• Birmingham City University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Surrey Featured Masters Courses
King’s College London Featured Masters Courses
Cranfield University Featured Masters Courses
University of Dundee Featured Masters Courses
University of Warwick Featured Masters Courses
University of Manchester Featured Masters Courses
"structures"×
0 miles

Masters Degrees (Structures)

We have 830 Masters Degrees (Structures)

  • "structures" ×
  • clear all
Showing 1 to 15 of 830
Order by 
Who is it for?. This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Read more

Who is it for?

This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Normally students have an undergraduate degree in engineering or a related discipline. Students who don’t have qualifications in civil engineering usually have relevant work experience in civil engineering structures so they are familiar with working within the specific technical domain.

Objectives

From analysing how carbon nanofibers can reduce the effect of corrosion in concrete to gaining insight from experts developing the new Forth Bridge, this MSc in Civil Engineering Structures has been designed to be broad in scope so you can develop your own area of structural engineering expertise.

As a department, we have broad interests from defining new structural forms to practical application of new materials. We believe civil engineering is a creative and collaborative profession, as much as a technical one. This course gives you the tools to immerse yourself in both the analytical and experimental side of the subject, so you can investigate diverse problems to generate your own structural solutions.

The Civil Engineering Structures MSc mirrors industry practice, so you will work in groups with your peers from the first term onwards and learn from a group of world-leading engineers with diverse research strengths. From earthquake engineering to sustainable construction, you have the opportunity to learn in breadth and depth using high-end industry software to develop safe solutions for real-world projects.

Accreditation

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. the JBM website for further information.

Academic facilities

There is a large dedicated lab on site equipped with facilities to investigate different structures and construction materials from concrete to timber. You also have access to other workshops where you can liaise with mechanical or electrical engineers to develop innovative scale models. There is access to specialist soil labs and large-scale equipment including wind tunnels.

We have an extensive library housing all the references, journals and codes of practice that you will need during your studies.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will be taught by the staff team within the School of Mathematics, Computer Science and Engineering and also from visiting industry experts from around the world.

Teaching mainly takes the form of lectures, but IT sessions and seminars also form part of the Masters degree. Modules are shared between two ten-week teaching terms running from October to December and January to March. Although work for the MSc dissertation starts during the second term, you will conduct most of the research work during the summer months.

The length of the full-time degree is 12 months. A part-time route is also available where you can spend either two or three years completing the programme. If you follow the two-year part-time study route, you will need to attend lectures for up to two days each week. Alternatively, you can complete the degree over three years by attending a single day each week. The timetable has been designed to offer flexibility for part-time students.

In the first term you will consider core technical topics and be introduced to new concepts such as structural reliability. In the second term you will begin to focus your studies by selecting your dissertation topic and by selecting options getting involved in a specific areas of your own interest. Spread over the year you will have design presentations, class tests and reports.

If you select an experimental dissertation you will have the opportunity to use a range of materials. Skilled technical support is available in the workshop and you have access to recently refurbished facilities, including specialist geotechnical labs which accommodate a large flexible laboratory space used for centrifuge model preparation and testing. Adjacent to this you have concrete mixing and casting facilities, a temperature-controlled soil element testing laboratory and a concrete durability laboratory.

Assessment

For the theoretical modules, you will be assessed through a combination of examinations and coursework. Examinations are shared between the January and April/May examination periods. For the design-oriented modules you are normally assessed by coursework only, where you will work both in groups and individually on challenging projects.

Modules

There are six core modules which give you a strong technical foundation and three elective modules from which you can choose two. These reflect the specialist expertise on offer within the academic team. These modules will give you unique insight into computer analysis of structures for blast and fire, bridge engineering, and earthquake analysis where you may look at techniques for analysing structures and safe design. In the final part of the programme you undertake a dissertation in which you can explore an area of interest from a proposed list of themes, some of which are industry-related.

Core modules

  • EPM717: Advanced Structural Analysis and Stability (20 credits)
  • EPM707: Finite Element Methods (15 credits)
  • EPM704: Dynamics of Structures (15 credits)
  • EPM719: Structural Reliability and Risk (10 credits)
  • EPM711: Design of Concrete Structures (15 credits)
  • EPM712: Design of Steel and Composite Structures (15 credits)
  • EPM949: Dissertation (60 credits)

Elective modules

You will be able to study two of the following elective modules:

  • EPM720: Earthquake Analysis of Structures (15 credits)
  • EPM718: Analysis of Steel and Concrete Structures for Blast and Fire Exposure (15 credits)
  • EPM715: Bridge Engineering (15 credits).

Career prospects

Graduates have secured employment with leading civil engineering consultants, research institutes and government agencies and pursued doctoral studies both in the UK and internationally. The cohort of 2015 have moved on to jobs and further study working within the following organisations:

  • Arup
  • Gant
  • Kier
  • Robert Bird Group
  • Skanska


Read less
Who is it for?. This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Read more

Who is it for?

This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Normally students have an undergraduate degree in engineering or a related discipline. Students who don’t have qualifications in civil engineering usually have relevant work experience in civil engineering structures so they are familiar with working within the specific technical domain.

Objectives

From analysing how carbon nanofibers can reduce the effect of corrosion in concrete to gaining insight from experts developing the new Forth Bridge, this MSc in Civil Engineering Structures has been designed to be broad in scope so you can develop your own area of structural engineering expertise.

