• University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Sussex Featured Masters Courses
Coventry University Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Newcastle University Featured Masters Courses
"structural" AND "mechani…×
0 miles

Masters Degrees (Structural Mechanics)

  • "structural" AND "mechanics" ×
  • clear all
Showing 1 to 15 of 89
Order by 
The goal of structural engineering is to predict the performance of structures under extreme events. This Masters in Structural Engineering provides you with a range of methods to analyse and design structures with quantifiable reliability over their design life. Read more
The goal of structural engineering is to predict the performance of structures under extreme events. This Masters in Structural Engineering provides you with a range of methods to analyse and design structures with quantifiable reliability over their design life.

Why this programme

◾If you intend to pursue a career in this specialist area of civil and structural engineering, in design consultancies and elsewhere, or if you want to transfer from other engineering disciplines, this programme is designed for you.
◾This programme offers a curriculum that is relevant to the needs of industry, designed to provide the advanced education required for the structural engineers of tomorrow.
◾The goal of structural engineering is to predict the performance of structures. This programme empowers future engineers with a range of methods to analyse and design structures with quantifiable reliability over their design life.
◾The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.

Programme structure

Modes of delivery of the MSc in Structural Engineering include lectures, seminars, tutorials, a group design project and individual projects.

Core courses
◾Advanced structural analysis and dynamics
◾Applied engineering mechanics
◾Computational modelling of nonlinear problems
◾Structural concrete
◾Structural design
◾Advanced soil mechanics
◾Structural engineering preliminary research project
◾Structural engineering review project
◾Structural design project

MSc students undertake an additional individual project.

Industry links and employability

If you intend to pursue a career in this specialist area of civil and structural engineering, in design consultancies and elsewhere, or if you want to transfer from other engineering disciplines, this programme is designed for you. It provides the advanced education required for the structural engineers of tomorrow.

Career prospects

This is a new programme which will be delivered the first time in 2016/17. However, it is a continuation of a former Structural Engineering and Mechanics MSc programme. Graduates from the former Structural Engineering and Mechanics programme have gone on to positions such as:

Graduate Structural Engineer at Wood Group PSN
Research Fellow at Fraunhofer Institute High Speed Dynamics
Graduate Structural Engineer at Wood Group
Graduate Structural Engineer at Design ID
Structure Engineer at Fujian United Benefit Broad Sustainable Building Technology
Structural Engineer-Subsea at a structural engineering company
Real Estate Assistant at Icade
Graduate Structure Engineer at P2ML
Graduate Engineer at Technip
Civil Engineering Technical Engineer at Hongrun Construction Corporation
Subsea Project Engineer at Halliburton
Bid and Building Engineer at Jingzhen Construction and Supervision Co.
Graduate Engineer at Reinertsen.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Computational Mechanics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Computational Mechanics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Swansea University has gained a significant international profile as one of the key international centres for research and training in computational mechanics and engineering. As a student on the Master's course in Erasmus Mundus Computational Mechanics, you will be provided with in-depth, multidisciplinary training in the application of the finite element method and related state-of-the-art numerical and computational techniques to the solution and simulation of highly challenging problems in engineering analysis and design.

Key Features of Erasmus Mundus Computational Mechanics MSc

The Zienkiewicz Centre for Computational Engineering is acknowledged internationally as the leading UK centre for computational engineering research. It represents an interdisciplinary group of researchers who are active in computational or applied mechanics. It is unrivalled concentration of knowledge and expertise in this field. Many numerical techniques currently in use in commercial simulation software have originated from Swansea University.

The Erasmus Mundus MSc Computational Mechanics course is a two-year postgraduate programme run by an international consortium of four leading European Universities, namely Swansea University, Universitat Politècnica de Catalunya (Spain), École Centrale de Nantes (France) and University of Stuttgart (Germany) in cooperation with the International Centre for Numerical Methods in Engineering (CIMNE, Spain).

As a student on the Erasmus Mundus MSc Computational Mechanics course, you will gain a general knowledge of the theory of computational mechanics, including the strengths and weaknesses of the approach, appreciate the worth of undertaking a computational simulation in an industrial context, and be provided with training in the development of new software for the improved simulation of current engineering problems.

In the first year of the Erasmus Mundus MSc Computational Mechanics course, you will follow an agreed common set of core modules leading to common examinations in Swansea or Barcelona. In addition, an industrial placement will take place during this year, where you will have the opportunity to be exposed to the use of computational mechanics within an industrial context. For the second year of the Erasmus Mundus MSc Computational Mechanics, you will move to one of the other Universities, depending upon your preferred specialisation, to complete a series of taught modules and the research thesis. There will be a wide choice of specialisation areas (i.e. fluids, structures, aerospace, biomedical) by incorporating modules from the four Universities. This allows you to experience postgraduate education in more than one European institution.

