ideas. Projects may also come forward from potential employers and industrial partners who may be able to offer work-based placements for the duration of the project work.

Assessment

Multiple assessment methods are used in order to enhance learning and accurately reflect your performance on the course. In the required modules, a mixture of problem-based learning, in-lab assessment, written assignment, simulation exercises, written and oral examinations and group-based case study work will be used.

Feedback provided by your MSc Tutor, Module Leaders and for some modules, your fellow students will allow you to make incremental improvements to the development of your core skillset.

The methods used on the optional modules vary depending on the most appropriate assessment method for each module, but typically include written and/or practical assignments together with a written and/or oral examination.

Career prospects

An MSc in Compound Semiconductor Electronics will open up opportunities in the following areas:

• Technical, research, development and engineering positions in industrial compound semiconductors, silicon semiconductors and advanced communication systems;

• Theoretical, experimental and instrumentational doctoral research;

• Numerate, technical, research, development and engineering positions in related scientific fields;

• Physics, mathematics and general science education.

Cardiff University’s unique position at the forefront of compound semiconductor technology will provide you with the opportunity to develop experience and build contacts with a range of leading companies and organisations.

Placements

There will be a number of industrial placements each year for the summer research project module, which will either be hosted at the Institute for Compound Semiconductors or at the industrial partner’s facilities. The number and nature of these projects will vary from year to year and will be assigned based on performance in formal assessments.

Read less
The MSc Compound Semiconductor Physics has been designed to deliver thorough training and practical experience in compound semiconductor theory, fabrication and applications, and integration with silicon technology. Read more
The MSc Compound Semiconductor Physics has been designed to deliver thorough training and practical experience in compound semiconductor theory, fabrication and applications, and integration with silicon technology.

The programme is jointly delivered by the School of Physics and Astronomy and the Institute for Compound Semiconductors (ICS).  The ICS is an exciting new development at the cutting edge of compound semiconductor technology. The Institute has been established in partnership with IQE plc, to capitalise on the existing expertise at Cardiff University and to move academic research to a point where it can be introduced reliably and quickly into the production environment. It is unique facility in the UK, and aims to create a global hub for compound semiconductor technology research, development and innovation.

Our flexible curriculum contains a robust set of required modules and a number of cutting-edge elective modules, which include the latest results, innovations and techniques) and are designed to incorporate the most effective teaching and learning techniques.

As part of the programme you will undertake a 3-month summer project which will be based either in the School of Physics and Astronomy, within the ICS, or in placement with one of our industrial partners.  We have strong, long-established industrial links with companies such as IQE and are therefore in a unique position to be able to offer a portfolio of theoretical, practical, fabrication and applications-centred projects in both academic and industrial placement environments.  No other Russell Group university can boast such opportunities in this field.

Upon graduation, you will have the training, skillsets and hands-on experience you need to succeed in the dynamic and highly competitive field of compound semiconductors.

Distinctive features

• Cardiff University’s unique position at the forefront of compound semiconductor technology will provide you with the opportunity to develop experience and build contacts with a range of leading companies and organisations.

• Our specialist elective modules are delivered by expert scientists, who deliver their courses based on their research expertise and current research portfolio.

• We offer a range of specialist modules that give you the opportunity to tailor the programme to suit your interests and ambitions.
Whether you’re fascinated by superconductivity and magnetism or want to specialise in photonics we have modules to suit you. We also have modules designed to develop commercial skills and more technical options such as advanced LabVIEW programming.

• Central to the design of this programme is the opportunity to ownership of real theoretical or practical projects. You will have acquired a full year’s worth of practical research experience by the time you complete your MSc, greatly enhancing your CV and prospects for employment or further study.

• You will be trained in the practical use of the LabVIEW programming environment. Recognised by industry this will serve as a solid foundation for preparing for the National Instruments (NI) Certified LabVIEW Associate Developer (CLAD) examination.

• We currently offer the opportunity to take the CLAD examination for free as an extra-curricular activity, supported by our certified academic staff. CLAD status is industrially recognised and indicates a broad working knowledge of the LabVIEW environment.

• We encourage a “research group” atmosphere within which you’ll be given the opportunity to work together, across disciplines, to enhance each other’s learning and be a vital part of our thriving, international scientific community.

Structure

The MSc Compound Semiconductor Physics is a two-stage programme delivered over three terms.

• Autumn term (60 credits, taught)
You will undertake two required modules (30 credits total) covering core skills and three elective modules of 10 credits value each covering specialist skills.

• Spring term (60 credits, taught)
You will undertake three required modules (40 credits total) covering core skills and two elective modules of 10 credits each covering specialist skills.

You must successfully complete the 120 credits of the taught component of the course before you will be permitted to progress to the research project component.

• Summer term (60 credits, research project)
The summer term consists of a single 60 credit research project module of 3 months’ duration.  You will be required to produce a research dissertation and present your research to the School in order to complete this module.

Core modules:

Advanced Experimental Techniques in Physics
Study and Research Skills in Physics
Compound Semiconductor Fabrication
Concepts and Theory of Compound Semiconductor Photonics
Compound Semiconductor Application Specific Photonic Integrated Circuits
Compound Semiconductor Physics Research Project

Assessment

Multiple assessment methods are used in order to enhance learning and accurately reflect your performance on the course.  In the required modules, a mixture of problem-based learning, short practical projects, written assignments, coding exercises, written and oral examinations and group work will be used.

In some of the required modules there are weekly assignments.  The feedback provided for these allows you to make incremental improvements to the development of your core skillset, giving you ample opportunity to implement the suggestions made by our expert staff.

The methods used on the elective modules vary depending on the most appropriate assessment method for each module, but typically include written and/or practical assignments together with a written and/or oral examination.

All assessments make use of feedback, which can be divided into formative and summative feedback.

Career Prospects

An MSc Compound Semiconductor Physics degree will open up opportunities in the following areas:

• Technical, research, development and engineering positions in industrial compound semiconductors, silicon semiconductors and semiconductor photonics;

• Theoretical, experimental and instrumentational doctoral research;

• Numerate, technical, research, development and engineering positions in related scientific fields;

• Physics, mathematics and general science education.

Placements

There will be a number of industrial placements each year for the summer research project module, which will either be hosted at the ICS or at the industrial partner’s facilities.  The number and nature of these projects will vary from year to year and will be assigned based on merit demonstrated during the autumn and spring terms.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X