As a department, we have broad interests from defining new structural forms to practical application of new materials. We believe civil engineering is a creative and collaborative profession, as much as a technical one. This course gives you the tools to immerse yourself in both the analytical and experimental side of the subject, so you can investigate diverse problems to generate your own structural solutions.

The Civil Engineering Structures MSc mirrors industry practice, so you will work in groups with your peers from the first term onwards and learn from a group of world-leading engineers with diverse research strengths. From earthquake engineering to sustainable construction, you have the opportunity to learn in breadth and depth using high-end industry software to develop safe solutions for real-world projects.

Accreditation

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. the JBM website for further information.

Academic facilities

There is a large dedicated lab on site equipped with facilities to investigate different structures and construction materials from concrete to timber. You also have access to other workshops where you can liaise with mechanical or electrical engineers to develop innovative scale models. There is access to specialist soil labs and large-scale equipment including wind tunnels.

We have an extensive library housing all the references, journals and codes of practice that you will need during your studies.

Teaching and learning

You will be taught by the staff team within the School of Mathematics, Computer Science and Engineering and also from visiting industry experts from around the world.

Teaching mainly takes the form of lectures, but IT sessions and seminars also form part of the Masters degree. Modules are shared between two ten-week teaching terms running from October to December and January to March. Although work for the MSc dissertation starts during the second term, you will conduct most of the research work during the summer months.

The length of the full-time degree is 12 months. A part-time route is also available where you can spend either two or three years completing the programme. If you follow the two-year part-time study route, you will need to attend lectures for up to two days each week. Alternatively, you can complete the degree over three years by attending a single day each week. The timetable has been designed to offer flexibility for part-time students.

In the first term you will consider core technical topics and be introduced to new concepts such as structural reliability. In the second term you will begin to focus your studies by selecting your dissertation topic and by selecting options getting involved in a specific areas of your own interest. Spread over the year you will have design presentations, class tests and reports.

If you select an experimental dissertation you will have the opportunity to use a range of materials. Skilled technical support is available in the workshop and you have access to recently refurbished facilities, including specialist geotechnical labs which accommodate a large flexible laboratory space used for centrifuge model preparation and testing. Adjacent to this you have concrete mixing and casting facilities, a temperature-controlled soil element testing laboratory and a concrete durability laboratory.

Assessment

For the theoretical modules, you will be assessed through a combination of examinations and coursework. Examinations are shared between the January and April/May examination periods. For the design-oriented modules you are normally assessed by coursework only, where you will work both in groups and individually on challenging projects.

Modules

There are six core modules which give you a strong technical foundation and three elective modules from which you can choose two. These reflect the specialist expertise on offer within the academic team. These modules will give you unique insight into computer analysis of structures for blast and fire, bridge engineering, and earthquake analysis where you may look at techniques for analysing structures and safe design. In the final part of the programme you undertake a dissertation in which you can explore an area of interest from a proposed list of themes, some of which are industry-related.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Core modules

  • EPM717: Advanced Structural Analysis and Stability (20 credits)
  • EPM707: Finite Element Methods (15 credits)
  • EPM704: Dynamics of Structures (15 credits)
  • EPM719: Structural Reliability and Risk (10 credits)
  • EPM711: Design of Concrete Structures (15 credits)
  • EPM712: Design of Steel and Composite Structures (15 credits)
  • EPM949: Dissertation (60 credits)

Elective modules

You will be able to study two of the following elective modules:

  • EPM720: Earthquake Analysis of Structures (15 credits)
  • EPM718: Analysis of Steel and Concrete Structures for Blast and Fire Exposure (15 credits)
  • EPM715: Bridge Engineering (15 credits).

Career prospects

Graduates have secured employment with leading civil engineering consultants, research institutes and government agencies and pursued doctoral studies both in the UK and internationally. The cohort of 2015 have moved on to jobs and further study working within the following organisations:

  • Arup
  • Gant
  • Kier
  • Robert Bird Group
  • Skanska


Read less
Graduates in Civil Engineering work in the field of constructions and infrastructures. The subjects taught in the Master’s Degree Program aim at strengthening the basic preparation of the students, providing them, at the same time, with an adequately deepened knowledge of topics central to Civil Engineering. Read more

Mission and goals

Graduates in Civil Engineering work in the field of constructions and infrastructures. The subjects taught in the Master’s Degree Program aim at strengthening the basic preparation of the students, providing them, at the same time, with an adequately deepened knowledge of topics central to Civil Engineering. Students can choose their field of specialization in one of the following areas: Geotechnics, Hydraulics, Transportation infrastructures, Structures. Suggested study plans help students define their curriculum. Additionally, a General curriculum is also proposed, aimed at students preferring a wider spectrum formation in Civil Engineering.
The programme includes two tracks taught in English.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering/

Career opportunities

Engineers having obtained the Master’ degree can find career opportunities in the following areas:
1. companies involved in the design and maintainance of civil structures, plants and infrastructures;
2. universities and higher education research institutions;
3. public offices in charge of the design, planning, management and control of urban and land systems;
4. businesses, organizations, consortia and agencies responsible for managing and monitoring civil works and services;
5. service companies for studying the urban and land impact of infrastructures.