Modules

Modules on the Erasmus Mundus MSc Computational Mechanics course can vary each year but you could expect to study the following core modules (together with elective modules):

Numerical Methods for Partial Differential Equations
Continuum Mechanics
Advanced Fluid Mechanics
Industrial Project
Finite Element Computational Analysis
Entrepreneurship for Engineers
Finite Element in Fluids
Computational Plasticity
Fluid-Structure Interaction
Nonlinear Continuum Mechanics
Computational Fluid Dynamics
Dynamics and Transient Analysis
Reservoir Modelling and Simulation

Accreditation

The Erasmus Mundus Computational Mechanics course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

See http://www.jbm.org.uk for further information.

This degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

On the Erasmus Mundus MSc Computational Mechanics course, you will have the opportunity to apply your skills and knowledge in computational mechanics in an industrial context.

As a student on the Erasmus Mundus MSc Computational Mechanics course you will be placed in engineering industries, consultancies or research institutions that have an interest and expertise in computational mechanics. Typically, you will be trained by the relevant industry in the use of their in-house or commercial computational mechanics software.

You will also gain knowledge and expertise on the use of the particular range of commercial software used in the industry where you are placed.

Careers

The next decade will experience an explosive growth in the demand for accurate and reliable numerical simulation and optimisation of engineering systems.

Computational mechanics will become even more multidisciplinary than in the past and many technological tools will be, for instance, integrated to explore biological systems and submicron devices. This will have a major impact in our everyday lives.

Employment can be found in a broad range of engineering industries as this course provides the skills for the modelling, formulation, analysis and implementation of simulation tools for advanced engineering problems.



Student Quotes

“I gained immensely from the high quality coursework, extensive research support, confluence of cultures and unforgettable friendship.”

Prabhu Muthuganeisan, MSc Computational Mechanics

Read less
Reach the next level of expertise with a master’s degree in structural engineering. You’ll enjoy convenient scheduling and one-on-one interaction with expert faculty who bring their real-world experience to the classroom. Read more
Reach the next level of expertise with a master’s degree in structural engineering. You’ll enjoy convenient scheduling and one-on-one interaction with expert faculty who bring their real-world experience to the classroom.

MSOE’s M.S. in Architectural Engineering degree emphasizes building structural design and analysis. It meets the needs of architectural, civil or structural engineers who desire increased knowledge to design structural systems for modern buildings.

With the MSST degree, you’ll enhance your analytical and design capabilities and increase your professional flexibility. For recent graduates with a civil or architectural engineering degree, earning an MSST will accelerate the Professional Engineer credential.

Program Overview

The MSST requires that you have completed an undergraduate curriculum that included indeterminate structural analysis, structural steel and reinforced concrete design and soil mechanics.

MSST courses focus on structural design topics like advanced design of structural steel members and systems, light gage metal members and structure, wood structures, masonry structures, foundations and selection of structural systems. Courses on advanced structural analysis are included and provide a broad theoretical background for structural design.

Curriculum Format

The MSST is a flexible program, with courses offered evenings with the option of a two-, three- or five-year program. Classes meet one evening per week during the academic quarter. Students enrolled in MSOE’s bachelor in architectural engineering program may pursue a dual degree.

The MSST program requires completion of 45 graduate credits, with at least 36 of the credits obtained in structural engineering courses. There are two curriculum tracks available – the Capstone Report Track and the Capstone Project Track.

Outcomes and Objectives

Student Outcomes

The outcomes of the M.S. in Architectural Engineering program are such that, at the time of graduation, each graduate will be able to:
- perform structural analysis on structural systems and structural components comprised of many types of material subjected to gravity, wind and/or seismic loads.
- design structural systems made up of many structural components and structural materials; structural members; and connections in accordance with current building codes and specifications.
- individually complete a structural engineering project addressing the complex requirements of modern structures.

Program Educational Objectives

The M.S. in Architectural Engineering program will produce graduates who:
- will be able to confidently meet the responsibilities of a professional structural engineer
- will, if so desired, be employed in the field of structural engineering
- will, if so desired, be able to become licensed professional engineers
- will, if so desired, be able to obtain a Ph.D. in structural engineering or civil engineering.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Swansea University has been at the forefront of international research in the area of computational engineering. Internationally renowned engineers at Swansea pioneered the development of numerical techniques, such as the finite element method, and associated computational procedures that have enabled the solution of many complex engineering problems. As a student on the Master's course in Computer Modelling and Finite Elements in Engineering Mechanics, you will find the course utilises the expertise of academic staff to provide high-quality postgraduate training.

Key Features: Computer Modelling and Finite Elements in Engineering Mechanics

Computer simulation is now an established discipline that has an important role to play in engineering, science and in newly emerging areas of interdisciplinary research.

Using mathematical modelling as the basis, computational methods provide procedures which, with the aid of the computer, allow complex problems to be solved. The techniques play an ever-increasing role in industry and there is further emphasis to apply the methodology to other important areas such as medicine and the life sciences.

This Computer Modelling and Finite Elements in Engineering Mechanics course provides a solid foundation in computer modelling and the finite element method in particular.

The Zienkiewicz Centre for Computational Engineering, within which this course is run, has excellent computing facilities, including a state-of-the-art multi-processor super computer with virtual reality facilities and high-speed networking.

