• Swansea University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
  • Regent’s University London Featured Masters Courses
De Montfort University Featured Masters Courses
University of St Andrews Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Aberdeen University Featured Masters Courses
"structural" AND "enginee…×
0 miles

Masters Degrees (Structural Engineering)

  • "structural" AND "engineering" ×
  • clear all
Showing 1 to 15 of 333
Order by 
This well-established and fully accredited MSc programme will develop the knowledge and skills acquired in your undergraduate programme. Read more
This well-established and fully accredited MSc programme will develop the knowledge and skills acquired in your undergraduate programme. It builds the advanced capabilities in analysis and codified design in specialised aspects of structural engineering that are required by industry.

PROGRAMME OVERVIEW

Our Structural Engineering postgraduate programme is delivered by the Faculty’s own staff, together with practising engineers from consultancies and local authorities.

For practising engineers engaged in the planning, design and construction of structural engineering works, this programme provides an opportunity to update their knowledge of current design practice and to become familiar with developments in codes and methods of analysis.

You will be able to choose from a rich and varied selection of specialist structural engineering subjects. The programme is offered in the standard full-time mode, in addition to part-time and distance learning options.

Graduates from the programme are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time or distance learning over two to five academic years. It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Bridge Management
-Steel and Composite Bridge Design
-Long-Span Bridges

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Deep Foundations and Earth Retaining Structures

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources

Dissertation
-Dissertation Project

Apart from the usual full-time mode, there are also part-time options. The majority of Bridge, Geotechnical and Structural Engineering modules can be studied by distance learning through the use of an interactive web-based e-learning platform (SurreyLearn). This programme can be studied via distance learning, which allows a high level of flexibility and enables you to study alongside other commitments you may have.

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive understanding of engineering mechanics for structural analysis
-The ability to select and apply the most appropriate analysis methodology for problems in structural engineering including advanced and new methods
-The ability to design structures in a variety of construction materials
-A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-A knowledge and understanding of the key UK and European standards and codes of practice relating to structural engineering
-The ability to interpret and apply the appropriate UK and European standards and codes of practice to structural design for both familiar and unfamiliar situations
-A knowledge and understanding of the construction of different types of structures using different types of materials (e.g. concrete and steel)
-A knowledge and understanding of the common and less common materials used in structural engineering
-A comprehensive understanding of the principles of engineering mechanics underpinning structural engineering
-The ability to critically evaluate structural engineering concepts
-The ability to apply the appropriate analysis methodologies to common structural engineering problems as well as unfamiliar problems
-The ability to understand the limitations of structural analysis methods
-A knowledge and understanding to work with information that may be uncertain or incomplete
-A Knowledge and understanding of sustainable development related to structures
-The awareness of the commercial, social and environmental impacts associated with structures
-An awareness and ability to make general evaluations of risk associated with the design and construction of structures including health and safety, environmental and commercial risk
-A critical awareness of new developments in the field of structural engineering

Intellectual / cognitive skills
-The ability to tackle problems familiar or otherwise which have uncertain or incomplete data
-The ability to generate innovative structural designs
-The ability to use theory or experimental research to improve design and/or analysis
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
-Synthesis and critical appraisal of the thoughts of others

Professional practical skills
-The awareness of professional and ethical conduct
-A Knowledge and understanding of structural engineering in a commercial/business context
-Ability to use computer software to assist towards structural analysis
-Ability to produce a high quality report
-Ability of carry out technical oral presentations

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The goal of structural engineering is to predict the performance of structures under extreme events. This Masters in Structural Engineering provides you with a range of methods to analyse and design structures with quantifiable reliability over their design life. Read more
The goal of structural engineering is to predict the performance of structures under extreme events. This Masters in Structural Engineering provides you with a range of methods to analyse and design structures with quantifiable reliability over their design life.

Why this programme

◾If you intend to pursue a career in this specialist area of civil and structural engineering, in design consultancies and elsewhere, or if you want to transfer from other engineering disciplines, this programme is designed for you.
◾This programme offers a curriculum that is relevant to the needs of industry, designed to provide the advanced education required for the structural engineers of tomorrow.
◾The goal of structural engineering is to predict the performance of structures. This programme empowers future engineers with a range of methods to analyse and design structures with quantifiable reliability over their design life.
◾The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.