They can also work as self-employed professionals.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Civil_Engineering_02.pdf
Civil Engineers deal with structures (e.g. buildings, bridges, tunnels, dams) and infrastructures (such as roads, railways, airports, water supply systems, etc.). The two-year Master of Science in Civil Engineering provides students with a sound preparation on these topics, allowing them to choose a curriculum (or ‘track’) among the five available: General, Geotechnics, Hydraulics, Transport Infrastructures and Structures. The ‘General’ curriculum aims at training civil engineers with a broader range of expertise in the design, implementation and management of civil works of various kinds. ‘Geothecnics’ is devoted to the study of engineering problems involving geomaterials (i.e., soil and rock) and their interaction with civil structures (foundations, tunnels, retaining walls).
‘Hydraulics’ deals with problems concerning water storage, transportation and control (pipelines, sewers, river and coastal erosion control, reservoirs). ‘Transport Infrastructures’ covers various subjects of transportation engineering (road and railway design, airport and harbor design, modeling of transport fluxes). ‘Structures’ is devoted to the analysis and design of civil and industrial structures
(steel and concrete buildings, bridges, etc.). The tracks ‘Geotechnics’ and ‘Structures’ are taught in English.

Subjects

1st year subjects
- Common to the two curricula:
Numerical methods for Civil Engineering; Computational mechanics and Inelastic structural analysis; Theory of structures and Stability of structures; Dynamics of Structures; Advanced Structural design*; Reinforced and prestressed concrete structures*; Advanced computational mechanics*; Mechanics of materials and inelastic constitutive laws*; Fracture mechanics*

- Curriculum Geotechnics:
Groundwater Hydraulics; Engineering Seismology

- Curriculum Structures:
Steel structures*; Computational Structural Analysis*

2nd year subjects
- Common to the two curricula:
Foundations; Geotechnical Modelling and Design; Underground excavations; 1st year subjects marked by * may also be chosen;

- Curriculum Geotechnics:
Slope Stability

- Curriculum Structures:
Earthquake Resistant Design; Bridge Theory and Design; Structural rehabilitation; Precast structures; 1st year subjects marked by * may also be chosen

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
There are no other courses that provide dedicated specialist training in design and analysis of advanced lightweight structures in aerospace, automotive, marine and renewable energy industries. Read more

There are no other courses that provide dedicated specialist training in design and analysis of advanced lightweight structures in aerospace, automotive, marine and renewable energy industries. This is with respect to structural integrity and health monitoring over service life, which can be tailored to your career aspirations.

Delivered with a unique focus on industry challenges and concerns, this course will equip you with strong experimental, numerical and analytical skills in structural mechanics for both composite and metallic components. This will help you to practically apply this knowledge to solve real engineering problems.

Who is it for?

Students who enrol come from a variety of different backgrounds. Many have specific careers in mind, such as working in automotive or aerospace disciplines (structural design or crash protection), materials development for defence applications, or to work in the field of numerical code developments/consultancy.

Why this course?

Designing advanced structures through novel, lightweight materials is one of the key enabling technologies for both aerospace and automotive sectors to align with national targets for reduction of carbon. In reducing inherent structural weight, it is essential not to compromise safety, as structural integrity and designing for crashworthiness become key design drivers.

Understanding how aluminium or composite structures and materials perform over their life cycles under static and dynamic loading, including crash and bird strike, requires expertise in a range of areas. As new simulation and material technologies emerge, there is a continuing need for talented employees with a strong, applied understanding in structural analysis, together with competent technical skills in numerical simulation.

Informed by Industry

Established in 2003, this course is supported by close ties with industry, through student projects, specialist lectures and more importantly, by employing our graduates.

The MSc in Advanced Lightweight Structures and Impact is directed by an Industrial Advisory Panel comprising senior engineers from aerospace sectors. This maintains course relevancy and ensures that graduates are equipped with the skills and knowledge required by leading employers.

The Industry Advisory Panel includes representatives from:

  • Airbus
  • Rolls-Royce
  • Jaguar

Accreditation

The MSc in Advanced Lightweight Structures and Impact is accredited by Mechanical Engineers (IMechE) & Royal Aeronautical Society (RAes) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

You will complete eight compulsory modules.

The course employs a wide range of teaching methods designed to create a demanding and varied learning environment including structured lecture programmes, tutorials, case studies, hands-on computing, individual projects, and guest lectures.

Group project

The group project aims to address one of the greatest challenges graduates face, which is the lack of experience in dealing with the complexities of working within a design team. This part of the course takes place from March to May. It is student-led and consolidates the taught material which develops both technical and project management skills on an industrially relevant project.

On successful completion of this module a student should be able to:

  • Set objectives, plan and manage projects
  • Evaluate a project brief set by a client
  • Develop a set of project objectives appropriate to the client’s brief
  • Plan and execute a work programme with reference to key project management processes (e.g. time management; risk management; contingency planning; resource allocation).

The projects are designed to integrate knowledge, understanding and skills from the taught modules in a real-life situation. This module is typically delivered through collaboration with an industrial sponsor.

Individual project

Individual research project topics can vary greatly, allowing you to develop your own areas of interest. It is common for our industrial partners to put forward real-life practical problems or areas of development as potential research topics. This section of the course takes place from April to August.