Modules

Modules on the Computer Modelling and Finite Elements in Engineering Mechanics course can vary each year but you could expect to study:

Reservoir Modelling and Simulation
Solid Mechanics
Finite Element Computational Analysis
Advanced Fluid Mechanics
Computational Plasticity
Fluid-Structure Interaction
Nonlinear Continuum Mechanics
Computational Fluid Dynamics
Dynamics and Transient Analysis
Computational Case Study
Communication Skills for Research Engineers
Numerical Methods for Partial Differential Equations

Accreditation

The MSc Computer Modelling and Finite Elements in Engineering Mechanics course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with Industry

The Zienkiewicz Centre for Computational Engineering has an extensive track record of industrial collaboration and contributes to many exciting projects, including the aerodynamics for the current World Land Speed Record car, Thrust SSC, and the future BLOODHOUND SSC, and the design of the double-decker super-jet Airbus A380.

Careers

Employment in a wide range of industries, which require the skills developed during the Computer Modelling and Finite Elements in Engineering Mechanics course, from aerospace to the medical sector. Computational modelling techniques have developed in importance to provide solutions to complex problems and as a graduate of this course in Computer Modelling and Finite Elements in Engineering Mechanics, you will be able to utilise your highly sought-after skills in industry or research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Read less
The MSc Mechanical Engineering programme provides practical skills and an understanding of fundamental theory to prepare students for the rapidly changing global market. Read more
The MSc Mechanical Engineering programme provides practical skills and an understanding of fundamental theory to prepare students for the rapidly changing global market.

Who is it for?

The programme is aimed at both new graduates and engineering professionals who wish to develop advanced skills in thermofluid, structural analysis, heat conversion and recovery, design and technology that are taught by leading experts in the field; all modules are updated by the latest advancements in technology.

This course is designed to meet the challenges of the rapidly changing global market; with the focus on well-designed systems and processes that are key to successful commercial enterprises.

Objectives

This course provides a broad-based knowledge of the latest technological developments in mechanical engineering. This includes thermos-fluids, structural mechanics, renewable energy, gas turbine, IC engines and advanced heat transfer.

Students not only gain an in-depth understanding on fundamental theory, but also acquire practical skills and can appreciate impending developments in the Mechanical fields of technology.

The Dissertation provides a stimulating and challenging opportunity to apply knowledge and develop a deep understanding in a specialised aspect of your choice. Dissertations can be institution or industry based and company sponsored students have the opportunity to develop their career. Successful industrial projects often lead to the recruitment of students by the collaborating company.

Teaching and learning

The programme comprises lectures, assessed assignments and technical visits.

Teaching by academics and industry professionals whose work is internationally recognised. Seminar series and talks are conducted by visiting speakers.

Assessment

Assessment is based on marks obtained throughout the year for courseworks, class tests, and end-of-year examinations. Modules, based on coursework only, are assessed through substantial individually designed courseworks, assignments and small projects. IT skill is assessed through submitted work on CATIA design reports and computational courseworks.

Modules

There are eight taught modules equating to 120 credits, plus a dissertation of 60 credits. The taught part of the MSc is structured into modules of 15 credits each.

The mode of delivery will follow a weekly teaching structure delivered at City, distributed through the year at the rate of four days per week. This course develops the broad skills and knowledge base required by mechanical engineers and provides a platform for career development.

Completion of modules and examinations will lead to the award of a Postgraduate Diploma. The completion of modules, examinations and dissertation will lead to the award of a Masters degree. Specialisations include computer-aided design, energy systems and management, combustions, IC engines, screw compressors and expanders, experimental techniques, mechatronics and dynamics of structures.

Core modules - 6 Core Modules, 15 credits each (90 credits):
-MEM102 Combustion Fundamentals and Applications (15 credits)
-MEM106 Advanced Structural Mechanics (15 credits)
-MEM107 Advanced Heat Transfer (15 credits)
-MEM108 IC engines and Vehicle Propulsion (15 credits)
-AEM301 Advanced Computational Fluid Dynamics (15 credits)
-AEM305 Gas Turbine Engineering (15 credits)
-Plus the individual project (EPM698) (60 credits)

Elective modules - Elective modules, choice of two, 15 credits each (30 credits):
-EPM707 Finite Element Methods (15 credits)
-EPM767 Mathematical Modelling in CAD (15 credits)
-EPM770 Renewable Energy (15 credits)
-EPM501 Power Electronics (15 credits)

Career prospects

Recent employment destinations of graduates include:
-Ford
-Rolls Royce
-Lotus
-BP
-Howden
-Shell
-Heliex
-Sortex
-Transport for London
-Jaguar
-Toyota
-Delphi
-Holroyd

Read less
Structural Design aims to provide an understanding of aircraft structures, airworthiness requirements, design standards, stress analysis, fatigue and fracture (damage tolerance) and fundamentals of aerodynamics and loading. Read more

Course Description

Structural Design aims to provide an understanding of aircraft structures, airworthiness requirements, design standards, stress analysis, fatigue and fracture (damage tolerance) and fundamentals of aerodynamics and loading. The suitable selection of materials, both metallic and composite is also covered. Manufacturers of modern aircraft are demanding more lightweight and more durable structures. Structural integrity is a major consideration of today’s aircraft fleet. For an aircraft to economically achieve its design specification and satisfy airworthiness regulations, a number of structural challenges must be overcome. This course trains engineers to meet these challenges, and prepares them for careers in civil and military aviation.