Programme structure

Modes of delivery of the MSc in Structural Engineering include lectures, seminars, tutorials, a group design project and individual projects.

Core courses
◾Advanced structural analysis and dynamics
◾Applied engineering mechanics
◾Computational modelling of nonlinear problems
◾Structural concrete
◾Structural design
◾Advanced soil mechanics
◾Structural engineering preliminary research project
◾Structural engineering review project
◾Structural design project

MSc students undertake an additional individual project.

Industry links and employability

If you intend to pursue a career in this specialist area of civil and structural engineering, in design consultancies and elsewhere, or if you want to transfer from other engineering disciplines, this programme is designed for you. It provides the advanced education required for the structural engineers of tomorrow.

Career prospects

This is a new programme which will be delivered the first time in 2016/17. However, it is a continuation of a former Structural Engineering and Mechanics MSc programme. Graduates from the former Structural Engineering and Mechanics programme have gone on to positions such as:

Graduate Structural Engineer at Wood Group PSN
Research Fellow at Fraunhofer Institute High Speed Dynamics
Graduate Structural Engineer at Wood Group
Graduate Structural Engineer at Design ID
Structure Engineer at Fujian United Benefit Broad Sustainable Building Technology
Structural Engineer-Subsea at a structural engineering company
Real Estate Assistant at Icade
Graduate Structure Engineer at P2ML
Graduate Engineer at Technip
Civil Engineering Technical Engineer at Hongrun Construction Corporation
Subsea Project Engineer at Halliburton
Bid and Building Engineer at Jingzhen Construction and Supervision Co.
Graduate Engineer at Reinertsen.

Read less
IN THIS 24-MONTH INTENSIVE, PART TIME ONLINE PROGRAM YOU WILL LEARN. - Advanced skills and knowledge civil and structural engineering principles that can be applied in a variety of workplaces. Read more
IN THIS 24-MONTH INTENSIVE, PART TIME ONLINE PROGRAM YOU WILL LEARN:

- Advanced skills and knowledge civil and structural engineering principles that can be applied in a variety of workplaces
- The essential underpinning knowledge that guides a range of projects, including road, rail and drainage systems, dams, harbours, bridges, buildings and other structures
- Practical skills in the design and drafting of engineering plans to international standards
- Skills in engineering management

KEY BENEFITS OF THIS PROGRAM:

- Receive practical guidance from civil and structural engineering experts with real world industry skills
- Gain credibility in your firm
- Develop new contacts in the industry
- Improve career prospects and income

Due to extraordinary demand we have scheduled another intake this year.

Start date: September 04, 2017. Applications now open; places are limited.

There are limited placed available so contact us now to speak to a Course Advisor.

INTRODUCTION

Join the next generation of senior civil and structural engineering experts. Embrace a well paid, intensive yet enjoyable career by taking this comprehensive and practical course. It is delivered over 24 months by live distance learning and presented by some of the leading civil and structural engineering instructors in the world today.

Civil and structural engineering encompasses a range of disciplines, including road, rail and drainage systems, dams, harbours, bridges, buildings and other structures. Civil and structural designers and drafters plan, design, develop and manage construction and repair projects.

This qualification develops your skills and knowledge in the design and drafting of engineering plans to recognised standards. You will learn about different areas of civil engineering, including construction, project management, design and testing. You will also learn about the design and drafting of concrete, steelwork, roads and pipes, as well as hydrology, stormwater drainage and foundations.

While it is essential that those who work in the supervisory or management levels of this discipline have a firm understanding of drafting and planning principles, this qualification goes much further. To be effective on the job, you will need to know how to apply knowledge of fundamental civil and structural engineering concepts, including geotechnical engineering, hydraulic engineering, engineering maths, and properties of materials. Throughout the program this subject matter will be placed into the context of engineering management. Our aim is to ensure that you are an effective, knowledgeable and skilled supervisor or manager, someone who can work beyond a “plan and design” brief to ensure that a project is delivered effectively.
This qualification aims to provide theoretical and practical education and training such that graduates may gain employment at the engineering associate (“paraprofessional”) level within the building and construction industry.

