• Regent’s University London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of York Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Imperial College London Featured Masters Courses
De Montfort University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Birmingham Featured Masters Courses
Cardiff University Featured Masters Courses
University College London Featured Masters Courses
"structural" AND "foundat…×
0 miles

Masters Degrees (Structural And Foundation Engineering)

  • "structural" AND "foundation" AND "engineering" ×
  • clear all
Showing 1 to 15 of 34
Order by 
The MSc/Diploma in Structural and Foundation Engineering is designed for graduates and practising engineers who wish to improve their knowledge of structural and foundation engineering. Read more

Programme Background

The MSc/Diploma in Structural and Foundation Engineering is designed for graduates and practising engineers who wish to improve their knowledge of structural and foundation engineering. The structure and content of the programme has been carefully designed following liaison with a wide range of employers in the sector.

The staff members who deliver the programme have wide ranging expertise in specialist subjects which include reinforced concrete technology, dynamic and impact testing of materials, offshore engineering, structural safety, soil-structure interaction and numerical modelling.

The research activities of the programme involve combinations of experimental, numerical and theoretical work. The School has excellent practical facilities for static, dynamic, and impact testing and it has access to advanced computer and networking facilities that include a state-of-the-art parallel processing computer.

Professional Recognition

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) or an accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. See http://www.jbm.org.uk for further information.

Programme Content

The curriculum covers the specialist technical and computational skills necessary for today’s construction industry and therefore offers excellent preparation for employment across an industry that includes consulting and contracting engineers, public authorities and local government. In addition, the programme also provides a suitable springboard for graduates seeking a career in a research lead environment.

Both MSc and Diploma students undertake the eight taught courses listed below. MSc students also complete a Masters dissertation.

Semester 1:
Indeterminate Structures
Stability and Dynamics
Ground Engineering
FEA & Stress Analysis A

Semester 2:
Safety, Risk and Reliability
Earthquake Engineering
Foundation Engineering
FEA & Stress Analysis B

Dissertation

MSc students are also required to submit a research dissertation, the research topic normally aligns with the research interests of the staff in the School but can be tailored to suit the interests of the student or student’s employer. Distance learning and part time students are encouraged to suggest project topics based on their own work experience.

At the discretion of the Programme Leader, MSc students may choose to nominate a research project which enables them to investigate a problem they have encountered in their workplace or elsewhere. The research project can be undertaken in conjunction with a suitable industrial partner on campus or in industry if the industrial partner has the facilities to provide adequate supervision.

Mode of Study

The programme may be studied on a part-time basis and will therefore appeal to practising engineers. It is also delivered via distance learning which enables students from all around the globe to study without the need to interrupt their career and travel to Scotland. Examinations may be organised in each student’s country of residence to avoid unnecessary travel costs.

Read less
This is an advanced postgraduate course specialising in structural engineering covering advanced structural analysis and design, structural computing simulation and also offering units linked with steel, concrete, timber and other structural designs. Read more
This is an advanced postgraduate course specialising in structural engineering covering advanced structural analysis and design, structural computing simulation and also offering units linked with steel, concrete, timber and other structural designs. It will also provide you with knowledge to design structures under dynamic and earthquake conditions.

The modules taught focus on learning advanced methods and techniques while developing analytic skills across a range of structural engineering topics.

Two modules, Finite Elements and Stress Analysis and Advanced Computing Structural Simulation, focus on learning advanced computing methods and commercial computing software for structures modelling and simulation.

Advanced Structural Analysis and Design and the Masonry and Timber Engineering modules will cover advanced structural theory and designing traditional structures, such as, steel, concrete, masonry and timbers. Earthquake Engineering will cover design of structures in seismic areas and analysis of structures under dynamic loading.

Soil-Structure Engineering will cover interaction of geotechnics and structures as well as foundation structures. Finally, you'll either conduct a structural related research project or a design project.

If you'd like any further information, please contact the course administrator, Ms. Jo Hillman: or call 020 7815 7106.

Accreditation:
Joint Board of Moderators (ICE, IStructE, IHE, CIHT)

See the website http://www.lsbu.ac.uk/courses/course-finder/structural-engineering-msc

Modules

Teaching techniques include: lectures, workshops, tutorials, laboratories, field trips and IT based blended learning. Visiting lecturers from industry contribute in some modules.

Module descriptions

- Advanced structural design
The module will deal with the design of structural elements and complex structural systems using the increasingly popular structural Eurocodes. It will cover engineering design principles and analytic techniques as well as the application of industrial standard software packages. There will also be an element of group and research work based on innovative design techniques.

- Soil-structure engineering
To acquaint the student with classical and modern methods for the analysis and design of structures that are embedded in the ground, specifically embedded retaining walls, piled foundations, and tunnels.

- Finite elements and stress analysis
The module will equip the student with linear elastic analysis of thin-walled sections, 2D and 3D stress analysis and transformations. It will introduce the Finite Element method theory and use ANSYS software.

- Masonry and timber engineering
This module introduces students to the materials, properties and design processes using timber and masonry construction. Eurocodes are used for the design of elements. Proprietary computer programmes are used alongside hand calculations. New techniques are introduced and discussed.

- Structural dynamics and earthquake engineering
The module aims to develop a thorough understanding of causes and nature of vibration in structures and to enable students to analyse the response of a structure under earthquake loadings.

- Advanced computing and structural simulation
The module will enable the students to use the advanced Finite Element Analysis (FEA) software (ANSYS) for modelling steel, reinforced concrete and composite structures. Both material and geometrical nonlinearities will be considered which link the complex structural system.

- Project / dissertation
This module is one third of the course and is an individually supervised piece of work that is typically either a research project or an innovative design exercise. The theme is related to topics covered on the course.

Employability

Employment prospects for graduates of Structural Engineering are strong. Successful students will enter into a variety of positions with employers which might include: structural engineer, consultant, project manager, government advisor and researcher.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

This degree is an accredited MSc (Technical) course by the Joint Board of Moderators as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Read less
The course produces graduates with an in-depth and practical understanding of the use of innovative structural engineering materials in the provision of sustainable and holistic construction solutions for the built environment. Read more
The course produces graduates with an in-depth and practical understanding of the use of innovative structural engineering materials in the provision of sustainable and holistic construction solutions for the built environment.

The use of construction materials is key to infrastructural development globally. New approaches are now needed for innovative renewable and low carbon structural engineering materials.

This MSc course will not only help prepare you for an exciting career in the industry, but it will also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/structural-engineering/

Learning outcomes

The course is aimed at engineering and science graduates who wish to work in the construction industry.