Overview

This course is suitable for students with a background in aeronautical or mechanical engineering or those with relevant industrial experience.

The Structural Design option consists of a taught component and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:
- To build upon knowledge to enable students to enter a wide range of aerospace and related activities concerned with the design of flying vehicles such as aircraft, missiles, airships and spacecraft
- To ensure that the student is of immediate use to their employer and has sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression
- To provide teaching that integrates the range of disciplines required by modern aircraft design
- To provide the opportunity for students to be immersed in a 'Virtual Industrial Environment' giving them hands-on experience of interacting with and working on an aircraft design project.

English Language Requirements

If you are an international student you will need to provide evidence that you have achieved a satisfactory test result in an English qualification. The minimum standard expected from a number of accepted courses are as follows:

IELTS - 6.5
TOEFL - 92
Pearson PTE Academic - 65
Cambridge English Scale - 180
Cambridge English: Advanced - C
Cambridge English: Proficiency - C

In addition to these minimum scores you are also expected to achieve a balanced score across all elements of the test. We reserve the right to reject any test score if any one element of the test score is too low.

We can only accept tests taken within two years of your registration date (with the exception of Cambridge English tests which have no expiry date).

Core Modules

The taught programme for the Structural Design masters is generally delivered from October to March. After completion of the four compulsory taught modules, students have an extensive choice of optional modules to match specific interests.

Core:
- Fatigue Fracture Mechanics and Damage Tolerance
- Finite Element Analysis (including NASTRAN/PATRAN Workshops)
- Design and Analysis of Composite Structures
- Structural Stability

Optional:
- Loading Actions
- Computer Aided Design (CAD)
- Aircraft Aerodynamics
- Aircraft Stability and Control
- Aircraft Performance
- Detail Stressing
- Structural Dynamics
- Aeroelasticity
- Design for Manufacture and Operation
- Initial Aircraft Design (including Structural Layout)
- Airframe Systems
- Aircraft Accident Investigation
- Crashworthiness
- Aircraft Power Plant Installation
- Avionic System Design
- Flight Experimental Methods (Jetstream Flight Labs)
- Reliability, Safety Assessment and Certification
- Sustaining Design (Structural Durability)

Individual Project

The individual research project aims to provide the training necessary for you to apply knowledge from the taught element to research, and takes place from January to September.

Recent Individual Research Projects include:
- Review, Evaluation and Development of a Microlight Aircraft
- Investigation of the Fatigue Life of Hybrid Metal Composite Joints
- Design for Additive Layer Manufacture
- Rapid Prototyping for Wind Tunnel Model Manufacturing.

Group project

There is no group project for this option of the Aerospace Vehicle Design MSc.

Assessment

Taught modules (20%); Individual Research Project (80%)

Career opportunities

The AVD option in Structural Design is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

Graduates from the have gone onto pursue engineering careers in disciplines such as structural design, stress analysis or systems design. Many of our former graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry.

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Typical student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce.

For further information

On this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/AVD-Option-in-Structural-Design

Read less
This degree is your opportunity to establish or consolidate your career as a civil or structural design engineer. Read more
This degree is your opportunity to establish or consolidate your career as a civil or structural design engineer. The course is accredited for the Further Learning Programme (formerly ‘Matching Sections’) at Chartered Engineer (CEng) level by the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

There is also an opportunity for working professionals to progress towards CEng status through a tailor-made route. This will help you accelerate to the remaining steps of CEng status by working with your employer in the process. This is a unique feature of a Masters course and significantly reduces the period required to achieve Chartered status.

To provide the latest specialist knowledge and technical competence, all design-related modules are taught in accordance with the new structural Eurocodes. As well as developing your analytical and problem-solving skills, tuition covers project planning and contract management. The course is also underpinned by research into areas such as the use of novel and sustainable environmentally-friendly materials, geotechnics and structural modelling.

See the website http://courses.southwales.ac.uk/courses/577-msc-civil-and-structural-engineering

What you will study

You will study the following modules:
- Advanced Civil Engineering Materials
- Integrative Project Planning and Management
- Geo-environmental Engineering
- Advanced Structural Analysis and Structural Concrete Design
- Further Advanced Structural Analysis and Steel/Composite Design
- Dissertation

Optional modules include:
- Seismic Analysis and Design to Eurocodes*
- Structural Timber and Masonry Design to Eurocodes*
- Further Finite Element Analysis*
- Non-Destructive Testing*
*10 credit module

Learning and teaching methods

The course is delivered in three major blocks that offer an intensive but flexible learning pattern, with two entry opportunities for applicants each year – February and September. You will learn through lectures, tutorials and seminars, as well as guest lectures and seminars with prominent industry experts. You will complete a research project using our excellent laboratory facilities and a dissertation on a chosen topic of interest.