There are eight threads in the course to give you maximum, practical coverage. These threads comprise environmental issues, engineering technologies, drawing, 2D and 3D CAD design, building materials, civil and structural sub-disciplines (roads, steel, concrete, pavement, drainage, soil, water supply, sewerage), construction sites and engineering management.

This program avoids too much emphasis on theory. This is rarely needed in the real world of industry where time is short and immediate results, with hard-hitting and useful know-how, are required as a minimal requirement. The instructors presenting this advanced diploma are highly experienced engineers from industry who have done the hard yards and worked in the civil and structural areas. The format of presentation — live, interactive distance learning with the use of remote learning technologies — means that you can hit the ground running and be of immediate benefit to your company or future employer.

WHO SHOULD ATTEND?

Anyone who wants to gain a solid working knowledge of the key elements of civil and structural engineering that can be applied at the supervisory and paraprofessional level. See “Entrance Requirements”

This program is particularly well suited to students for who on-campus attendance is less desirable than the flexibility offered by online delivery. When work, family and general lifestyle priorities need to be juggled this world class program becomes an attractive option to many students world-wide.

- Site Supervisors
- Senior Trades Managers
- Trades Workers
- Construction Managers
- Maintenance Engineers or Supervisors
- Leading hands
- Consulting Engineers

Even those who are highly qualified in civil and structural engineering may find it useful to attend to gain practical know-how.

COURSE

This program is composed of 4 stages, delivered over 24 months. It is possible to achieve the advanced diploma qualification within the time period because the study mode is part-time intensive.

There are 8 threads around which the program is structured:

- Environmental issues
- Engineering technologies
- Drawing
- 2D and 3D CAD design
- Building materials
- Roads, steel, concrete, pavement, drainage, soil, water supply, sewerage
- Construction sites
- Engineering management

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.

Read less
The programme is designed for graduates and professionals involved in the civil engineering, structural engineering and construction sectors who wish to deepen and broaden their technical knowledge and understanding of specialised areas of civil and structural engineering. Read more
The programme is designed for graduates and professionals involved in the civil engineering, structural engineering and construction sectors who wish to deepen and broaden their technical knowledge and understanding of specialised areas of civil and structural engineering.

Course details

You enhance your technical skills in various core areas of civil engineering that are in demand in the construction industry, such as advanced geotechnics and river and coastal engineering. You also further develop your conceptual understanding of critical aspects of structural engineering, such as advanced structural analysis and design, and become familiar with complex analysis and design techniques, modelling the causes and solutions of problems involving the real behaviour of structures. You also acquire an advanced knowledge and understanding of the design of structures under dynamic and earthquake conditions. Advanced project planning and visualisation methods, such as building information modelling, are also integrated into the course. The 60-credit dissertation gives you the opportunity to conduct a supervised research project developing original knowledge in a specific area of civil or structural engineering. The programme structure is divided into a combination of 10 and 20-credit taught modules, delivered over two semesters. By successfully completing these modules, you proceed to a 60-credit research project.

Starting salaries for new graduate civil and structural engineers can reach £32,000, increasing to £70,000 when a senior level is reached (prospects.ac.uk, 2015).

Professional accreditation

Our MSc Civil and Structural Engineering is accredited by the Joint Board of Moderators (representing the ICE, IStructE, IHE and CIHT) as a technical master's. This means it meets the requirements for further learning for Chartered Engineer (CEng) under the provisions of UK-SPEC for candidates who have already acquired a CEng-accredited BEng (Hons) undergraduate first degree.

By completing this professionally accredited MSc you benefit from an easier route to professional membership or chartered status. It also helps improve your job prospects, enhancing your career and earning potential. Some companies show preference for graduates who possess a professionally accredited qualification.

The Joint Board of Moderators represents the following four professional bodies:
-Institution of Civil Engineers
-Institution of Structural Engineers
-Chartered Institution of Highways and Transportation
-Institute of Highway Engineers

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

Examples of past MSc research projects include:
-Shear strength of composite and non-composite steel beam and concrete slab construction
-Investigation into the self-healing capability of bacterial concrete
-A review of the use of smart materials and technologies in cable stayed bridge construction
-FRP and its use as structural components
-Non-linear modelling of ground performance under seismic conditions

Core modules
-Advanced Geotechnics
-Advanced Project Planning and Visualisation
-Advanced Structural Analysis with Dynamics
-Advanced Structural Design
-Advanced Structural Engineering
-Practical Health and Safety Skills
-Research and Study Skills
-River and Coastal Engineering

MSc only
-Research Project

Modules offered may vary.

