• Goldsmiths, University of London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
University of Manchester Featured Masters Courses
FindA University Ltd Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Leeds Beckett University Featured Masters Courses
University of Cambridge Featured Masters Courses
"structural"×
0 miles

Masters Degrees (Structural)

We have 510 Masters Degrees (Structural)

  • "structural" ×
  • clear all
Showing 1 to 15 of 510
Order by 
Structural engineers help to make, shape and maintain the built environment. They are professionals who enjoy innovation, a challenge, opportunities, responsibility and, excitement in a varied and very satisfying career. Read more

About the course

Structural engineers help to make, shape and maintain the built environment. They are professionals who enjoy innovation, a challenge, opportunities, responsibility and, excitement in a varied and very satisfying career.

The MSc programme in Structural Engineering is designed to attract both international and home students, who wish to pursue their career in civil and structural engineering. To meet the increasing demand for structural engineers to design more safe, economic and environmental friendly buildings, the programme content has specifically been designed to give a thorough grounding on current practice with regards to dealing with structural fire and earthquake resistances and design of carbon neutral buildings.

A particular feature of the course content lies with the emphasis on the performance-based, structural design philosophy. The strong focus on these aspects will appeal to any students who intend to become the next generation of structural engineers after graduation.

Aims

Structural engineering is a profession that provides a tremendous opportunity to make a real difference to people's lives and their environment. In the current century, climate change is an increasingly important issue which needs to be tackled - and the role of the structural engineer in tackling climate change is immense.

To meet these challenges, structural engineers need to combine traditional structural engineering expertise with an understanding of a wide range of issues related to design of zero carbon buildings. There is a significant shortage of structural engineers with the requisite knowledge, skills, and experience to deal efficiently with complex issues for designing structurally sound, elegantly simple and environmentally sustainable buildings. The skills shortage and its effects on the construction industry will be further exacerbated by the huge demand from some rising economic powers.

This new MSc programme has been developed in response to this growing need for graduates aware of current challenges in structural engineering. The primary aim of this programme is to create master’s degree graduates with qualities and transferable skills for demanding employment in the construction and civil engineering sector. The graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Course Content

The programme is currently taken full-time, over 12 months. Each taught module will count for 15 credits, approximating to 150 learning hours. The modules will be taught over the first eight months and during the final four months, students will conduct an individual research project worth 60 credits (Dissertation).

Compulsory Modules:

Nonlinear Structural Analysis & Finite Element Method
Structural Dynamics & Seismic Design
Advanced Construction Materials and Structural Retrofitting Technology
Advanced Reinforced and Prestressed Concrete Design
Advanced Steel Design
Case Studies of Modern Structures and Sustainable Structural Design
Research Methods and Professional Studies
Msc Civil Engineering Dissertation

Optional Modules:

Structural Design for Fire
Foundation, Earthworks and Pavement Design and Construction

Teaching

Our Philosophy

The philosophy behind the teaching and learning strategy we use is largely underpinned by high quality and accessible learning opportunities developing over the years by the University and the College, which are highly acclaimed standards and practices for learning and teaching.

In addition to teaching, the academics staff of this MSc programme are active in research. Teaching is therefore informed by research, giving you the opportunity to learn about the latest developments in structural engineering from leading experts in their chosen fields of specialisation.

Contact between students and academic staff is relatively high at around 20 hours per week initially to assist you in adjusting to university life. As the programme progresses the number of contact hours is steadily reduced as you undertake more project-based work. You will be taught by various approaches that complement each other in achieving the set learning outcomes.

How you will be taught

Lectures: These provide a broad overview of the main concepts and principles you need to understand, give you with a framework on which to build and expand your knowledge on through private studies.
Laboratories: Practical’s are generally two or three-hour sessions in which you can practice your observational and analytical skills, and develop a deeper understanding of theoretical concepts.

Design Studios: In a studio you will work on individual and group projects with guidance from members of staff. You may be required to produce a design or develop a solution to an engineering problem. These sessions allow you to develop your intellectual ability and practice your teamwork skills.

Computer Sessions: These allow for the opportunity to develop knowledge and experience of structural analysis and design software packages and apply them to structural engineering problems. Students have access to computers outside scheduled sessions to allow them to develop their transferable skills and learn at their own pace and time as well.

One-to-one Tutoring: On registration for the course you will be allocated a personal tutor who will be available to provide academic and pastoral support during your time at university. You will get one-to-one supervision on all project work.

Input from Guest Lecturers: Industry practitioners are invited to present lectures on the real structural engineering projects at regular seminars. The seminars are designed to facilitate informal interactions between students and guest lecturers, encouraging student active engagement in the discussions.