The research projects are devised to provide a research challenge allowing you to; define the problem, perform appropriate analysis and research, draw conclusions from your work, communicate your findings and conclusions and enhance your skills and expertise. This will enable you to plan a research project, demonstrate a thorough understanding of your chosen topic area, including a critical evaluation of existing work, design appropriate analysis, plan an independent learning ability and manage a well-argued thesis report demonstrating original thought.

Cranfield University is a member of the European SOCRATES Mobility Programme and students may apply to undertake their Individual Research Project at other member institutions within Europe.

Assessment

Taught modules 40%, Group project 20%, Individual research project 40%

Your career

Industry driven research makes our graduates some of the most desirable in the world for recruitment by companies competing in the structural engineering sector, which forms a large worldwide industry.

Students who enrol come from a variety of different backgrounds. Many have specific careers in mind, such as working in automotive or aerospace disciplines (structural design, or crash protection), materials development for defence applications, or to work in the field of numerical code developments/consultancy. Others decide to continue their education through PhD studies available within the University.

This course provides graduates with the necessary skills to pursue a successful career in automotive, aerospace, maritime and defence sectors. This approach offers you a wide range of career choices as a structural engineer at graduation and in the future.

Companies that have recruited graduates of this course include:

  • Airbus
  • Rolls-Royce
  • Jaguar Land Rover
  • Aston Martin.


Read less
This flexible MSc programme is suitable for individuals who already have an accredited undergraduate civil engineering degree and who are seeking to further their engineering skills and achieve chartered status. Read more

This flexible MSc programme is suitable for individuals who already have an accredited undergraduate civil engineering degree and who are seeking to further their engineering skills and achieve chartered status.

This degree is accredited by the Joint Board of Moderators as meeting the requirements for further learning for a chartered engineer (CEng) for candidates who have already acquired a partial CEng-accredited undergraduate first degree and for holders of an IEng-accredited first degree, to meet the educational base for a chartered engineer.

You will study a range of advanced civil engineering subjects linked to cutting-edge research. These include earthquake engineering dynamics and design, advanced geotechnics and rock mechanics, bridge engineering and advanced hydraulics. You will also develop the skills demanded in civil engineering consultancy offices around the world.

On the course, you will have the opportunity to use state-of-the-art laboratories and advanced technical software for numerical modelling.

The course is flexible and allows you to combine advanced civil engineering with related subjects including water environmental management, construction management and sustainable construction.

All of the taught modules are delivered by research-active staff and pave the way for a career at the forefront of ambitious civil engineering projects.

Course structure

The course has an emphasis on practical applications of advanced civil engineering concepts. You will make use of our advanced laboratories, modern computer facilities and technical software.

The MSc requires successful completion of six modules together with a dissertation on an agreed technical subject; a dissertation is not required, however, for the PGDip.

The taught component of the course comprises six core modules, and you can either take all six of these modules or choose four with an additional two approved modules from other MSc courses in the School of Environment and Technology. You can use this flexibility to study related subjects including water and waste-water treatment technology, construction management and sustainable construction.

Core modules cover geotechnical earthquake engineering, dynamics of structures with earthquake engineering applications, seismic design of reinforced concrete members, random vibrations of structures, bridge loads and analysis, rock mechanics, hydrogeology, coastal engineering and wave loading.

Areas of study

Coastal Engineering and Wave Loading

This module provides a basic understanding of different wave theories and their applications in coastal engineering practice.

You will develop an understanding of the coastal sediment transport processes and the means to deal with issues associated with coastal protection and sea defence.

Geotechnical Earthquake Engineering

This module provides an understanding of advanced geotechnical design methods with an emphasis on seismic design. It focuses on current design methods for soil and rock structures and foundation systems subject to complex loading conditions.

You will gain experience in using a variety of commercial software.

Rock Mechanics

The module gives you an understanding of the behaviour of rocks and rock mass and enables you to evaluate the instability of rock slopes and tunnels in order to design reinforcements for unstable rock.

Dynamics of Structures with Earthquake Engineering Applications

You will be introduced to the fundamental concepts of dynamics of structures. The module then focuses on analytical and numerical methods used to model the response of civil engineering structures subjected to dynamic actions, including harmonic loading, blast and impact loading, and earthquake ground motion.

Random Vibration of Structures

The module gives you the confidence to model uncertainties involved in the design of structural systems alongside a framework to critically appraise probabilistic-based Eurocode approaches to design.

Stochastic models of earthquake ground motion, wind and wave loading are explored. Probabilistic analysis and design of structures is undertaken through pertinent random vibration theory.

You will become confident with the probabilistic analysis for the design against earthquake, wind and wave loadings through various checkable calculations.

Repair and Strengthening of Existing Reinforced Concrete Structures

The module gives you an understanding of the types and causes of damage to reinforced concrete structures. It then focuses on current techniques for repair and strengthening of existing structures.

Employability

The course is particularly appropriate for work in structural, geotechnical and coastal engineering.

Graduates have gone on into roles as structural engineers and civil engineers in a number of structural design offices around the world.

Others have been motivated by the research component of the course and followed a PhD programme after graduation.



Read less
Our MSc in Concrete Structures provides training in the design, analysis and assessment of concrete structures including bridges and buildings. Read more

Our MSc in Concrete Structures provides training in the design, analysis and assessment of concrete structures including bridges and buildings.