Teaching

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning, while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems.

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. Some of the modules require using specialised technical software and practical computer-based sessions are timetabled.

In addition to the taught sessions, you undertake a substantive MSc research project.

Assessment varies from module to module. The assessment methodology could include in-course assignments, presentations or formal examinations. For your MSc project, you prepare a dissertation.

Employability

The course will equip you with the relevant technical and transferrable skills to pursue a career as a civil/structural engineer or technical manager with leading multidisciplinary consultancies, contractors, as well as research and government organisations.

Read less
This Masters (MSc) and PG diploma postgraduate degree course in Structural Engineering and Practice is offered to civil engineering and mechanical engineering related graduates wishing to study structural engineering within a civil engineering context. Read more
This Masters (MSc) and PG diploma postgraduate degree course in Structural Engineering and Practice is offered to civil engineering and mechanical engineering related graduates wishing to study structural engineering within a civil engineering context. This programme offers the opportunity to widen knowledge in the area of Structural Engineering by including structural engineering practice, wind engineering, structural behaviour (both static and seismic), geotechnical engineering and industrial research topics.

This opens up a wide range of career opportunities, as many of the techniques are applicable both within and outside the civil engineering design and construction industry.

This programme provides a solid basis for a career in structural engineering. Comprising lectures, seminars, tutorials, workshops, coursework, group project work and site visits, the development of personal, interpersonal and project management skills, and provides a fundamental understanding of the social, economic, resource management and legal frameworks within which civil engineering projects take place.

About the School of Civil Engineering

Civil Engineering is the key to many of the issues affecting our lives today. Civil Engineers solve problems, design, build and maintain our living and working spaces. You might design a new stadium, work on a local by-pass or railway line, assess a damaged structure, provide immediate and safe drinking water to a refugee camp, or manage a multi-million pound construction project.
We tackle the problems faced by society today: we aim to develop the knowledge and tools to build the communities of the future. Many of our projects have already had a significant impact on society; the impact of others will be felt by generations to come.
The performance of Civil Engineering in the Research Excellence Framework (REF), the system for assessing the quality of research in UK higher education institutions, has shown that the majority of its research was rated as internationally excellent.
We work closely with industry, charities and research councils to encourage innovative thinking which has an impact on our lives. As a result we are proud of our heritage of internationally-recognised, multidisciplinary research in a stimulating research environment.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
With the ever increasing environmental challenges, there is strong demand for civil and structural engineers who are practically-skilled in efficient design, green construction and sustainable development and who can play a central role in achieving sustainable adaptation to and mitigation of these challenges. Read more
With the ever increasing environmental challenges, there is strong demand for civil and structural engineers who are practically-skilled in efficient design, green construction and sustainable development and who can play a central role in achieving sustainable adaptation to and mitigation of these challenges.

The Sustainable Civil and Structural Engineering MSc (Eng) programme provides a specialist, technical Masters-level education in civil and structural engineering.

The programme is designed to embed the knowledge, skills and understanding required to critically assess the function, use and impacts of concrete, steel and alternative construction materials in structural designs and to participate in the design, implementation and evaluation of engineering projects which are truly sustainable, bringing social, economic and environmental benefits to current future generations.

The Sustainable Civil and Structural Engineering MSc (Eng) provides an opportunity for you to develop advanced specialist knowledge in structural engineering, understand how to address the increasing challenges for the industry and develop your skills for the working environment.

The programme is pending accreditation by the Institution of Civil Engineers, the Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and the Institute of Highway Engineers. This programme can also be studied part-time over two years. The same modules are followed and the same total credits are achieved, but these are spread over four semesters at 30 credits per semester. The independent research project (module ENGG660) is chosen in the first year, but the completion deadline is not until the end of the second year, allowing flexibility in timing and distribution of effort over the full duration of the course.

This 12-month programme consists of taught modules over two semesters and a major project starting in semester 2 and continuing through the summer. Assessment is by examinations, coursework and an individual dissertation. Places on the programme are limited to between 15 and 20.