As a student you will be provided with the practical knowledge and tools to support you in the use of innovative structural engineering materials in the context of sustainable and holistic construction. You will also learn how to harness that knowledge in a business environment. You will gain analytical and team working skills to enable you to deal with the open-ended problems typical of structural engineering practice.

The MSc is based on research expertise of the BRE Centre for Innovative Construction Materials (http://www.bath.ac.uk/ace/research/cicm/) and is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. Please visit the Joint Board of Moderators (http://www.jbm.org.uk/) for further information about accreditation.

Collaborative working

The course includes traditionally taught subject-specific units and business and group-orientated modular work. These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

Project Work

Group project work:
In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

Individual project work:
In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure in detail

A full list of units can be found on the programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/ar/ar-proglist-pg.html#AC).

Semester 1 (October-January)
The first semester provides a foundation in the most significant issues relating to the sustainable use of innovative structural engineering materials in design and construction; and involves units in natural building materials, advanced timber engineering, advanced composites, sustainable concrete technology and architectural structures.

- Five taught compulsory units
- Includes coursework involving laboratory or small project sessions.
- Typically each unit consists of 22 hours of lectures and 11 hours of tutorials, and may additionally involve a number of hours of laboratory activity and field trips with approximately 65-70 hours of private study (report writing, laboratory results processing and revision for examinations).

Semester 2 (February-May)
Semester 2 consists of a further 30 credits comprising of five core 6 credit units. These units include:

- Materials engineering in construction
- Advanced timber engineering
- Engineering project management.

Students will undertake a group-based design activity and an individual project scoping and planning unit (Project Unit 1). The group-based activity involves application of project management techniques and provides the basis for an integrated approach to Engineering, but with the possibility of specialising in the chosen master's topic.

It is a feature of this programme that the project work proceeds as far as possible in a way typical of best industrial practice. The Semester 2 project activities have significant planning elements including the definition of milestones and deliverables according to a time-scale, defined by the student in consultation with his/her academic supervisor and (where appropriate) his/her industrial advisor.

Summer/Dissertation Period (June-September)
Individual project leading to MSc dissertation.

Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff.

There may be an opportunity for some projects to be carried out with the Building Research Establishment (BRE).

Subjects covered

- Advanced structures
- Advanced composites in construction
- Advanced timber engineering
- Materials engineering in construction
- Natural building materials
- Sustainable concrete technology

About the department

The Department of Architecture and Civil Engineering brings together the related disciplines of Architecture and Civil Engineering. It has an interdisciplinary approach to research, encompassing the fields of Architectural History and Theory, Architectural and Structural Conservation, Lightweight Structures, Hydraulics and Earthquake Engineering and Dynamics.

Our Department was ranked equal first in the Research Excellence Framework 2014 for its research submission in the Architecture, Built Environment and Planning unit of assessment.

Half of our research achieved the top 4* rating, the highest percentage awarded to any submission; and an impressive 90% of our research was rated as either 4* or 3* (world leading/ internationally excellent in terms of originality, significance and rigour).

The dominant philosophy in the joint Department is to develop postgraduate programmes and engage in research where integration between the disciplines is likely to be most valuable. Research is carried out in collaboration with other departments in the University, particularly Management, Computer Science, Mechanical Engineering, and Psychology.

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less
Running for over 35 years, this fully accredited MSc programme builds advanced capabilities in specialist aspects of bridge engineering. Read more
Running for over 35 years, this fully accredited MSc programme builds advanced capabilities in specialist aspects of bridge engineering.

Successful completion of this programme will aid you in pursuing a career as a bridge engineer with a consultancy, a specialist contractor or a local authority.

PROGRAMME OVERVIEW

Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management.

The programme also offers the opportunity for practising bridge engineers to update their knowledge of current design and assessment codes and guidelines, become familiar with developments in new techniques for the design, construction and management of bridges.

The Bridge Engineering programme encompasses a wide range of modules addressing the whole life-analysis of bridge structures from design to end-of-life.

Optional modules from some of our other study streams are also offered, covering structural engineering, geotechnical engineering, water engineering, construction management, and infrastructure engineering and management.

Graduates are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied over either one year (full-time) or between two and five years (part-time or distance learning). It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Steel and Composite Bridge Design
-Long-Span Bridges

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Foundation Engineering

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering and Management Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources Management and Hydraulic Modelling
-Water Policy and Management
-Dissertation
-Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive understanding of engineering mechanics for bridge analysis
-The ability to select and apply the most appropriate analysis methodology for problems in bridge engineering including advanced and new methods
-The ability to design bridge structures in a variety of construction materials
-A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of bridge structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-A knowledge and understanding of the key UK and European standards and codes of practice relating to bridge engineering
-The ability to interpret and apply the appropriate UK and European standards and codes of practiceto bridge design for both familiar and unfamiliar situations
-A knowledge and understanding of the construction of different types of bridge structures using different types of materials (e.g. concrete and steel)
-A knowledge and understanding of the common and less common materials used in bridge engineering
-A comprehensive understanding of the principles of engineering mechanics underpinning bridge engineering
-The ability to critically evaluate bridge engineering concepts
-The ability to apply the appropriate analysis methodologies to common bridge engineering problems as well as unfamiliar problems
-The ability to understand the limitations of bridge analysis methods
-A knowledge and understanding to work with information that may be uncertain or incomplete
-A Knowledge and understanding of sustainable development related to bridges
-The awareness of the commercial, social and environmental impacts associated with bridges
-An awareness and ability to make general evaluations of risk associated with the design and construction of bridge structures including health and safety, environmental and commercial risk
-A critical awareness of new developments in the field of bridge engineering

Intellectual / cognitive skills
-The ability to tackle problems familiar or otherwise which have uncertain or incomplete data (A,B)
-The ability to generate innovative bridge designs (B)
-The ability to use theory or experimental research to improve design and/or analysis
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-Synthesis and critical appraisal of the thoughts of others

Professional practical skills
-The awareness of professional and ethical conduct
-A Knowledge and understanding of bridge engineering in a commercial/business context
-Ability to use computer software to assist towards bridge analysis
-Ability to produce a high quality report
-Ability of carry out technical oral presentations

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

Read less
Our MSc in Advanced Geotechnical Engineering is a European-Accredited Engineering Master Degree programme. It will give you the skills you need to address real-world ground engineering problems and the technological challenges faced every day by the geotechnical engineering profession. Read more
Our MSc in Advanced Geotechnical Engineering is a European-Accredited Engineering Master Degree programme.