This Master's degree is designed to cover a broad spectrum of structural engineering issues and their impact on reinforced and prestressed concrete structures.

Lectures are given mainly by full-time staff but important contributions are made by visiting professors and guest lecturers who are eminent industrialists.

Careers

All our MSc courses are career-orientated and cover both theoretical background and practical design considerations. Many of our students continue their studies to undertake research towards a PhD.

Further information

For full information on this course, including how to apply, see: http://www.imperial.ac.uk/study/pg/civil-engineering/concrete-structures/

If you have any enquiries you can contact our team at:



Read less
Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management. Read more

Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management.

The programme also offers the opportunity for practising bridge engineers to update their knowledge of current design and assessment codes and guidelines, become familiar with developments in new techniques for the design, construction and management of bridges.

The Bridge Engineering programme encompasses a wide range of modules addressing the whole life-analysis of bridge structures from design to end-of-life.

Optional modules from some of our other study streams are also offered, covering structural engineering, geotechnical engineering, water engineering, construction management, and infrastructure engineering and management.

Graduates are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

Programme structure

This programme is studied over either one year (full-time) or between two and five years (part-time or distance learning). It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Bridge Engineering Group Modules

Structural Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Infrastructure Engineering and Management Group Modules

Water and Environmental Engineering Group Modules

Dissertation

Educational aims of the programme

The programme aims to provide graduates with:

  • A comprehensive understanding of engineering mechanics for bridge analysis
  • The ability to select and apply the most appropriate analysis methodology for problems in bridge engineering including advanced and new methods
  • The ability to design bridge structures in a variety of construction materials
  • A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of bridge structures and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • A knowledge and understanding of the key UK and European standards and codes of practice relating to bridge engineering
  • The ability to interpret and apply the appropriate UK and European standards and codes of practiceto bridge design for both familiar and unfamiliar situations
  • A knowledge and understanding of the construction of different types of bridge structures using different types of materials (e.g. concrete and steel)
  • A knowledge and understanding of the common and less common materials used in bridge engineering
  • A comprehensive understanding of the principles of engineering mechanics underpinning bridge engineering
  • The ability to critically evaluate bridge engineering concepts
  • The ability to apply the appropriate analysis methodologies to common bridge engineering problems as well as unfamiliar problems
  • The ability to understand the limitations of bridge analysis methods
  • A knowledge and understanding to work with information that may be uncertain or incomplete
  • A Knowledge and understanding of sustainable development related to bridges
  • The awareness of the commercial, social and environmental impacts associated with bridges
  • An awareness and ability to make general evaluations of risk associated with the design and construction of bridge structures including health and safety, environmental and commercial risk
  • A critical awareness of new developments in the field of bridge engineering

Intellectual / cognitive skills

  • The ability to tackle problems familiar or otherwise which have uncertain or incomplete data (A,B)
  • The ability to generate innovative bridge designs (B)
  • The ability to use theory or experimental research to improve design and/or analysis
  • The ability to apply fundamental knowledge to investigate new and emerging technologies
  • Synthesis and critical appraisal of the thoughts of others;

Professional practical skills

  • The awareness of professional and ethical conduct
  • A Knowledge and understanding of bridge engineering in a commercial/business context
  • Ability to use computer software to assist towards bridge analysis
  • Ability to produce a high quality report
  • Ability of carry out technical oral presentations

Key / transferable skills

  • Communicate engineering design, concepts, analysis and data in a clear and effective manner
  • Collect and analyse research data
  • Time and resource management planning

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The programme provides a preparation particularly focused on issues of design, operation and maintenance of aircraft and their on-board systems. Read more

Mission and goals

The programme provides a preparation particularly focused on issues of design, operation and maintenance of aircraft and their on-board systems. The objective is to prepare highly culturally and professionally qualified technicians able to carry out and manage activities related to research and design in the fields of aerodynamics, materials, lightweight structures, aircraft systems and aerospace propulsion in national and international contexts, both in autonomy or in cooperation.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

Career opportunities

The graduate finds employment in aeronautical and space industries; in public and private bodies for experimentation in the aerospace field; in aircraft fleet management and maintenance companies; in air-traffic control agencies; in the airforce; in industries producing machinery and equipment in which aerodynamics and lightweight structures play a significant role.
Aeronautical engineers are particularly sought after in related fields. In fact, they may be involved in the design of terrestrial or nautical vehicles or large buildings or bridges or even in the design of power plants. Graduates are also in demand in the lightweight constructions industry, in the motor industry in the areas of monitoring the mechanical behaviour of structures subject to stress.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Aeronautical_Engineering.pdf
This programme aims at providing the students with specific skills in design, operation and maintenance of aircrafts and their on-board systems. The objective is to prepare culturally and professionally highly qualified technicians able to carry out and manage activities related to research and design in the fields of aerodynamics, materials, lightweight structures, aircraft systems and aerospace propulsion. Graduates can find employment in national and international contexts in aeronautical and space industries, public and private bodies for experimentation in the aerospace field, aircraft fleet management and maintenance companies, air-traffic control agencies, or in the air force. The track in Rotary wing is taught in English, while the other tracks are partially available in English.