Projects

Project work, based on a topic of industrial or scientific relevance, contributes 60 credits and is carried out in laboratories in the University or at an approved placement in industry. The project is examined by dissertation, and award of the MSc (Eng) degree will require evidence of in-depth understanding, mastery of research techniques, ability to analyse assembled data, and assessment of outcomes.

Read less
As large structures dominate our skylines and our infrastructure is of utmost necessity, it is important that we have professionals who are equipped to manage and develop the modern world that we live in. Read more

Why take this course?

As large structures dominate our skylines and our infrastructure is of utmost necessity, it is important that we have professionals who are equipped to manage and develop the modern world that we live in.

Our course aims to extend your understanding of the core disciplines of civil engineering and provides an in-depth insight into the current design and construction practices for structural engineering works.

What will I experience?

On this course you can:

Attend lectures and seminars given by practitioners from client, contracting and consulting organisations
Apply your skills to real-life practical problems as part of our partnership schemes with local and global organisations
Opt to study overseas at a variety of European universities through the ERASMUS exchange scheme

What opportunities might ti lead to?

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Here are some routes our graduates have pursued:

Civil engineering
Structural engineering
Construction
Consultancy
Project management

Module Details

The course is divided into three stages, the first two stages are generally taught through formal tuition, with stage three covering independent research in an academic or industrial setting.

You will build upon established fundamental civil/construction engineering and project management principles in order to confidently apply them to a range of complex construction project problems with due regard to the reliability and safety of structural designs.

Here are the units you will study:

Environmental Management for Civil Engineering: This introduces you to the main environmental issues associated with civil engineering projects and how they are considered and mitigated in the Environmental Assessment process.

Civil Engineering Science: In this unit you will study integrated topics of analytical structural analysis, numerical analysis and solving engineering problems. Whilst being an introduction to the finite element method (FEM) and application of FEM software packages, this unit aims to give you the ability to solve engineering problems in the design of real structures.

Structural Engineering Design Project: This unit gives you an opportunity for simulating the design activities of a civil engineering consultancy. Project briefs are typically drawn from the work of professional contacts in the civil engineering industry. You will be required to make professional contacts, obtain advice and guidance, carry out research and conduct site visits outside the University.

Strategic and General Management: You will cover management in the construction industry, and the development of organisational and project strategic direction, taking into account internal and external environments.

Independent Research Project: This covers the generic research framework within which new knowledge is discovered, and involves the practical application of research skills and techniques to a chosen system within the construction industry.

Programme Assessment

Teaching on this course will focus on small lectures, seminars and discussion groups. It will also centre on supporting your independent learning strategies, which tutorials will help to develop.

Assessment can take many forms and is geared towards the subject matter in a way that encourages a deeper understanding and allows you to develop your skills. It includes:

Examinations
Coursework
Projects
A dissertation

Student Destinations

In an uncertain and increasingly competitive environment, the civil engineer is required to develop a wide range of skills and abilities to stay abreast of current industrial needs. Therefore, this course is designed to equip you with knowledge, skills and competencies that employers in the construction industry expect. Alongside the technical topics, we will introduce you to commercial and interpersonal skills that illustrate the employment context of construction industry professionals.

From roads and bridges to skyscrapers and airports, as a qualified civil engineer with specialist expertise in the area of structural engineering, your knowledge and skills will be in high demand for a huge variety of large-scale building projects.

Overall, the delivery of this course and its opportunities for you to interact with the industry throughout your studies means the employment rate of our civil engineering graduates is excellent.

Read less
Structural engineers help to make, shape and maintain the built environment. They are professionals who enjoy innovation, a challenge, opportunities, responsibility and, excitement in a varied and very satisfying career. Read more
Structural engineers help to make, shape and maintain the built environment. They are professionals who enjoy innovation, a challenge, opportunities, responsibility and, excitement in a varied and very satisfying career. Structural engineering is a profession that provides a tremendous opportunity to make a real difference to people's lives and their environment. In the 21st Century, climate change is an increasingly important issue which needs to be tackled and the role of the structural engineer in tackling climate change is immense.