It will give you the skills you need to address real-world ground engineering problems and the technological challenges faced every day by the geotechnical engineering profession.

PROGRAMME OVERVIEW

The Advanced Geotechnical Engineering MSc will nurture and develop your understanding of the principles and theories behind ground engineering.

Topics include deep foundations in urban areas, tunnelling, foundations for energy infrastructure, deep water energy resources exploration and field monitoring.

During your studies you will have the opportunity to apply the knowledge and practical understanding of scientific methodology you have acquired on a research project under the guidance and advice of an experienced supervisor.

This will help you develop the skills to acquire, analyse, and critically evaluate data, and then draw valid, defendable conclusions that can withstand professional scrutiny.

Graduates are highly employable, and may progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied over one academic year (full-time) and between two and five academic years (part-time or distance learning). It consists of eight taught modules and a dissertation.

On successful completion of this MSc programme students will be deemed to have completed the further learning necessary to combine with a suitable BEng (Hons) degree fulfilling the academic base for the professional qualification of Chartered Engineer.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Deep Foundations and Earth Retaining Structures
-Soil-Structure Interaction

Selected Structural Engineering Group Modules
-Subsea Engineering
-Structural Safety and Reliability
-Earthquake Engineering

Selected Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Selected Infrastructure Engineering Group Modules
-Infrastructure Systems Interdependencies and Resilience
-Infrastructure Investment and Financing
-Infrastructure Asset Management
-Sustainability and Infrastructure

Selected Water and Environmental Engineering Group Modules
-Groundwater Control
-Water Resources Management and Hydraulic Modelling
-Dissertation project

Students must choose eight modules from those listed above. For the main and subsidiary awards there are restrictions on the choice of modules within each module group. These are outlined in the table above.

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive understanding of some of the challenges faced during the analysis, design and construction of foundation and geotechnical structures
-The ability to select and apply most appropriate analysis methodology for problems in ground engineering including advanced and new methods
-The ability to design foundations in a variety of ground conditions
-A working knowledge of the key UK, European and some International standards and codes of practice associated with the analysis and design of foundations and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-A knowledge and understanding of the key UK, European and International standards and codes of practice relating to ground engineering
-A knowledge and understanding of the construction of different types of geotechnical structure on different ground conditions
-A comprehensive understanding of the principles of engineering mechanics underpinning ground engineering
-The ability to understand the limitations of ground analysis methods
-The knowledge and understanding to work with information that may be uncertain or incomplete
-A knowledge and understanding of ground engineering in a commercial/business context
-Knowledge and understanding of sustainable development related to ground engineering
-A knowledge and understanding of the common and less common materials used in ground engineering
-An understanding of construction management
-A critical awareness of new developments and research needs in ground engineering

Intellectual / cognitive skills
-The ability to apply fundamental knowledge to investigate new and emerging ground engineering problems
-A critical awareness of new developments in the field of ground engineering
-The ability to critically evaluate ground engineering design principles and concepts
-The awareness of the commercial, social and environmental impacts associated with foundations
-An awareness and ability to make general evaluations of risk associated with the design and construction of foundations including health and safety, environmental and commercial risk

Professional practical skills
-The ability to interpret and apply the appropriate UK, European and some International standards and codes of practice to foundation design for both familiar and unfamiliar situations
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-The ability to apply the appropriate analysis methodologies to common ground engineering problems as well as unfamiliar problems
-The ability to collect and analyse research data
-The ability to tackle problems familiar or otherwise which have uncertain or incomplete data
-The ability to use theory or experimental research to improve design and/or analysis
-The ability to generate innovative foundation design
-The awareness of professional and ethical conduct

Key / transferable skills
-Oral and written communication (presentation skills)
-Synthesis and graphical presentation of data
-3D spatial awareness
-Use of sketching and engineering drafting
-Use of word processor, spreadsheet, drawing/presentation
-Technical report writing
-Independent learning skills
-Ability to develop, monitor and update a plan
-Reviewing, assessing, and critical thinking skills
-Teamwork, leadership and negotiation skills
-Time management

[[GLOBAL OPPORTUNITIES[[
We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Would you like to stand out in the employment job market by advancing your current qualification to master’s level?. The MSc Mechanical Engineering course will provide you with advanced knowledge and skills in key aspects of mechanical engineering. Read more
Would you like to stand out in the employment job market by advancing your current qualification to master’s level?

The MSc Mechanical Engineering course will provide you with advanced knowledge and skills in key aspects of mechanical engineering. Throughout the duration of this course you will develop a critical awareness of ethical and environmental considerations, in addition to learning about advanced mechanical engineering practice and theory.

Accredited by the Institution of Mechanical Engineers (IMechE), this course fully meets the academic requirements to become a Chartered Engineer.

At a time when there is an international shortage of mechanical engineers there has never been a better time to enter this dynamic and rewarding industry.

Accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

This course can also be started in January - for more information, please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/mechanical-engineering-msc-ft-dtfmez6/

Learn From The Best

You’ll be taught by tutors who have many years of experience in the various aspects of the engineering industry. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent. (Research Excellence Framework 2014.)

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. We’ve built up numerous industrial links during the 50+ years that we’ve been offering engineering courses. These links help ensure high quality placements and collaborative projects.

Northumbria has the advantage of being located in the North East of England, which is a centre of manufacturing and technical innovation. As well as Nissan, the region’s #1 company, there is a strong concentration of automotive, engineering, chemicals, construction and manufacturing companies.

Teaching And Assessment

The initial semesters of this course focus on taught subjects that cover topics such as computational fluid dynamics and heat transfer, multidisciplinary design and engineering optimisation, composite materials and lightweight structures, advanced stress and analysis and thermo-mechanical energy conversion systems.

Teaching is primarily delivered by lectures, seminars and workshops, all of which are assessed by methods such as assignments, exams and technical reports. All of this course’s assessments have been devised to closely mirror the outputs required in a real working environment.

On completion of the taught modules you will undertake a substantial piece of research related to an area of mechanical engineering that particularly interests you. Our teaching team will be on-hand to offer support and guidance throughout every stage of your course.

Module Overview
KB7001 - Computational Fluid Dynamics and Heat Transfer (Core, 20 Credits)
KB7006 - Composite Materials and Lightweight Structures (Core, 20 Credits)
KB7008 - Advanced Stress and Structural Analysis (Core, 20 Credits)
KB7030 - Research Methods (Core, 20 Credits)
KB7042 - Thermo-Mechanical Energy Conversion Systems (Core, 20 Credits)
KB7043 - Multidisciplinary Design & Engineering Optimisation (Core, 20 Credits)
KB7052 - Research Project (Core, 60 Credits)

Learning Environment

Throughout the duration of your course you will have access to our dedicated engineering laboratories that are continuously updated to reflect real-time industry practice.