Work Experience and Employment Prospects

On completion of this course, you will be able to develop a career as a structural engineer, technical manager, or research and development manager. These roles can be with leading international consultancies, contractors, national and local consulting companies, as well as international research and government organisations.

Assessment methods

Some modules are assessed through coursework, others by a combination of design projects and a formal examination. If you want to continue working in industry, you can apply to study individual modules as short courses on a day-release or block-delivery basis.

Facilities

The University of South Wales has excellent facilities, and is committed to investment and refurbishment. We’ve just completed a £130m investment programme in new buildings and facilities, including significant investment in the Faculty of Computing, Engineering and Science. The University has also announced a further investment of £28m ensure that you’re using equipment and software that is state-of-the-art and industry-standard, we continually evaluate our labs and teaching spaces and regularly re-fit and re-equip them. A recent refurbishment of a number of our Civil and Mechanical Engineering labs is part of this programme of continuous enhancement of our facilities.

Read less
Develop skills in the analysis, design and assessment of engineering structures subject to normal, seismic and extreme loading and environmental conditions. Read more
Develop skills in the analysis, design and assessment of engineering structures subject to normal, seismic and extreme loading and environmental conditions.

Accredited by relevant professional bodies and designed to meet the needs of the modern construction industry, this course offers a wide range of structural engineering principles, as you learn about issues relating to steel and concrete structures and foundations.

Through this highly technical course, studied one year full-time or two years part-time, you will develop skills in numerical simulation using a variety of advanced software.

Part-time study is flexible. Normally students will take three years to complete the programme if they undertake one module per week but the length of the course can be reduced to two years, if two modules are taken each week. Many part-time students undertake projects in their place of work.

See the website http://www.napier.ac.uk/en/Courses/MScPGDipPGCert-Advanced-Structural-Engineering-Postgraduate-FullTime

What you'll learn

You will also learn failure analysis methods, the Eurocodes and the code of practice for the design of various construction materials, research skills and the legal issues surrounding construction.

The course is accredited by the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE) and the Chartered Institution of Highways & Transportation (CIHT). Industry practitioners are regularly invited as guest speakers and lecturers.

Modules

• Advanced mechanics of materials and FEA
• Advanced structural concrete
• Advanced; structural steel design
• Forensic engineering;
• Foundation design to eurocode 7
• Structural; dynamics and earthquake design
• MSc thesis

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

As a qualified structural engineer with advanced training, you will be in demand in the construction industry worldwide. Alternatively, you may choose to use this course as the basis for further education or extensive research.

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
This is an accredited masters course in Civil Engineering with a strong focus on Structural Engineering. Read more
This is an accredited masters course in Civil Engineering with a strong focus on Structural Engineering. It is designed for both engineers in employment and students wishing to pursue further study at Masters level covering a range of subjects from advanced structural analysis and design to to global professional development. The course has been developed and will be delivered in collaboration with civil engineering employers. The taught modules specialise in advanced analysis, design and modelling.

Holders of a CEng accredited Bachelor’s degree, can enrol on any of the MSc courses on offer (ECT053, ECT054, and ECT075) provided they meet the entry requirements. This will automatically meet the educational base for Chartered Engineer status.

Holders of an IEng accredited or an overseas Bachelor’s degree, are advised to complete the MSc Civil Engineering (Technical Route), ECT075. Upon completion of their MSc course, they will need to apply for an academic assessment to be formally approved for CEng. They may be required to complete extra modules if their Bachelor degree is deemed to be not technical enough.

WHAT WILL I LEARN?

The MSc in Civil and Structural Engineering is made up of the following modules, each delivered in a separate block with the exception of the Integrating Project and Research Project:
-Computational Mechanics
-Global Professional Development
-Advanced Design Concepts
-Advanced Structural Analysis Concepts
-Soil-structure Interaction
-Experimental Methods for Materials and Structures
-Bridge Engineering
-Integrated Project
-Technical Project

The course can be studied on a full-time (one year), or part-time basis (two years). Tuition is in one-week intensive blocks, with a few weeks' gap in between blocks for individual research and study. Assessment for the taught modules is a mixture of examination and coursework. For part-time students the blocks are spread over two years rather than one.

This is followed by an Integrated Project and an individual Research Project. For full-time students the Integrating Project is normally team-based and investigates a real engineering problem. For part-time students the Integrating Project is chosen to specifically link their work with their studies.

Training in research methods is given in preparation for the Research Project. Research topics are chosen in discussion with academic staff and a wide range of potential areas within civil and structural engineering are available.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

This programme of study is ideal for those seeking deeper and more specialist knowledge for employment within the public and private sector, or students wishing to pursue an academic or research-orientated career.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
Students work closely with their graduate advisor and supervisory committee to define an appropriate plan of study that meets all degree requirements, including any prerequisite or preparatory work and a specified set of core courses. Read more
Students work closely with their graduate advisor and supervisory committee to define an appropriate plan of study that meets all degree requirements, including any prerequisite or preparatory work and a specified set of core courses.