To meet these challenges, the 21st Century structural engineers need to combine traditional structural engineering expertise with an understanding of a wide range of issues related to design of zero carbon buildings. There is a significant shortage of structural engineers with the requisite knowledge, skills, and experience to deal efficiently with complex issues for designing structurally sound, elegantly simple and environmentally sustainable buildings. The skill shortage and its effects on the construction industry will be further exacerbated by the huge demanding from some rising economic powers. In response to this growing need for graduates aware of current challenges in structural engineering, this new MSc programme has been developed.

This programme is designed to attract both international and home students, who wish to pursue their career in civil and structural engineering. To meet the needs of increasing demand for structural engineers to design more safe, economic and environmental friendly buildings, the programme content has specifically been designed to give a thorough grounding on current practice with regards to dealing with structural fire and earthquake resistances and design of carbon neutral buildings. A particular feature of this content lies with the emphasis on the performance based structural design philosophy. The strong focus on these aspects will appeal to international students and home students who intend to become the next generation of structural engineers after graduation.

Read less
This course is aimed at graduates with an honours degree or relevant professional experience who want to develop their understanding and skills as structural engineers. Read more
This course is aimed at graduates with an honours degree or relevant professional experience who want to develop their understanding and skills as structural engineers.

Key benefits:

• The emphasis is on current methodology and practice
• You will be well equipped to meet the challenges of the modern structural engineering industry
• Meets the requirements for Further Learning for a Chartered Engineer (CEng)

Visit the website: http://www.salford.ac.uk/pgt-courses/structural-engineering

Suitable for

Suitable for engineering graduates who want to specialise in structural engineering.

You may be working in industry and want to formalise your training or you may be a recent graduate and wish to gain extra qualifications to help you stand out in the jobs market or enter your engineering career at a higher level.

Programme details

The course meets the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) or an Accredited Eng (Full) BEng/BSc (Hons) undergraduate first degree. See http://www.jbm.org.uk for further information.

Format

The course is delivered via a combination of lectures, tutorials, design projects, computing sessions and laboratory demonstrations. You will be encouraged to attend meetings of the professional institutions, where relevant topics are being discussed. Where possible, pertinent site visits and guest lectures will be organised.

Semester 1

• Introduction to Design with Computer Applications (30 credits)
• Seismic Engineering and Practical Applications of Finite Element Analysis (30 credits)

Semester 2

• Further Design with Applications to Building Structures (30 credits)
• Bridge Engineering (30 credits)
• MSc Dissertation (60 credits)

Assessment

Coursework 42%, Examination 47% and Dissertation 11%.

Career Prospects

Graduates of this course will be well equipped to meet the challenges of the modern structural engineering industry. They may occupy pivotal appointments in prestigious building schemes and the prospect of a challenging career to provide and protect the infrastructure that underpins society.

Graduates might typically work as a structural engineer in a design office or for an engineering consultancy.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less
An industry lead programme, fully accredited by the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Institute of Highway Engineers (IHE) and the Chartered Institution of Highways & Transportation (CIHT). Read more
An industry lead programme, fully accredited by the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Institute of Highway Engineers (IHE) and the Chartered Institution of Highways & Transportation (CIHT). The programme plugs a skills gap by transferring and improving structural engineering practical experience.

COURSES
Semester 1
Design of Connections
Concept of Design Topside Modules

Semester 2
Brown Field Structural Engineering
Petrochemical Structural Engineering
Finite Element Methods

Semester 3
Conceptual Design of Jackets and Subsea Structures
Design of Stiffened Plates
Re-Design of Existing Structures by Structural Reliability Analysis
Design of Jacket Attachments

Read less
This is an accredited masters course in Civil Engineering with a strong focus on Structural Engineering. Read more
This is an accredited masters course in Civil Engineering with a strong focus on Structural Engineering. It is designed for both engineers in employment and students wishing to pursue further study at Masters level covering a range of subjects from advanced structural analysis and design to to global professional development. The course has been developed and will be delivered in collaboration with civil engineering employers. The taught modules specialise in advanced analysis, design and modelling.

Holders of a CEng accredited Bachelor’s degree, can enrol on any of the MSc courses on offer (ECT053, ECT054, and ECT075) provided they meet the entry requirements. This will automatically meet the educational base for Chartered Engineer status.