Our facilities include mechanical and energy systems experimentation labs, rapid product development and performance analysis, materials testing and characterisation, 3D digital design and manufacturing process performance.

You will be given the opportunity to get hands-on with testing, materials processing, moulding, thermal analysis and 3D rapid manufacture to help you create the products and systems required for the projects you will work on during your course.

Your learning journey will also be supported by technology such as discussion boards and video tutorials. You will also participate in IT workshops where you will learn how to use the latest industry-standard software.

Videos of lectures will on many occasions be made available through Panopto video software to further support teaching delivery.

You will also have access to all Northumbria University’s state-of-the-art general learning facilities such as dedicated IT suites and learning areas.

Research-Rich Learning

When studying at Northumbria University you will be taught by our team of specialist staff who boast a wealth of multi-dimensional expertise.

Our teaching team includes a dynamic mix of research-active industrial practitioners, renowned researchers and technologists, whose combined knowledge ensures you leave with an in-depth understanding of key mechanical engineering practice and research.

You will be encouraged to undertake your own research–based learning where you will evaluate and critique scientific papers and write research-based reports based on the information gathered.

We aim to regularly welcome industry specialists to deliver guest lecturers to further enable you to understand real-world issues and how they link to the concepts, theories and philosophies taught throughout your course.

The department of Mechanical and Construction Engineering is a top-35 Engineering research department with 79% of our outputs ranked world-leading or internationally excellent according to the latest UK-wide research assessment exercise (REF2014, UoA15). This places us in the top quartile for world-leading publications among UK universities in General Engineering.

Give Your Career An Edge

The MEng Mechanical Engineering course will equip you with all of the skills required to progress within the engineering industry and competition of your master’s degree will give you a competitive edge thanks to the additional skills and knowledge you will acquire.

Our accreditation with the IMechE ensures that this course’s content is in-line with the latest developments within this sector, making our course highly valued by employers.

By completing this course you will have completed the academic requirement to become a Chartered Engineer, a status that is associated with improved employability and higher salaries.

Employability is embedded throughout all aspects of your course and you will leave with enhanced key skills such as communication, computing and teamwork.

Your Future

Mechanical Engineering overlaps with a number of engineering disciplines meaning there are many career paths available to you once you have completed this course.

Many graduates choose to pursue a career in the expansive engineering sector, in roles such as designers, analysts, project managers or consultants.

You may also wish to progress your knowledge to PhD level and this course will provide you with a solid foundation that you can easily build on and advance to an even higher level.

Engineering is a growth industry and currently there is a shortage of engineers. 90% of our graduates are in work or study within six months of graduating and, of those in work, 80% are employed in a professional or managerial job (Unistats 2015).

Read less
Develop your knowledge, design and analysis skills, engage with modern challenges in structural engineering and transform your professional profile with this accredited technical MSc in Civil Engineering Structures. Read more
Develop your knowledge, design and analysis skills, engage with modern challenges in structural engineering and transform your professional profile with this accredited technical MSc in Civil Engineering Structures.

Who is it for?

This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Normally students have an undergraduate degree in engineering or a related discipline. Students who don’t have qualifications in civil engineering usually have relevant work experience in civil engineering structures so they are familiar with working within the specific technical domain.

Objectives

From analysing how carbon nanofibers can reduce the effect of corrosion in concrete to gaining insight from experts developing the new Forth Bridge, this MSc in Civil Engineering Structures has been designed to be broad in scope so you can develop your own area of structural engineering expertise.

As a department, we have broad interests from defining new structural forms to practical application of new materials. We believe civil engineering is a creative and collaborative profession, as much as a technical one. This course gives you the tools to immerse yourself in both the analytical and experimental side of the subject, so you can investigate diverse problems to generate your own structural solutions.

The Civil Engineering Structures MSc mirrors industry practice, so you will work in groups with your peers from the first term onwards and learn from a group of world-leading engineers with diverse research strengths. From earthquake engineering to sustainable construction, you have the opportunity to learn in breadth and depth using high-end industry software to develop safe solutions for real-world projects.

Academic facilities

There is a large dedicated lab on site equipped with facilities to investigate different structures and construction materials from concrete to timber. You also have access to other workshops where you can liaise with mechanical or electrical engineers to develop innovative scale models. There is access to specialist soil labs and large-scale equipment including wind tunnels.

We have an extensive library housing all the references, journals and codes of practice that you will need during your studies.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will be taught by the staff team within the School of Mathematics, Computer Science and Engineering and also from visiting industry experts from around the world.

Teaching mainly takes the form of lectures, but IT sessions and seminars also form part of the Masters degree. Modules are shared between two ten-week teaching terms running from October to December and January to March. Although work for the MSc dissertation starts during the second term, you will conduct most of the research work during the summer months.

The length of the full-time degree is 12 months. A part-time route is also available where you can spend either two or three years completing the programme. If you follow the two-year part-time study route, you will need to attend lectures for up to two days each week. Alternatively, you can complete the degree over three years by attending a single day each week. The timetable has been designed to offer flexibility for part-time students.

In the first term you will consider core technical topics and be introduced to new concepts such as structural reliability. In the second term you will begin to focus your studies by selecting your dissertation topic and by selecting options getting involved in a specific areas of your own interest. Spread over the year you will have design presentations, class tests and reports.

If you select an experimental dissertation you will have the opportunity to use a range of materials. Skilled technical support is available in the workshop and you have access to recently refurbished facilities, including specialist geotechnical labs which accommodate a large flexible laboratory space used for centrifuge model preparation and testing. Adjacent to this you have concrete mixing and casting facilities, a temperature-controlled soil element testing laboratory and a concrete durability laboratory.

Assessment

For the theoretical modules, you will be assessed through a combination of examinations and coursework. Examinations are shared between the January and April/May examination periods. For the design-oriented modules you are normally assessed by coursework only, where you will work both in groups and individually on challenging projects.

Modules

There are six core modules which give you a strong technical foundation and three elective modules from which you can choose two. These reflect the specialist expertise on offer within the academic team. These modules will give you unique insight into computer analysis of structures for blast and fire, bridge engineering, and earthquake analysis where you may look at techniques for analysing structures and safe design. In the final part of the programme you undertake a dissertation in which you can explore an area of interest from a proposed list of themes, some of which are industry-related.