Site Visits: Learning from real-world examples is an important part of the course. You will visit sites featuring a range of structural engineering approaches. This exposure will provide you with invaluable experience including opportunities to debate on the real projects.

Assessment

Each of the taught modules is assessed either by formal examination, an assignment, or a balanced combination of two. Methods of assessing assignments include essay, individual/group report, oral presentation and class test.

Information on assignments in terms of the aims, learning outcomes, assessment criteria and submissions requirements are clearly specified at the beginning of the academic year. Detailed feedback on assignments is provided to students to assist them in achieving the required learning outcomes. The research project is assessed by dissertation and oral presentation.

Special Features

Emphasis on safety and sustainability: This MSc programme is distinctive because of its emphasis on building safety and sustainability and disaster mitigation of civil structures – with four taught modules totalling 60 credits. The dissertation projects will also be closely linked to ongoing research in these areas.

Industry support: Brunel has a very active Industrial Liaison Panel, which is immensely supportive of our programmes. The Panel and the companies have also shown keen interest in offering industrial support for the new programme through assistance such as support with project dissertations and site visits.

Guest speakers: Our strong contact with industry is also used to invite experienced industry practitioners to come and give talks on specialist topics at regularly organised seminars. The seminars also serve as a platform for student project presentations, which goes to build their confidence level because of the recognition and value their project gains through such dissemination.

Supporting professional development: Under a professional development module, you will be required to actively pursue your personal development planning through continuously recording and record keeping of progress being made throughout the course duration. Personal tutors will offer support to their tutees by regularly checking these records (i.e. a Personal Development Log (PDL) and discussing any relevant issues with the aim of supporting them to find solutions.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This new course has been designed in close consultation with industry and we are currently in the process of seeking accreditation for it from the major professional institutions (JBM). Related courses in the College of Engineering, Design and Physical Sciences are already accredited.

To ensure the programme addresses current industry concerns, it was developed in compliance with international standards, using Civil Engineering Body of Knowledge as a guide. The programme also satisfies the requirements of the major civil engineering professional bodies (JBM) as stipulated in their guidelines on coverage given to the teaching of structural engineering.

Read less
The goal of structural engineering is to predict the performance of structures under extreme events. This Masters in Structural Engineering provides you with a range of methods to analyse and design structures with quantifiable reliability over their design life. Read more
The goal of structural engineering is to predict the performance of structures under extreme events. This Masters in Structural Engineering provides you with a range of methods to analyse and design structures with quantifiable reliability over their design life.

Why this programme

◾If you intend to pursue a career in this specialist area of civil and structural engineering, in design consultancies and elsewhere, or if you want to transfer from other engineering disciplines, this programme is designed for you.
◾This programme offers a curriculum that is relevant to the needs of industry, designed to provide the advanced education required for the structural engineers of tomorrow.
◾The goal of structural engineering is to predict the performance of structures. This programme empowers future engineers with a range of methods to analyse and design structures with quantifiable reliability over their design life.
◾The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.

Programme structure

Modes of delivery of the MSc in Structural Engineering include lectures, seminars, tutorials, a group design project and individual projects.

Core courses
◾Advanced structural analysis and dynamics
◾Applied engineering mechanics
◾Computational modelling of nonlinear problems
◾Structural concrete
◾Structural design
◾Advanced soil mechanics
◾Structural engineering preliminary research project
◾Structural engineering review project
◾Structural design project

MSc students undertake an additional individual project.

Industry links and employability

If you intend to pursue a career in this specialist area of civil and structural engineering, in design consultancies and elsewhere, or if you want to transfer from other engineering disciplines, this programme is designed for you. It provides the advanced education required for the structural engineers of tomorrow.

Career prospects

This is a new programme which will be delivered the first time in 2016/17. However, it is a continuation of a former Structural Engineering and Mechanics MSc programme. Graduates from the former Structural Engineering and Mechanics programme have gone on to positions such as:

Graduate Structural Engineer at Wood Group PSN
Research Fellow at Fraunhofer Institute High Speed Dynamics
Graduate Structural Engineer at Wood Group
Graduate Structural Engineer at Design ID
Structure Engineer at Fujian United Benefit Broad Sustainable Building Technology
Structural Engineer-Subsea at a structural engineering company
Real Estate Assistant at Icade
Graduate Structure Engineer at P2ML
Graduate Engineer at Technip
Civil Engineering Technical Engineer at Hongrun Construction Corporation
Subsea Project Engineer at Halliburton
Bid and Building Engineer at Jingzhen Construction and Supervision Co.
Graduate Engineer at Reinertsen.