Holders of an IEng accredited or an overseas Bachelor’s degree, are advised to complete the MSc Civil Engineering (Technical Route), ECT075. Upon completion of their MSc course, they will need to apply for an academic assessment to be formally approved for CEng. They may be required to complete extra modules if their Bachelor degree is deemed to be not technical enough.

WHAT WILL I LEARN?

The MSc in Civil and Structural Engineering is made up of the following modules, each delivered in a separate block with the exception of the Integrating Project and Research Project:
-Computational Mechanics
-Global Professional Development
-Advanced Design Concepts
-Advanced Structural Analysis Concepts
-Soil-structure Interaction
-Experimental Methods for Materials and Structures
-Bridge Engineering
-Integrated Project
-Technical Project

The course can be studied on a full-time (one year), or part-time basis (two years). Tuition is in one-week intensive blocks, with a few weeks' gap in between blocks for individual research and study. Assessment for the taught modules is a mixture of examination and coursework. For part-time students the blocks are spread over two years rather than one.

This is followed by an Integrated Project and an individual Research Project. For full-time students the Integrating Project is normally team-based and investigates a real engineering problem. For part-time students the Integrating Project is chosen to specifically link their work with their studies.

Training in research methods is given in preparation for the Research Project. Research topics are chosen in discussion with academic staff and a wide range of potential areas within civil and structural engineering are available.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

This programme of study is ideal for those seeking deeper and more specialist knowledge for employment within the public and private sector, or students wishing to pursue an academic or research-orientated career.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
This MSc offers you the knowledge and expertise for a career as a consulting structural engineer within this specialist professional area of civil engineering. Read more
This MSc offers you the knowledge and expertise for a career as a consulting structural engineer within this specialist professional area of civil engineering. It is designed to provide specialist postgraduate professional development across the areas of steel, concrete and timber design, structural dynamics, and structural mechanics. It will provide you with a sound scientific, technical and commercial understanding of structural engineering issues and practice, while training you in engineering research methods in order to develop a range of related transferable skills. It will cover the diverse nature of structural engineering through the integration of knowledge from mechanics, materials, structural analysis and structural design. You will gain new advanced level skills in engineering theory and practice related to the management of structural engineering challenges.

Read less
Structural engineers are required to design structures to be safe for their users and to successfully fulfill the function for which they have been designed for. Read more
Structural engineers are required to design structures to be safe for their users and to successfully fulfill the function for which they have been designed for. This course allows for specialisation in the field of structural engineering. An introduction into the broader civil engineering subjects will be followed by a choice of specialised optional modules on your chosen theme.

The course will concentrate on the technical knowledge and skills that are most relevant to the field of structural engineering for the award of MSc in Civil Engineering: Structural Engineering.

Students will develop:
the ability to communicate ideas effectively in written reports, verbally and by means of presentations to groups
the ability to exercise original thought
the ability to plan and undertake an individual project
interpersonal, communication and professional skills

Previous projects have included:
Wind tunnel testing for tall buildings
Base isolation for reducing ground-borne vibration
The effect on ordinary and high strength concrete columns when introducing bar chip polypropylene fibres

Scholarship information can be found at http://www.nottingham.ac.uk/graduateschool/funding/index.aspx

Read less
This is an advanced postgraduate course specialising in structural engineering covering advanced structural analysis and design, structural computing simulation and also offering units linked with steel, concrete, timber and other structural designs. Read more
This is an advanced postgraduate course specialising in structural engineering covering advanced structural analysis and design, structural computing simulation and also offering units linked with steel, concrete, timber and other structural designs. It will also provide you with knowledge to design structures under dynamic and earthquake conditions.

The modules taught focus on learning advanced methods and techniques while developing analytic skills across a range of structural engineering topics.

Two modules, Finite Elements and Stress Analysis and Advanced Computing Structural Simulation, focus on learning advanced computing methods and commercial computing software for structures modelling and simulation.

Advanced Structural Analysis and Design and the Masonry and Timber Engineering modules will cover advanced structural theory and designing traditional structures, such as, steel, concrete, masonry and timbers. Earthquake Engineering will cover design of structures in seismic areas and analysis of structures under dynamic loading.