Core modules and dissertation
-Advanced structural analysis and stability (20 credits)
-Finite element methods (15 credits)
-Dynamics of structures (15 credits)
-Structural reliability and risk (10 credits)
-Design of concrete structures (15 credits)
-Design of steel and composite structures (15 credits)
-Dissertation for MSc degree (Research Skills and Individual Project) (60 credits)

Elective modules - you will be able to study two of the following elective modules:
-Earthquake analysis of structures (15 credits)
-Analysis of steel and concrete structures for blast and fire exposure (15 credits)
-Bridge engineering (15 credits)

Career prospects

Graduates have secured employment with leading civil engineering consultants, research institutes and government agencies and pursued doctoral studies both in the UK and internationally. The cohort of 2014 have moved on to jobs and further study working within the following organisations:
-WSP Consultant Engineers
-Tully De'Ath Consultant Civil and Structural Engineers
-SSA Consulting Engineers
-Bradbrook Consulting
-Clarke Nicholls Marcel

Read less
Would you like to stand out in the employment job market by advancing your current qualification to master’s level?. The MSc Mechanical Engineering course will provide you with advanced knowledge and skills in key aspects of mechanical engineering. Read more
Would you like to stand out in the employment job market by advancing your current qualification to master’s level?

The MSc Mechanical Engineering course will provide you with advanced knowledge and skills in key aspects of mechanical engineering. Throughout the duration of this course you will develop a critical awareness of ethical and environmental considerations, in addition to learning about advanced mechanical engineering practice and theory.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

Accredited by the Institution of Mechanical Engineers (IMechE), this course fully meets the academic requirements to become a Chartered Engineer.

At a time when there is an international shortage of mechanical engineers there has never been a better time to enter this dynamic and rewarding industry.

Learn From The Best

You’ll be taught by tutors who have many years of experience in the various aspects of the engineering industry. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent. (Research Excellence Framework 2014.)

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. We’ve built up numerous industrial links during the 50+ years that we’ve been offering engineering courses. These links help ensure high quality placements and collaborative projects.

Northumbria has the advantage of being located in the North East of England, which is a centre of manufacturing and technical innovation. As well as Nissan, the region’s #1 company, there is a strong concentration of automotive, engineering, chemicals, construction and manufacturing companies.

Teaching And Assessment

The initial semesters of this course focus on taught subjects that cover topics such as computational fluid dynamics and heat transfer, multidisciplinary design and engineering optimisation, composite materials and lightweight structures, advanced stress and analysis and thermo-mechanical energy conversion systems.

Teaching is primarily delivered by lectures, seminars and workshops, all of which are assessed by methods such as assignments, exams and technical reports. All of this course’s assessments have been devised to closely mirror the outputs required in a real working environment.

On completion of the taught modules you will undertake a substantial piece of research related to an area of mechanical engineering that particularly interests you. Our teaching team will be on-hand to offer support and guidance throughout every stage of your course.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

Module Overview
Year One
KB7001 - Computational Fluid Dynamics and Heat Transfer (Core, 20 Credits)
KB7006 - Composite Materials and Lightweight Structures (Core, 20 Credits)
KB7008 - Advanced Stress and Structural Analysis (Core, 20 Credits)
KB7030 - Research Methods (Core, 20 Credits)
KB7042 - Thermo-Mechanical Energy Conversion Systems (Core, 20 Credits)
KB7043 - Multidisciplinary Design & Engineering Optimisation (Core, 20 Credits)

Year Two
KB7052 - Research Project (Core, 60 Credits)
KF7005 - Engineering and Environment Advanced Practice (Core, 60 Credits)

Learning Environment

Throughout the duration of your course you will have access to our dedicated engineering laboratories that are continuously updated to reflect real-time industry practice.

Our facilities include mechanical and energy systems experimentation labs, rapid product development and performance analysis, materials testing and characterisation, 3D digital design and manufacturing process performance.

You will be given the opportunity to get hands-on with testing, materials processing, moulding, thermal analysis and 3D rapid manufacture to help you create the products and systems required for the projects you will work on during your course.

Your learning journey will also be supported by technology such as discussion boards and video tutorials. You will also participate in IT workshops where you will learn how to use the latest industry-standard software.

Videos of lectures will on many occasions be made available through Panopto video software to further support teaching delivery.

You will also have access to all Northumbria University’s state-of-the-art general learning facilities such as dedicated IT suites and learning areas.

Research-Rich Learning

When studying at Northumbria University you will be taught by our team of specialist staff who boast a wealth of multi-dimensional expertise.

Our teaching team includes a dynamic mix of research-active industrial practitioners, renowned researchers and technologists, whose combined knowledge ensures you leave with an in-depth understanding of key mechanical engineering practice and research.

You will be encouraged to undertake your own research–based learning where you will evaluate and critique scientific papers and write research-based reports based on the information gathered.

We aim to regularly welcome industry specialists to deliver guest lecturers to further enable you to understand real-world issues and how they link to the concepts, theories and philosophies taught throughout your course.

The department of Mechanical and Construction Engineering is a top-35 Engineering research department with 79% of our outputs ranked world-leading or internationally excellent according to the latest UK-wide research assessment exercise (REF2014, UoA15). This places us in the top quartile for world-leading publications among UK universities in General Engineering.

Give Your Career An Edge

The MEng Mechanical Engineering course will equip you with all of the skills required to progress within the engineering industry and competition of your master’s degree will give you a competitive edge thanks to the additional skills and knowledge you will acquire.

Our accreditation with the IMechE ensures that this course’s content is in-line with the latest developments within this sector, making our course highly valued by employers.

By completing this course you will have completed the academic requirement to become a Chartered Engineer, a status that is associated with improved employability and higher salaries.

Employability is embedded throughout all aspects of your course and you will leave with enhanced key skills such as communication, computing and teamwork.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

Your Future

Mechanical Engineering overlaps with a number of engineering disciplines meaning there are many career paths available to you once you have completed this course.

Many graduates choose to pursue a career in the expansive engineering sector, in roles such as designers, analysts, project managers or consultants.

You may also wish to progress your knowledge to PhD level and this course will provide you with a solid foundation that you can easily build on and advance to an even higher level.

Engineering is a growth industry and currently there is a shortage of engineers. 90% of our graduates are in work or study within six months of graduating and, of those in work, 80% are employed in a professional or managerial job (Unistats 2015).

Read less
Take advantage of one of our 100 Master’s Scholarships to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Swansea University has been at the forefront of international research in the area of computational engineering. Internationally renowned engineers at Swansea pioneered the development of numerical techniques, such as the finite element method, and associated computational procedures that have enabled the solution of many complex engineering problems. As a student on the Master's course in Computer Modelling and Finite Elements in Engineering Mechanics, you will find the course utilises the expertise of academic staff to provide high-quality postgraduate training.