Read less
Join us at our. Masters Open Day. to find out more about our courses. The only applied structural geology Masters in the UK. Read more

Join us at our Masters Open Day to find out more about our courses.

The only applied structural geology Masters in the UK. Providing you with advanced training in the practical application of structural geology, preparing you either for employment in the hydrocarbon or mining industries or for postgraduate study (PhD).

You’ll gain a skillset combining advanced structural techniques and interpreting seismic data, an understanding of structural systems in time and space, and an appreciation of both the geological and geophysical constraints of seismic interpretation and model building.

This will enable you to use a combination of structural and geophysical techniques to solve geological problems. As a capable seismic interpreter you’ll be able to contribute in an industry role from day one.

Our teaching is research led, with direct links to active applied research. You’ll be taught by a range of research and industry experts, as well as through industry-led workshops. Strong industry links are a feature of this course.

Course highlights:

  • The only applied structural geology Masters in the UK, offering you a route to both industry or a PhD.
  • Unlike other petroleum/ ore geoscience courses in the UK, which only provide you with broad training in all aspects of petroleum and ore geology. At Leeds, apply your skills, tools, and knowledge in structural geology and tectonics to exploration settings, datasets, and problems.
  • A key focus of this Masters is on understanding structural evolution in various settings and the use of 3D and 4D thinking in geological contexts. Skills that are essential for your employment in industry.
  • Gain an international standard of Masters qualification in 12 months rather than 24. We deliver focused, advanced teaching linked to a research project (in contrast to the more research-oriented US Masters).
  • Undertake free fieldwork in the UK and EU that is directly linked to your classroom learning.
  • Choose from hydrocarbon and mining module options, depending on your interests.
  • Access high-spec computing facilities and industry-standard software.
  • Produce an industry or research focused dissertation in your final year.

Fieldwork

The following fieldwork to the UK and overseas is free, and forms an integral part of the course. It is directly linked to learning outcomes in the classroom.

  • An introductory field day to Ingleton, North Yorkshire.
  • A 6-day trip to the South West of England. Consider both extensional and compressional tectonics, basin-scale to fault to reservoir scale deformation, fault seal analysis, kinematic and geometric fault evolution, restorations, and 3D fault analysis.
  • A 12-day trip to the Central Spanish Pyrenees. This trip serves as a summary trip where you will pull together elements from the entire course. Consider regional scale orogenic deformation through to basin scale to fracture scale. And the influence of sediment-structure interaction in basin evolution, and tie outcrop scale observations with seismic examples.

Course content

Develop personal skills and a professionalism that will make you employable, as well as increasing your knowledge and technical ability.

You will take 9 months of taught classes, followed by approximately 3 months of independent research and dissertation writing in association with industry or research collaborators.

Carry-out free fieldwork, which forms an integral part of the course, and is directly linked to learning outcomes in the classroom. Besides local visits, there is a 6-day trip to South West England and a 12-day visit to the Spanish Pyrenees.

Some of the modules you will study are spread over 2 semesters, while most are short and intensive. They are devised to develop your advanced understanding of key topics (including large scale tectonics, basin evolution and reservoir scale deformation) and your technical ability through the use of industry-leading software.

Begin, by reviewing the fundamentals of structural geology, maps, and mathematics before moving onto the more advanced modules.

You’ll receive advanced training in structural geology and tectonics, in geological model construction, and the practical application of structural geology. And gain training in interpreting seismic data and the principals underlying data acquisition and processing.

You’ll also undertake professional and research level training in structural geology and basin evolution from regional, to basin, to reservoir/deposit scale.

In semester 2, you can choose from hydrocarbon or mining modules.

Course structure

Compulsory modules

  • Structural Geology Independent Project 60 credits
  • Applied Geophysical Methods 15 credits
  • Integrated Sub Surface Analysis 30 credits
  • Applied Structural Models 20 credits
  • Geomechanics 10 credits
  • Applied Geodynamics and Basin Evolution 15 credits
  • 3D Structure: Techniques and Visualisation 15 credits

For more information on typical modules, read Structural Geology with Geophysics MSc in the course catalogue

Learning and teaching

Teaching is varied, with some of your modules being very practical based e.g. fieldwork, presentations, learning new software. While other methods are tutorial or lecture based. You will also have the opportunity to work individually or as a group. Regardless of method, you will be supported by substantial online learning material.