Soil-Structure Engineering will cover interaction of geotechnics and structures as well as foundation structures. Finally, you'll either conduct a structural related research project or a design project.

If you'd like any further information, please contact the course administrator, Ms. Jo Hillman: or call 020 7815 7106.

Accreditation:
Joint Board of Moderators (ICE, IStructE, IHE, CIHT)

See the website http://www.lsbu.ac.uk/courses/course-finder/structural-engineering-msc

Modules

Teaching techniques include: lectures, workshops, tutorials, laboratories, field trips and IT based blended learning. Visiting lecturers from industry contribute in some modules.

Module descriptions

- Advanced structural design
The module will deal with the design of structural elements and complex structural systems using the increasingly popular structural Eurocodes. It will cover engineering design principles and analytic techniques as well as the application of industrial standard software packages. There will also be an element of group and research work based on innovative design techniques.

- Soil-structure engineering
To acquaint the student with classical and modern methods for the analysis and design of structures that are embedded in the ground, specifically embedded retaining walls, piled foundations, and tunnels.

- Finite elements and stress analysis
The module will equip the student with linear elastic analysis of thin-walled sections, 2D and 3D stress analysis and transformations. It will introduce the Finite Element method theory and use ANSYS software.

- Masonry and timber engineering
This module introduces students to the materials, properties and design processes using timber and masonry construction. Eurocodes are used for the design of elements. Proprietary computer programmes are used alongside hand calculations. New techniques are introduced and discussed.

- Structural dynamics and earthquake engineering
The module aims to develop a thorough understanding of causes and nature of vibration in structures and to enable students to analyse the response of a structure under earthquake loadings.

- Advanced computing and structural simulation
The module will enable the students to use the advanced Finite Element Analysis (FEA) software (ANSYS) for modelling steel, reinforced concrete and composite structures. Both material and geometrical nonlinearities will be considered which link the complex structural system.

- Project / dissertation
This module is one third of the course and is an individually supervised piece of work that is typically either a research project or an innovative design exercise. The theme is related to topics covered on the course.

Employability

Employment prospects for graduates of Structural Engineering are strong. Successful students will enter into a variety of positions with employers which might include: structural engineer, consultant, project manager, government advisor and researcher.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

This degree is an accredited MSc (Technical) course by the Joint Board of Moderators as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Read less
Today, structural engineering is more than just design. Expert consultants are needed globally with a complete skill set; the ability to design, manage and maintain structures, but also to enable existing civil infrastructure to operate under changing loading and environment. Read more
Today, structural engineering is more than just design. Expert consultants are needed globally with a complete skill set; the ability to design, manage and maintain structures, but also to enable existing civil infrastructure to operate under changing loading and environment.

This programme will provide you with a solid understanding of the whole process of structural design, analysis and operation. You will discover how to design and manage the dynamic behaviour of structures using state of the art hardware and software for performance assessment, measurement, and instrumentation to withstand normal and extreme operational loads.

The programme is taught by our internationally leading academic team with expertise in structural performance analysis and health monitoring, structural dynamics, control, infrastructure management, systems and informatics.

Successful graduates will be equipped with specialist skills increasingly demanded by employing infrastructure consultants, contractors, operators, and government agencies and can expect to progress into international senior level positions in civil, construction and environmental industries.

Programme Structure

This programme is modular and flexible and consists of nine core engineering modules.

Core modules

The core modules can include; Structural Design; Software Modelling; Conceptual Design of Buildings; Conceptual Design of Bridges; Active and Passive Structural Control; Vibration Engineering; Structural Health and Performance Monitoring; Introduction to Earthquake Engineering and Structural Engineering Dissertation

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.

A world-class laboratory

The MSc Structural Engineering programme will take advantage of a cutting edge laboratory, with state of the art measurement and testing technology. This purpose-built teaching and research facility is dedicated to better understanding structural performance including in-situ testing and monitoring of prototype and real life structures. Featuring;
• Unique and reconfigurable prototype floor or footbridge structure weighing up to 15 tonnes
• Instruments capable of measuring static and dynamic structural movements from meter to nanometer
• Ambient and forced vibration testing, facilities including equipment and software
• Vibration control systems
• Individual and group human motion tracking and measurement systems
• Motion capture facilities

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X