Key Features: Computer Modelling and Finite Elements in Engineering Mechanics

Computer simulation is now an established discipline that has an important role to play in engineering, science and in newly emerging areas of interdisciplinary research.

Using mathematical modelling as the basis, computational methods provide procedures which, with the aid of the computer, allow complex problems to be solved. The techniques play an ever-increasing role in industry and there is further emphasis to apply the methodology to other important areas such as medicine and the life sciences.

This MSc Computer Modelling and Finite Elements in Engineering Mechanics course provides a solid foundation in computer modelling and the finite element method in particular.

The Zienkiewicz Centre for Computational Engineering, within which this course is run, has excellent computing facilities, including a state-of-the-art multi-processor super computer with virtual reality facilities and high-speed networking.

Modules

Modules on the MSc Computer Modelling and Finite Elements in Engineering Mechanics course can vary each year but you could expect to study:

Reservoir Modelling and Simulation
Solid Mechanics
Finite Element Computational Analysis
Advanced Fluid Mechanics
Computational Plasticity
Fluid-Structure Interaction
Nonlinear Continuum Mechanics
Computational Fluid Dynamics
Dynamics and Transient Analysis
Computational Case Study
Communication Skills for Research Engineers
Numerical Methods for Partial Differential Equations

Accreditation

The MSc Computer Modelling and Finite Elements in Engineering Mechanics course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with Industry

The Zienkiewicz Centre for Computational Engineering has an extensive track record of industrial collaboration and contributes to many exciting projects, including the aerodynamics for the current World Land Speed Record car, Thrust SSC, and the future BLOODHOUND SSC, and the design of the double-decker super-jet Airbus A380.

Careers

Employment in a wide range of industries, which require the skills developed during the Computer Modelling and Finite Elements in Engineering Mechanics course, from aerospace to the medical sector. Computational modelling techniques have developed in importance to provide solutions to complex problems and as a graduate of this course in Computer Modelling and Finite Elements in Engineering Mechanics, you will be able to utilise your highly sought-after skills in industry or research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Read less
The MSc in Geotechnical Engineering is part of the Division of Civil Engineering's extensive programme of postgraduate studies and research. Read more
The MSc in Geotechnical Engineering is part of the Division of Civil Engineering's extensive programme of postgraduate studies and research. The course builds on the Division's renowned research expertise and industrial experience in current aspects of geotechnical engineering.

Why study Geotechnical Engineering at Dundee?

Key reasons include:
Better preparation for successful careers in industry, commerce or academia
Development of skills, knowledge and understanding in a specialist field
Participation in the research activities of a world-class department

A wide range of research projects are available in any of the following areas: earthquake engineering (foundations during earthquakes, liquefaction, faulting), offshore engineering (foundations, anchors, pipelines and offshore processes), foundation engineering and ground improvement. Some of these projects will be linked to industry

Development of transferable skills in research methods, communication and management of large and small scale projects

Part-time students have the option of relating their research project directly to ongoing work within their employment

Professional Accreditation: ICE/IStructE

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. Visit http://www.jbm.org.uk for further information.

What's great about Geotechnical Engineering at Dundee?

Civil Engineering at Dundee is ranked top in Scotland for research. You will have the opportunity to engage with leading edge research at Dundee, meaning we attract students of the highest calibre and our graduates are highly sought after by employers worldwide. Students studying on our masters programmes benefit from our renowned research expertise and industry experience.

The Geotechnical Engineering research sub-group was established in 1997 and it has grown significantly since that time. In addition to its undergraduate and postgraduate teaching and research activities, the group offers services to industry across a broad range of geotechnical engineering. The group has hosted a number of major conferences and symposia in Dundee.

Who should study this course?

It is designed both for people pursuing a higher degree soon or immediately after obtaining their first degree, and for those with considerable work experience.

"I love how specialised [this course] is, as very few universities offer such speciality in Earthquake and Offshore Engineering. The course taught me how to solve real-life challenging problems, not to mention the strong industry linkage with my future employer - Subsea 7."
Vithiea Pang, MSc student

The start date is September each year, and lasts for 12 months.

How you will be taught

Modules start at the beginning of the academic session in September and are taught by lectures and tutorials.

What you will study

There are three main elements to the course programme:

Core Modules
These provide skills generic to engineering and research. The two modules are:

Research Methods and Diploma Project
Health, Safety & Environmental Engineering
Specialist Modules
The specialist modules provide in-depth and advanced knowledge, and build upon our expertise. These cover the following topics:

Offshore Geotechnical Engineering
Advanced Soil Mechanics and Geo-Environmental Engineering
Soil Dynamics and Earthquake Engineering
Advanced Structural Analysis
Research Project
The research project gives you the opportunity to benefit from, and contribute to our research. At the end of the project students submit a dissertation based on their research. Students select their projects from a list offered by the academic staff or may suggest their own topic. Many of these projects are collaborative with industry, particularly those in offshore engineering (for Oil and Gas, Marine Renewables and Aquaculture)

How you will be assessed

The course is assessed by coursework and examination.

Students taking the Postgraduate Diploma carry out a shorter research project and complete an extended report.

Careers

There is a continuing demand for civil engineers particularly in the energy and water sectors and the skills of the civil engineer are highly portable in the multi-disciplinary engineering sectors. The latest Institution of Civil Engineers Salary Survey for the UK (2010) indicates that the average total income of its senior members is nearly £100k, while that of recent graduates is £27.5k.

We are proud of our achievements in graduate employment. The blend of science, technology and management education and training gained in a unique learning environment that is both challenging and friendly, makes our graduates attractive to employers in civil engineering and a wider range of sectors.

Graduates from Dundee have gone on to achieve high level positions in most sectors of the profession. These include consulting engineers and contractors, the offshore industry and research organisations.

Funded places

Due to an initiative from the Scottish Funding Council (SFC) designed to support key sectors in the Scottish economy, there are 7 fully-funded places available to eligible students starting this course in 2013/14. This covers all tuition fees associated with the MSc programme and can be held by students classified as Scottish or EU for fee purposes only. Please indicate your interest in being considered for a funded place when you apply through UKPASS.

Read less
Develop skills in the analysis, design and assessment of engineering structures subject to normal, seismic and extreme loading and environmental conditions. Read more
Develop skills in the analysis, design and assessment of engineering structures subject to normal, seismic and extreme loading and environmental conditions.