Subjects

Specializations available:
- Aerodynamics
- Flight mechanics and systems
- Propulsion
- Structures
- Rotary-wing aircraft

Mandatory courses are:
- Aerodynamics
- Flight Dynamics
- Aerospace Structures
- Dynamics and control of aerospace structures

Other courses:
- Fundamentals of Aeroelasticity
- Nonlinear analysis of aerospace structures
- Fundamentals of Thermochemical propulsion
- Management of aerospace projects
- Gasdynamics
- Aircraft instrumentation & integrated systems
- Aircraft Design
- Heat transfer and thermal analysis
- Numerical modeling of differential problems
- Rotorcraft design
- Aircraft engines
- Airport and air traffic management
- Aerospace materials
- Communication skills
- Thesis

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Why this course?. This course was developed in response to the demand for design engineers who can design and assess new ships and offshore structures. Read more

Why this course?

This course was developed in response to the demand for design engineers who can design and assess new ships and offshore structures.

This programme is designed for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines.

You'll be introduced to ultimate strength, fatigue and design concepts for structural components of ships and offshore floating systems. You'll also gain the knowledge of material behaviour together with factors influencing the dynamic behaviour of offshore installations.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities, which will expand your career opportunities in naval architecture, marine, offshore oil and gas industries.

You'll study

Your course is made up of three components:

  • instructional modules
  • group project
  • individual project (MSc only)

Group project

You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.

This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.

It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.

You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

Individual project (MSc only)

MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • Towing/wave tank exclusively for teaching purposes
  • Marine engine laboratory
  • Hydrogen fuel cell laboratory
  • Cutting-edge computer facilities
  • Industry standard software

Teaching staff

You’re taught by dedicated staff with diverse expertise and research activities.

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Learning & teaching

There are two teaching semesters of 11 weeks each.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

Guest lectures

During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work and 60-70% examination.

Careers

Career destinations include:

  • Naval Architect
  • Marine Engineer
  • Graduate Engineer
  • Marine Surveyor
  • Offshore Renewables Engineer
  • Project Engineer


Read less
Our Structural Engineering postgraduate programme is delivered by the Faculty’s own staff, together with practising engineers from consultancies and local authorities. Read more

Our Structural Engineering postgraduate programme is delivered by the Faculty’s own staff, together with practising engineers from consultancies and local authorities.

For practising engineers engaged in the planning, design and construction of structural engineering works, this programme provides an opportunity to update their knowledge of current design practice and to become familiar with developments in codes and methods of analysis.

You will be able to choose from a rich and varied selection of specialist structural engineering subjects. The programme is offered in the standard full-time mode, in addition to part-time and distance learning options.

Graduates from the programme are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

Programme structure

This programme is studied full-time over one academic year and part-time or distance learning over two to five academic years. It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules

Bridge Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Infrastructure Engineering Group Modules

Water and Environmental Engineering Group Modules

Dissertation

Modes of study

Apart from the usual full-time mode, there are also part-time options. The majority of Bridge, Geotechnical and Structural Engineering modules can be studied by distance learning through the use of an interactive web-based e-learning platform (SurreyLearn).

Distance learning

This programme can be studied via distance learning, which allows a high level of flexibility and enables you to study alongside other commitments you may have. Get further information about the details of our distance learning programme.

Academic support, facilities and equipment

As part of your learning experience, you will have at your disposal a wide range of relevant software, including ANSYS, ABAQUS, DIANA, SAP 2000, Integer SuperSTRESS, LUSAS, CRISP, MATLAB, PertMaster DRACULA and VISSIM.

Educational aims of the programme

The programme aims to provide graduates with:

  • A comprehensive understanding of engineering mechanics for structural analysis
  • The ability to select and apply the most appropriate analysis methodology for problems in structural engineering including advanced and new methods
  • The ability to design structures in a variety of construction materials
  • A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This is an advanced postgraduate course specialising in structural engineering covering advanced structural analysis and design, structural computing simulation and also offering units linked with steel, concrete, timber and other structural designs. Read more
This is an advanced postgraduate course specialising in structural engineering covering advanced structural analysis and design, structural computing simulation and also offering units linked with steel, concrete, timber and other structural designs. It will also provide you with knowledge to design structures under dynamic and earthquake conditions.

The modules taught focus on learning advanced methods and techniques while developing analytic skills across a range of structural engineering topics.

Two modules, Finite Elements and Stress Analysis and Advanced Computing Structural Simulation, focus on learning advanced computing methods and commercial computing software for structures modelling and simulation.

Advanced Structural Analysis and Design and the Masonry and Timber Engineering modules will cover advanced structural theory and designing traditional structures, such as, steel, concrete, masonry and timbers. Earthquake Engineering will cover design of structures in seismic areas and analysis of structures under dynamic loading.

Soil-Structure Engineering will cover interaction of geotechnics and structures as well as foundation structures. Finally, you'll either conduct a structural related research project or a design project.

Accreditation

This degree is accredited by the Institution of Civil Engineers, the Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and the Institute of Highway Engineers on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Modules

Teaching techniques include: lectures, workshops, tutorials, laboratories, field trips and IT based blended learning. Visiting lecturers from industry contribute in some modules.