Visit the website http://cce.eng.ua.edu/graduate/ms-program/civil-engineering/

Research Thesis Option (Plan I)

The thesis option is a research-focused program that includes conducting original research, writing a research thesis and defending the thesis to the student’s graduate supervisory committee. The research thesis option degree requirements are as follows:

A minimum of 30 credit hours, including:

21 credit hours of approved coursework, including
- 9 credit hours of core graduate coursework

- A maximum of 6 hours of approved 400-level courses

- A minimum of 15 hours of CE-prefix courses

3 hours of CE 593 or CE 693 Practicum
- Taken with permission under the supervision of the student’s graduate advisor

6 hours of CE 599 Thesis Research
- Taken with permission under the supervision of the student’s graduate advisor

- The graduate advisor must be a full member of the department’s graduate faculty

- Once taken, CE 599 must be taken every term until graduation

Paper/Report Option (Plan II)

The paper/report, or non-thesis, option requires a research paper, a policy and practice paper, or equivalent culminating experience, which is graded by the student’s graduate advisor. The paper/report option requirements are as follows:

A minimum of 30 credit hours, including:

27 credit hours of approved coursework:
- 9 credit hours of core graduate coursework

- A maximum of 6 hours of approved 400-level courses

- A maximum of 3 hours of CE 593 or CE 693 Practicum

- A minimum of 18 hours of CE-prefix courses

3 credit hours of CE 501 Masters Capstone Project – Plan II
- Taken with permission under the direction of the student’s graduate advisor

- The graduate advisor must be a full member of the department’s graduate faculty

- Requires completion a research paper, a policy and practice paper, or equivalent report with the topic, scope, and format pre-approved by the student’s advisor

- Must be taken the semester the student plans to graduate

Core Graduate Course Requirements

The faculty has defined core course requirements in four areas. Each student’s plan of study is required to include one of the following sets of core graduate courses:

- Construction Engineering and Management Core Coursework (MSCivE, Ph.D.):

CE 573 Statistical Applications in Civil Engineering
CE 567 Construction Accounting and Finance
CE 568 Construction Scheduling

- Environmental and Water Resources Engineering Core Coursework (MSCivE, MSEnvE, Ph.D.):

CE 573 Statistical Applications in Civil Engineering
CE 575 Hydrology
CE 626 Physical and Chemical Processes

- Structural Engineering and Materials Core Coursework (MSCivE, Ph.D.):

CE 573 Statistical Applications in Civil Engineering
CE 534 Advanced Structural Mechanics
CE 531 Structural Dynamics

- Transportation Systems Engineering Core Coursework (MSCivE, Ph.D.):

CE 573 Statistical Applications in Civil Engineering
CE 559 Pavement Design and Rehabilitation
CE 655 Sustainable Transportation

Notes

- University Scholars (BS/MS) students are allowed 9 credit hours of coursework to double count between the BS and MS degrees.

- Students on graduate assistantships must register for a minimum of 1 credit hour of CE 593/693 each semester they are supported.

- Only 400-level courses without 500-level counterparts are allowed and must be approved prior to taking the class.

- Students are responsible for all forms and must route all forms through the Department prior to submission to UA’s Graduate School.

Find out how to apply here - http://graduate.ua.edu/prospects/application/

Read less
Running for over 35 years, this fully accredited MSc programme builds advanced capabilities in specialist aspects of bridge engineering. Read more
Running for over 35 years, this fully accredited MSc programme builds advanced capabilities in specialist aspects of bridge engineering.

Successful completion of this programme will aid you in pursuing a career as a bridge engineer with a consultancy, a specialist contractor or a local authority.

PROGRAMME OVERVIEW

Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management.

The programme also offers the opportunity for practising bridge engineers to update their knowledge of current design and assessment codes and guidelines, become familiar with developments in new techniques for the design, construction and management of bridges.

The Bridge Engineering programme encompasses a wide range of modules addressing the whole life-analysis of bridge structures from design to end-of-life.

Optional modules from some of our other study streams are also offered, covering structural engineering, geotechnical engineering, water engineering, construction management, and infrastructure engineering and management.

Graduates are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied over either one year (full-time) or between two and five years (part-time or distance learning). It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Steel and Composite Bridge Design
-Long-Span Bridges

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Foundation Engineering

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering and Management Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources Management and Hydraulic Modelling
-Water Policy and Management
-Dissertation
-Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive understanding of engineering mechanics for bridge analysis
-The ability to select and apply the most appropriate analysis methodology for problems in bridge engineering including advanced and new methods
-The ability to design bridge structures in a variety of construction materials
-A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of bridge structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-A knowledge and understanding of the key UK and European standards and codes of practice relating to bridge engineering
-The ability to interpret and apply the appropriate UK and European standards and codes of practiceto bridge design for both familiar and unfamiliar situations
-A knowledge and understanding of the construction of different types of bridge structures using different types of materials (e.g. concrete and steel)
-A knowledge and understanding of the common and less common materials used in bridge engineering
-A comprehensive understanding of the principles of engineering mechanics underpinning bridge engineering
-The ability to critically evaluate bridge engineering concepts
-The ability to apply the appropriate analysis methodologies to common bridge engineering problems as well as unfamiliar problems
-The ability to understand the limitations of bridge analysis methods
-A knowledge and understanding to work with information that may be uncertain or incomplete
-A Knowledge and understanding of sustainable development related to bridges
-The awareness of the commercial, social and environmental impacts associated with bridges
-An awareness and ability to make general evaluations of risk associated with the design and construction of bridge structures including health and safety, environmental and commercial risk
-A critical awareness of new developments in the field of bridge engineering