Accredited by relevant professional bodies and designed to meet the needs of the modern construction industry, this course offers a wide range of structural engineering principles, as you learn about issues relating to steel and concrete structures and foundations.

Through this highly technical course, studied one year full-time or two years part-time, you will develop skills in numerical simulation using a variety of advanced software.

Part-time study is flexible. Normally students will take three years to complete the programme if they undertake one module per week but the length of the course can be reduced to two years, if two modules are taken each week. Many part-time students undertake projects in their place of work.

See the website http://www.napier.ac.uk/en/Courses/MScPGDipPGCert-Advanced-Structural-Engineering-Postgraduate-FullTime

What you'll learn

You will also learn failure analysis methods, the Eurocodes and the code of practice for the design of various construction materials, research skills and the legal issues surrounding construction.

The course is accredited by the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE) and the Chartered Institution of Highways & Transportation (CIHT). Industry practitioners are regularly invited as guest speakers and lecturers.

Subjects include:
- Advanced mechanics of materials and FEA
- Advanced structural concrete
- Advanced; structural steel design
- Forensic engineering;
- Foundation design to eurocode 7
- Structural; dynamics and earthquake design
- MSc thesis

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Read less
Structural engineers are responsible for the design of high-rise buildings, industrial complexes, bridges, stadiums, and sporting and exhibition centres. Read more
Structural engineers are responsible for the design of high-rise buildings, industrial complexes, bridges, stadiums, and sporting and exhibition centres. Structural engineers need to show innovation and apply artistic, creative and technical skills to design. They must understand how forces (such as the weight of a building, its contents, and environmental loads such as wind and earthquake loads) are resisted by, and transferred through, structures and buildings to the ground.

The Master of Professional Engineering (Structural) is a 3 year full-time course delivering technical and professional outcomes that will allow you to be recognised as an Australian graduate engineer in this field. This degree has been given full accreditation at the level of Professional Engineering by the industry governing body, Engineers Australia http://www.engineersaustralia.org.au/

If your bachelor's degree included foundational engineering units, you may be given advanced standing in the Master of Professional Engineering. Entry pathways are available for students with widely varying backgrounds.

In this course you will engage in areas of study including concrete structures, steel structures, and structural dynamics.

The MPE is comprised of foundation units of study, elective units in the area of your specialisation and a 12-week practical industry experience component. There are also a number of professional electives you can choose from and a capstone project in your final year.

If you are interested in continuing on to complete a research degree, a research dissertation can act as a research pathway.

To ask a question about this course, visit http://sydney.edu.au/internationaloffice/

Read less
This research intensive course is tailored for talented students who already have a very strong background in geotechnical and earthquake engineering, providing a unique opportunity to conduct cutting edge research combining analytical with experimental methods in a transnational environment. Read more
This research intensive course is tailored for talented students who already have a very strong background in geotechnical and earthquake engineering, providing a unique opportunity to conduct cutting edge research combining analytical with experimental methods in a transnational environment. The research component is emphasized by the requirement to submit not only a thesis but a journal paper as well.

Why study Geotechnical Earthquake and Offshore Engineering at Dundee?

Civil Engineering at Dundee is ranked top in Scotland for research. Students of the highest calibre are therefore attracted to Dundee, being offered a unique opportunity to engage with cutting edge research.

Students studying on our masters programmes benefit from our renowned research expertise and industry experience, and our graduates are highly sought after by employers worldwide.

What's great about Geotechnical Earthquake and Offshore Engineering?

The MSc in Geotechnical Earthquake and Offshore Engineering provides students with the necessary knowledge and skills:
- To design Civil Engineering works to resist the destructive actions applied by earthquakes
- To design offshore foundations and pipelines

Efficient aseismic design requires simultaneous consideration of both geotechnical and structural engineering. The course is unique in that it takes a holistic approach in considering the subject from both perspectives equally, emphasizing soil-structure interaction and providing advanced training for both components.

Laboratory of Soil Mechanics, National Technical University of Athens (NTUA)

Please note that all teaching is carried out in English.

Research will be conducted jointly with the Laboratory of Soil Mechanics of the National Technical University of Athens (NTUA), introducing an international dimension that combines the core strengths of the two research groups, exploiting the state of the art 150g tonne capacity geotechnical centrifuge of the University of Dundee.

The latter is equipped with a latest-technology centrifuge-mounted earthquake simulator capable of reproducing any target waveform, making the Dundee centrifuge facility only one of 3 in Europe capable of earthquake replication. A specially designed split-box for simulation of seismic faulting and its effects on structures is also available, along with a variety of Strong and Equivalent Shear Beam (ESB) Boxes, and sensors (accelerometers, LVDTs, load cells, pore pressure transducers, etc.)

Who should study this course?

This course is research intensive and tailored to students with a very strong background in geotechnical earthquake engineering.

This course is taught by staff in the School of Engineering, Physics and Mathematics.

The start date is September each year, and the course lasts until the end of October in the following year (14 months in total). Students spend 50% of their time at the University of Dundee and 50% at the National Technical University of Athens (NTUA).

How you will be taught

Modules are taught via lectures, seminars, workshops, practical's and a research project.

What you will study

Students spend 50% of their time at the University of Dundee and 50% at the National Technical University of Athens (NTUA).

1st term at NTUA: September – December (4 months)

Research – 1st part: numerical and analytical methods.

2nd term at Dundee : January – April (4 months)

Core and Specialist Taught modules

Core Modules

CE52002: Health, Safety & Environmental Management
Specialist Modules

CE50005: Advanced Structural Analysis of Bridges
CE50023: Offshore Geotechnics and Pipelines
CE50024: Geoenvironmental Engineering
CE50025: Soil Dynamics
3rd term at Dundee : May – July (3 months)

Research – 2nd part: experimental methods

4th term at NTUA : August – October (3 months)

Research – 3rd part: Completion of MSc Thesis and Journal paper.

The distribution of allocated time between terms 3 and 4 will be flexible, and you may spend more time in either of the universities, depending on your project.

How you will be assessed

Modules are assessed by a mixture of coursework and exam. The research project is assessed by dissertation.

Careers

There is a continuing demand for civil engineers particularly in the energy and water sectors and the skills of the civil engineer are highly portable in the multi-disciplinary engineering sectors. The latest Institution of Civil Engineers Salary Survey for the UK (2010) indicates that the average total income of its senior members is nearly £100k, while that of recent graduates is £27.5k.

We are proud of our achievements in graduate employment. The blend of science, technology and management education and training gained in a unique learning environment that is both challenging and friendly, makes our graduates attractive to employers in civil engineering and a wider range of sectors.