Module descriptions
Advanced structural design
Soil-structure engineering
Finite elements and stress analysis
Masonry and timber engineering
Structural dynamics and earthquake engineering
Advanced computing and structural simulation
Project / dissertation

Please visit the website to see how these modules are assessed

http://www.lsbu.ac.uk/courses/course-finder/structural-engineering-msc#course_tab_modules

Employability

Employment prospects for graduates of Structural Engineering are strong. Successful students will enter into a variety of positions with employers which might include: structural engineer, consultant, project manager, government advisor and researcher.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
The programme links the fundamental disciplines of Civil Engineering (design and construction of civil and environmental structures and infrastructures)… Read more

Mission and Goals

The programme links the fundamental disciplines of Civil Engineering (design and construction of civil and environmental structures and infrastructures) with a broad overview of the most advanced Risk Management tools, with particular attention to forecasting and prevention issues concerning structures and infrastructures and soil, on which they are built or embedded, due to natural and anthropic causes.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering-for-risk-mitigation/

Career Opportunities

The graduate in Civil Engineering for Risk Mitigation deals with the design of structures and infrastructures, planning, control and management of town and land systems, evaluation of the environmental impact of structures and infrastructures as well as research in public and private institutes. He/she can therefore find employment with construction companies, design and consultancy companies and has access to Public Administration offices.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Civil_Eng__Risk_Mitigation.pdf
The Master of Science programme is aimed at providing knowledge and expertise in the field of structural and non-structural measures for the mitigation of natural and anthropic hazards. It offers a synthesis of fundamental and advanced civil engineering tools for Risk Management, integrated by competences in different areas (land use planning, economics and finance, communication, law, psychology). The graduate in C.E.R.M. deals with the design of structures and infrastructures, planning, control and management of town and land systems, and he/she is able to evaluate the environmental impact of structures and infrastructures. He/she can find employment in construction, design and consultancy companies and may have access to contests for positions in the Public Administration.
The programme is taught in English

Subjects

In the first year the following topics are proposed:
- Numerical Methods for Partial Differential Equations
- Soil-Structure Interaction
- Tools for Risk Management
- Flood Risk
- Structural Analysis
- Fundamentals of Gis

In the second year students choose three thematic modules among the followings: Engineering Structures for the Environment; Geo-Engineering Techniques for Unstable Slopes; Emergency Plans for Hydro-Geological Risk; Structure Retrofitting for Seismic and Exceptional Loads; Transport management in emergency planning; Hazards from Industrial Sites: Process Analysis and Risk Assessment.

The final project is devoted to the solution of a field case.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering-for-risk-mitigation/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering-for-risk-mitigation/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Further your knowledge, right now!. As one of the largest economic sectors in Australia, the construction industry seeks graduates with distinctive skills, knowledge and practical experience across a variety of fields. Read more

Further your knowledge, right now!

As one of the largest economic sectors in Australia, the construction industry seeks graduates with distinctive skills, knowledge and practical experience across a variety of fields. By studying a Master of Construction Practice at Bond, Australia, graduates are equipped with the necessary knowledge in management and skills to deliver complex construction projects. Graduates will gain a professionally recognised qualification and in turn, enhance their career potential in the field of construction practice.

Gain professional recognition

The Master of Construction Practice is professionally recognised by some of Australia’s leading professional bodies. This allows graduates to differentiate themselves within the industry. Graduates are internationally recognised by the Royal Institution of Chartered Surveyors (RICS) as well as the Chartered Institute of Building (CIOB). They are also nationally accredited with the Australian Institute of Quantity Surveyors (AIQS), and meets the educational requirement set by the Queensland Building and Construction Commission (QBCC) for the granting of an Open Builders Licence.

Further, the program is also delivered in intensive mode. Intensive Mode Delivery is a compact and time efficient way to complete a postgraduate qualification with minimal impact on professional and personal lifestyles. Each subject is delivered over two weekends during the semester. There are two sets of three-day sessions per subject, generally scheduled Thursday to Saturday (approximately six to eight contact hours per day) with a break of four or five weeks between session one and session two of each subject.

Participants will receive 40 hours of combined lectures, discussion groups, case studies and workshops during contact hours. International students are required to be on campus every week.

About the program

The Master of Construction Practice covers a comprehensive range of subjects in the field of construction practice, focusing on the management and delivery of complex construction projects. The curriculum addresses a range of topics including building plans and processes, building structures and soil mechanics, construction techniques, contract administration, finance and cost planning, project management, refurbishment and retrofitting, and risks. It also contains a strong sustainability theme which equips graduates with distinctive skills that are highly sought after in the built environment. 

Industry overview

Construction is a fast paced and evolving industry, with sustainability a prominent concern for both the private and government sectors. Roles within the construction industry can be applied to practitioners such as estimators or contract managers, or as professionals such as quantity surveyors or project managers. Graduates equipped with the skills to apply innovative and adaptable solutions within complex environments are highly sought after.

Structure and subjects

View the Master of Construction Practice - Program Structure and Sequencing

The structure of the Master of Construction Practice is based on both theoretical and practical subjects. This program is designed in close consultation with prominent industry professional boards to ensure the integrity and contemporary relevance of the degree.

This program enables you to exit after four subjects with a graduate certificate, after eight subjects with a graduate diploma or complete 12 subjects for a master’s degree.