Intellectual / cognitive skills
-The ability to tackle problems familiar or otherwise which have uncertain or incomplete data (A,B)
-The ability to generate innovative bridge designs (B)
-The ability to use theory or experimental research to improve design and/or analysis
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-Synthesis and critical appraisal of the thoughts of others

Professional practical skills
-The awareness of professional and ethical conduct
-A Knowledge and understanding of bridge engineering in a commercial/business context
-Ability to use computer software to assist towards bridge analysis
-Ability to produce a high quality report
-Ability of carry out technical oral presentations

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

Read less
This fully accredited MSc programme helps graduate engineers to acquire advanced capabilities and in-depth knowledge across a range of civil-engineering disciplines, including bridge engineering, construction management, and geotechnical, structural and water engineering. Read more
This fully accredited MSc programme helps graduate engineers to acquire advanced capabilities and in-depth knowledge across a range of civil-engineering disciplines, including bridge engineering, construction management, and geotechnical, structural and water engineering.

This well-established programme is delivered by experienced University staff, together with practising engineers from consultancies and local authorities.

PROGRAMME OVERVIEW

You can access six study streams on this Masters programme:
-Bridge Engineering
-Construction Management
-Geotechnical Engineering
-Structural Engineering
-Water Engineering and Environmental Engineering
-Infrastructure Engineering and Management

As well as supporting the career development of Civil Engineering graduates, this programme provides the necessary further learning for engineers working in the construction industry who hold related first degrees such as engineering geology or construction management.

It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil-engineering works.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time / distance learning for between two to five academic years. It consists of eight taught modules and a dissertation. This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Bridge Management
-Steel and Composite Bridge Design
-Long-Span Bridges

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Deep Foundations and Earth Retaining Structures

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment Optional
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources

Dissertation
-Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The Civil Engineering programme aims to provide graduate engineers with:
-Advanced capabilities and in-depth knowledge in a range of specialised aspects of civil engineering
-It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil engineering works and to contribute to a personal professional development programme
-A working knowledge of some of the UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer in both a technical or non-technical capacity dependent upon module selection

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-The mathematical principles necessary to underpin their education in civil engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of multi-disciplinary open ended engineering problems
-The properties, behaviour and use of relevant materials
-The management techniques which may be used to achieve civil engineering objectives within that context
-Some of the roles of management techniques and codes of practice in design
-The principles and implementation of some advanced design and management techniques specific to civil engineering
-Mathematical and computer models relevant to civil engineering, and an appreciation of their limitations
-The role of the professional engineer in society, including health, safety, environmental, sustainability, ethical issues and risk assessment within civil engineering
-The wider multidisciplinary engineering context and its underlying principles
-Developing technologies related to civil engineering and the ability to develop an ability to synthesize and critically appraise some of them
-The framework of relevant requirements governing engineering activities, including personnel, health, safety, and risk issues (an awareness of)
-The advanced design processes and methodologies and the ability to adapt them in open ended situations.

Intellectual / cognitive skills
-Analyse and solve problems
-Think strategically
-Synthesis of complex sets of information
-Understand the changing nature of knowledge and practice in the management of culturally diverse construction environments
-Select and transfer knowledge and methods from other sectors to construction-based organisation
-Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
-Dynthesis and critical appraisal of the thoughts of others

Professional practical skills
-Awareness of professional and ethical conduct
-Extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools where appropriate
-Evaluate and integrate information and processes in project work
-Present information orally to others
-Show a capability to act decisively in a coordinated way using theory, better practice and harness this to experience
-Use concepts and theories to make engineering judgments in the absence of complete data
-Observe, record and interpret data using appropriate statistical methods and to present results in appropriate forms for the civil engineering industry

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This well-established and fully accredited MSc programme will develop the knowledge and skills acquired in your undergraduate programme. Read more
This well-established and fully accredited MSc programme will develop the knowledge and skills acquired in your undergraduate programme. It builds the advanced capabilities in analysis and codified design in specialised aspects of structural engineering that are required by industry.

PROGRAMME OVERVIEW

Our Structural Engineering postgraduate programme is delivered by the Faculty’s own staff, together with practising engineers from consultancies and local authorities.

For practising engineers engaged in the planning, design and construction of structural engineering works, this programme provides an opportunity to update their knowledge of current design practice and to become familiar with developments in codes and methods of analysis.