Graduates from Dundee have gone on to achieve high level positions in most sectors of the profession. These include consulting engineers and contractors, the offshore industry and research organisations.

Read less
Become a sustainable engineering expert, learning to use energy and resources so that the natural environment meets the needs of future generations. Read more
Become a sustainable engineering expert, learning to use energy and resources so that the natural environment meets the needs of future generations.

You might already be in industry and are looking to develop your engineering skills for career progression, or you could be keen to further your studies before entering the profession.

Our course enables you to understand sustainability in which ever area of engineering you wish to specialise, from simulation, modelling and eco engineering, to sustainable systems design and green computing technologies, to name just a few.

Our aim is simple - to provide you with a learning experience that helps you to achieve the career you want. That's why our course is made up of option modules - it's an opportunity to tailor the course so that it reflects engineering sustainability issues that are most important to you.

Innovation will be at the heart of your studies, developing your ability to find sustainable solutions to engineering problems anywhere in the world, and equipping you with the skills to design and construct sustainable systems.

- Research Excellence Framework 2014: our University demonstrated strength in five emerging areas of research which it entered into the assessment for the first time, including computer science.

Visit the website http://courses.leedsbeckett.ac.uk/sustainableengineering_msc

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

Bursting with creative solutions to sustainable challenges, your engineering skills will be in demand around the world and across many industries.

If you're currently in a junior management or technical role, you will gain the expertise to progress your career to focus more on the processes and management of environmentally sustainable engineering.

- Engineer
- Environmental surveyor and analyst
- Automation consultant
- Project manager

Careers advice: The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

You will have access to a range of impressive facilities, including FlexSim Discrete simulation software, Dimension Rapid Prototyping machine, ARM development boards, concrete beam production testing, structural element testing and hydraulics equipment, to name just a few.

To meet the government objective of cutting greenhouse gas emissions by four fifths by 2050, UK businesses are increasingly looking for professionals who are experts in how energy is used in buildings. The research findings of the Leeds Sustainability Institute at our University will feed into your course and ensure what you learn reflects the latest, cutting-edge developments in sustainable engineering so you can catch the eye of such employers.

In addition to this, you'll benefit from our strong connections with business leaders and sustainability experts, many of whom provide guest talks to our students.

If you're already working in industry you will also benefit from assignments that allow you to focus on your own place of work, enabling you to apply what you learn straight away in your current role.

Modules

Work Based Learning (option module)
Provides a foundation upon which to develop engineering skills and protocols through a work based or work simulated environment.

Final project
Carry out an in-depth research project, presented in a dissertation, into an area of sustainable engineering.

ICT and Environment (option module)
Examine the environmental impact of Information and Communications Technology (ICT) in an industrial / commercial setting.

Project Management (option module)
Develop the ability to initiate, plan, execute, manage and sign off a project.

Simulation and Modelling (option module)
Use discreet event simulation and 3D modelling techniques to construct virtual factories that use automated systems.

Sustainable Systems Design (option module)
Review current trends in building services systems design, focusing upon design approaches, sustainability considerations, electrical systems and lighting design.

Engineering Systems Control (option module)
Study real time control issues using the latest PLC controls and emulation software.

Lean and Agile Engineering (option module)
Analyse how organisations respond to rapidly changing markets, unknown or changing product requirements.

Green Computing Technologies (option module)
Investigate, identify and evaluate technologies to minimise the energy consumption and environmental impacts of computing resources.

Sustainable Buildings (option module)
Enhance your knowledge of building and system performance in resolution of carbon reduction and achieving long-term sustainability.

Eco Engineering (option module)
Explore the environmental issues for the life cycle of a product, from raw materials to the final recycling.

Facilities

- Library
Our libraries are two of the only university libraries in the UK open 24/7 every day of the year. However you like to study, the libraries have got you covered with group study, silent study, extensive e-learning resources and PC suites.

- Broadcasting Place
Broadcasting Place provides students with creative and contemporary learning environments, is packed with the latest technology and is a focal point for new and innovative thinking in the city.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
Few universities offer MSc Infrastructure programmes, so we have created a Masters programme that will equip you with the knowledge and skills needed to support the continuing growth and prosperity of the UK through the National Infrastructure Plan. Read more
Few universities offer MSc Infrastructure programmes, so we have created a Masters programme that will equip you with the knowledge and skills needed to support the continuing growth and prosperity of the UK through the National Infrastructure Plan.

This fully accredited programme draws on our many years of experience in delivering advanced programmes in structures and bridges. It is delivered by university academics with a keen interest and track record in infrastructure issues together with industry and government professionals.

PROGRAMME OVERVIEW

This course covers the planning, design, analysis and management frameworks of infrastructure systems. In particular, you will develop expertise in the:
-Technical aspects of infrastructure engineering within a social, economic, environmental and political context
-Factors that affect and drive infrastructure planning and funding
-Interdependent nature of infrastructure across different sectors

You will qualify with a sound understanding of the whole life-cycle of infrastructure assets, the environmental impact of infrastructure projects, and formal asset-management techniques enabling you to maximise the benefits of infrastructure assets in the future.

Graduates from the programme are highly employable but have the potential to progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time or distance learning for between two to five academic years. It consists of eight taught modules and a dissertation.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Infrastructure Investment and Financing
-Infrastructure Systems, Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Bridge Management
-Steel and Composite Bridge Design
-Long-Span Bridges

Geotechnical Engineering Group Modules
-Geotechnical Structures
-Energy Geotechnics
-Advanced Soil Mechanics
-Foundation Engineering
-Soil-Structure Interaction

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project & Risk Management

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment
-Wastewater Treatment and Sewerage
-Applied Chemistry and Microbiology
-Pollution Control and Waste Management
-Regulation and Management
-Water Resources Management and Hydraulic Modelling
-Water Policy and Management

Wind Energy Group Modules
-Wind Engineering
-Wind Energy Technology
-Renewable Energy Technologies Dissertation

Dissertation
-Dissertation project

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-The state-of-the-art of infrastructure engineering and management that is required for the realisation of the complex delivery of new and management and of existing infrastructure.
-A holistic overview of infrastructure as a system of systems, viewed within the social, economic and environmental context, and the drivers for sustainable infrastructure development and change.
-A knowledge of the fundamental multi-disciplinary frameworks that can be adopted for the planning, design, management and operation of interconnected infrastructure systems.
-A specialisation in an infrastructure area of their choice (i.e. bridge, building, geotechnical, water, wind) providing them with detailed background for the analysis and solution of specific problems associated with individual infrastructure components.

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X