Graduate Certificate in Construction Practice (4)

The Graduate Certificate in Construction Practice program comprises 4 subjects, as follows:

Required Subjects (1)

Optional Subjects (2 + 1)

Choose 2 from the below subjects:

Plus choose 1 from the following:

Graduate Diploma in Construction Practice (8)

You must complete the following two subjects:

And select six subjects from the following options:

Master of Construction Practice (12)

To complete a Master of Construction Practice, you must complete all of the subjects below:

And select two subjects from the following options:



Read less
You can access six study streams on this Masters programme. Bridge Engineering. Construction Management. Geotechnical Engineering. Read more

You can access six study streams on this Masters programme:

  • Bridge Engineering
  • Construction Management
  • Geotechnical Engineering
  • Structural Engineering
  • Water Engineering and Environmental Engineering
  • Infrastructure Engineering and Management

As well as supporting the career development of Civil Engineering graduates, this programme provides the necessary further learning for engineers working in the construction industry who hold related first degrees such as engineering geology or construction management.

It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil-engineering works.

Programme structure

This programme is studied full-time over one academic year and part-time / distance learning for between two to five academic years. It consists of eight taught modules and a dissertation.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules

Bridge Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Infrastructure Engineering Group Modules

Water and Environmental Engineering Group Modules

Dissertation

Educational aims of the programme

  • The Civil Engineering programme aims to provide graduate engineers with:
  • Advanced capabilities and in-depth knowledge in a range of specialised aspects of civil engineering
  • It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil engineering works and to contribute to a personal professional development programme
  • A working knowledge of some of the UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer in both a technical or non-technical capacity dependent upon module selection

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • The mathematical principles necessary to underpin their education in civil engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of multi-disciplinary open ended engineering problems
  • The properties, behaviour and use of relevant materials
  • The management techniques which may be used to achieve civil engineering objectives within that context
  • Some of the roles of management techniques and codes of practice in design
  • The principles and implementation of some advanced design and management techniques specific to civil engineering
  • Mathematical and computer models relevant to civil engineering, and an appreciation of their limitations
  • The role of the professional engineer in society, including health, safety, environmental, sustainability, ethical issues and risk assessment within civil engineering
  • The wider multidisciplinary engineering context and its underlying principles
  • Developing technologies related to civil engineering and the ability to develop an ability to synthesize and critically appraise some of them
  • The framework of relevant requirements governing engineering activities, including personnel, health, safety, and risk issues (an awareness of)
  • The advanced design processes and methodologies and the ability to adapt them in open ended situations.

Intellectual / cognitive skills

  • Analyse and solve problems
  • Think strategically
  • Synthesis of complex sets of information
  • Understand the changing nature of knowledge and practice in the management of culturally diverse construction environments
  • Select and transfer knowledge and methods from other sectors to construction-based organisation
  • Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
  • Dynthesis and critical appraisal of the thoughts of others

Professional practical skills

  • Awareness of professional and ethical conduct
  • Extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools where appropriate
  • Evaluate and integrate information and processes in project work
  • Present information orally to others
  • Show a capability to act decisively in a coordinated way using theory, better practice and harness this to experience
  • Use concepts and theories to make engineering judgments in the absence of complete data
  • Observe, record and interpret data using appropriate statistical methods and to present results in appropriate forms for the civil engineering industry

Key / transferable skills

  • Communicate engineering design, concepts, analysis and data in a clear and effective manner 
  • Collect and analyse research data 
  • Time and resource management planning

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Your programme of study. If you are a busy professional this online advanced degree is an ideal method of studying structural engineering. Read more

Your programme of study

If you are a busy professional this online advanced degree is an ideal method of studying structural engineering. The programme is fully accredited by the Energy Institute, Institution of Civil Engineers (ICE), Institution of Structural Engineers (IStructE) and Institution of Mechanical Engineers (IMechE). This level of credibility really assists you to gain new career opportunities and advance your job prospects internationally. The area is constantly being improved in terms of design and understanding. You learn with University of Aberdeen, situated in the heart of the European oil and gas industry since its inception and rise in the 1970s. Many multinational headquarters are situated in Aberdeen and the academic and business community have worked together over this time to provide a great deal of knowledge, expertise and vocational training at advanced level to offer very advanced degrees at master's level.

The programme offers you a full range of knowledge in structural engineering to understand brown field engineering, petrochemical structures, conceptual design of structures and management of structures. You understand how load and natural forces can affect structures and the elements of time.

Courses listed for the programme

Semester 1

  • Design of Connections
  • Concept of Design Topside Modules

Semester 2

  • Brown Field Structural Engineering
  • Petrochemical Structural Engineering
  • Finite Element Methods

Semester 3

  • Conceptual Design of Jackets and Subsea Structures
  • Design of Stiffened Plates
  • Re-Design of Existing Structures by Structural Reliability Analysis
  • Design of Jacket Attachments

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • This programme is specifically aimed at practising Structural Engineers to improve your knowledge for the industry
  • You study in Aberdeen City with academics spanning knowledge of the industry since its inception in the 1970s
  • We work closely with employers to develop our degrees and ensure they offer you a robust set of skills and tools
  • Half of the programme is taught by practising structural engineers

Where you study

  • Online
  • Part Time
  • September or January

International Student Fees 2017/2018

Find out about international fees

  • International
  • EU and Scotland
  • Other UK

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs

Other engineering disciplines you may be interested in:



Read less

Show 10 15 30 per page



Cookie Policy    X