You will be able to choose from a rich and varied selection of specialist structural engineering subjects. The programme is offered in the standard full-time mode, in addition to part-time and distance learning options.

Graduates from the programme are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time or distance learning over two to five academic years. It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Bridge Management
-Steel and Composite Bridge Design
-Long-Span Bridges

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Deep Foundations and Earth Retaining Structures

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources

Dissertation
-Dissertation Project

Apart from the usual full-time mode, there are also part-time options. The majority of Bridge, Geotechnical and Structural Engineering modules can be studied by distance learning through the use of an interactive web-based e-learning platform (SurreyLearn). This programme can be studied via distance learning, which allows a high level of flexibility and enables you to study alongside other commitments you may have.

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive understanding of engineering mechanics for structural analysis
-The ability to select and apply the most appropriate analysis methodology for problems in structural engineering including advanced and new methods
-The ability to design structures in a variety of construction materials
-A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-A knowledge and understanding of the key UK and European standards and codes of practice relating to structural engineering
-The ability to interpret and apply the appropriate UK and European standards and codes of practice to structural design for both familiar and unfamiliar situations
-A knowledge and understanding of the construction of different types of structures using different types of materials (e.g. concrete and steel)
-A knowledge and understanding of the common and less common materials used in structural engineering
-A comprehensive understanding of the principles of engineering mechanics underpinning structural engineering
-The ability to critically evaluate structural engineering concepts
-The ability to apply the appropriate analysis methodologies to common structural engineering problems as well as unfamiliar problems
-The ability to understand the limitations of structural analysis methods
-A knowledge and understanding to work with information that may be uncertain or incomplete
-A Knowledge and understanding of sustainable development related to structures
-The awareness of the commercial, social and environmental impacts associated with structures
-An awareness and ability to make general evaluations of risk associated with the design and construction of structures including health and safety, environmental and commercial risk
-A critical awareness of new developments in the field of structural engineering

Intellectual / cognitive skills
-The ability to tackle problems familiar or otherwise which have uncertain or incomplete data
-The ability to generate innovative structural designs
-The ability to use theory or experimental research to improve design and/or analysis
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
-Synthesis and critical appraisal of the thoughts of others

Professional practical skills
-The awareness of professional and ethical conduct
-A Knowledge and understanding of structural engineering in a commercial/business context
-Ability to use computer software to assist towards structural analysis
-Ability to produce a high quality report
-Ability of carry out technical oral presentations

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This MSc offers you the knowledge and expertise for a career as a consulting structural engineer within this specialist professional area of civil engineering. Read more
This MSc offers you the knowledge and expertise for a career as a consulting structural engineer within this specialist professional area of civil engineering. It is designed to provide specialist postgraduate professional development across the areas of steel, concrete and timber design, structural dynamics, and structural mechanics. It will provide you with a sound scientific, technical and commercial understanding of structural engineering issues and practice, while training you in engineering research methods in order to develop a range of related transferable skills. It will cover the diverse nature of structural engineering through the integration of knowledge from mechanics, materials, structural analysis and structural design. You will gain new advanced level skills in engineering theory and practice related to the management of structural engineering challenges.

Read less
Mechanical Engineering in the UK is a major contributor to the economy, and there is evidence of increasing demand for professional engineers in the field. Read more
Mechanical Engineering in the UK is a major contributor to the economy, and there is evidence of increasing demand for professional engineers in the field. Furthermore, as recent reports show, median salaries are also on the increase. As the President of the Institution of Mechanical Engineers puts it “…if humanity is to somehow manage to adjust its behaviour in any controlled way to a position of sustainability, we have limited time in which to do it, and we will need to do it with products and processes based on today’s technology and not tomorrow’s.”

There is an increasing demand therefore for high-quality engineers with flexible postgraduate experience and a good range of transferable skills in the broad field of mechanical engineering. This demand has been demonstrated by recent surveys indicating salaries for young Professional Engineers significantly outpacing national averages.

COURSE AIMS
The primary aim of this programme is to create master’s degree graduates with qualities and transferable skills for demanding employment in the engineering sector. The graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Specific aims are as follows:

To provide education at postgraduate level in mechanical engineering that will enable graduates to proceed to Chartered Engineer status;
To develop the versatility and depth to deal with new and unusual challenges across a range of engineering areas;
To develop imagination and creativity to enable graduates to follow a successful engineering career with national and international companies and organisations.

COURSE DETAILS
The Structure of the course: 4 compulsory modules, 4 optional modules, and a dissertation (60 credits)

Compulsory Modules

Strategic Management and Enterprise
Research Methodology and Innovation
Advanced Modelling and Design
Advanced Computer Aided Engineering 48 hours lecturing and seminars throughout the year
Dissertation (Individual project)

Stream 1 – Thermofluids

Advanced Thermofluids
Advanced Heat and Mass Transfer
Energy Conversion Technologies
Sustainable Development and Energy Use: Energy in Transport and Industry

Stream 2 – Solid Body Mechanics

Structural Mechanics
Dynamics and Modal Analysis
Structural Design and FEA
Creative Design and Human Factors

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X