Facilities

The School of Earth and Environment’s £23m building gives you access to world-class research, teaching and laboratory facilities. As a Masters student, you will have access to a 3D visualisation suite, and to your own dedicated computer facilities, which runs industry standard software.

Industry standard software:

  • 2D and 3D seismic interpretation is done via Kingdom Suite software.
  • Geocellular modelling is delivered on the Petrel platform.
  • Structural modelling and restoration is learnt using Midland Valley's 2DMove software.
  • PCs run a range of structural modelling, GIS and 3D visualisation programmes.
  • If you choose the optional Ore Deposits module, train in Leapfrog 3D deposit modeller.

Assessment

Given the variety of learning outcomes and teaching methods, you will be assessed differently between modules but generally assessed on a combination of presentations, practicals and/or formal examinations.

Industry links

We have very strong links with industry, which you’ll benefit from throughout the year. This includes the provision of scholarships, data for dissertation projects, teaching of short courses and free licenses for industry standard software.



Read less
Structural engineers help to make, shape and maintain the built environment, from buildings and bridges to water supply systems, power plans and flood defences. Read more

Structural engineers help to make, shape and maintain the built environment, from buildings and bridges to water supply systems, power plans and flood defences. They are professionals who enjoy innovation, challenges, opportunities, responsibility and excitement in a varied and very satisfying career. As a profession, structural engineering provides a tremendous opportunity to make a real difference to peoples' lives and their environment.

This programme will equip you with the advanced knowledge and skills to succeed in this challenging industry. You’ll build your knowledge of a range of core topics such as concrete and steel design, structural analysis, design optimisation and how structures are designed and managed in earthquake zones. You’ll also develop your research skills and focus on a specific topic when you complete your own research project.

Taught by leading academics and practitioners, you’ll prepare to face some of the major challenges of the 21st century.

This programme has close links with local and regional industry as well as the Yorkshire branch of the Institution of Structural Engineers (IStructE) – and you’ll benefit from the expertise of our Institute for Resilient Infrastructure and the active research groups across the Faculty of Engineering.

You’ll also benefit from using our specialist facilities, such as bench-top testing facilities to look at the fundamental behaviour of material soils and testing rigs for full-scale structures. We have all the specialist software you’ll need for your programme, and you’ll have access to a dedicated study suite for Masters students.

Accreditation

This degree is accredited by the Joint Board of Moderators as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

This course is also accredited by EUR-ACE, the European quality label for engineering degree programmes at Bachelor and Master level.

Course content

You’ll study a set of core modules that give you a firm foundation in the key elements of structural engineering. You’ll develop and expand your understanding of structural analysis and foundation engineering, and explore design issues related to key building materials like concrete, steel and composites. From there you’ll explore design optimisation and examine real-life examples.

We place a strong emphasis on applying your knowledge to real-world problems. Over the 2 semesters, you’ll work on your own design project, where you’ll develop, evaluate and recommend concept design solutions to a structural engineering problem and even put together an outline construction programme for the project.

During Semester 1 and 2 but particularly over the summer months, you’ll also develop and apply your research skills to a real-world problem when you complete an independent research project.

Want to find out more about your modules?

Take a look at the Structural Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Design and Management of Structures in Earthquake Zones 15 credits
  • Advanced Structural Analysis (MSc/PGD) 15 credits
  • Design Optimisation - MSc 15 credits
  • Advanced Concrete Design (MSc) 15 credits
  • Structural Engineering Dissertation 60 credits
  • Foundation Engineering (MSc) 15 credits
  • Advanced Steel and Composite Design - (MSc) 15 credits
  • Structural Engineering Design Project 30 credits

For more information on typical modules, read Structural Engineering MSc(Eng) Full Time in the course catalogue

For more information on typical modules, read Structural Engineering MSc(Eng) Part Time in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The dissertation project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects by MSc Structural Engineering students have included:

  • Dynamic shear resistance of collar jainted masonry panels
  • Performance of reinforced concrete tunnel linings in fire situations
  • A comparison of tensile and compressive creep in concrete
  • Review of the latest developments in the design and construction of plastic bridges

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

This programme greatly enhances your ability to obtain status as a Chartered Structural Engineer. As a result, you may expect to find employment in the major structural engineering consulting practices, while opportunities also exist with multidisciplinary consulting organisations.

Graduates have gone on to succeed in a range of careers around the world for organisations sucj as Arup, Delf Consulting Engineers (India), G2 Structural Ltd, JN Bentley Ltd, KA Tech Tips Ltd, SkyCon Design & Construction Co. Ltd and Sterling Engineering Consultancy Services among others.

If you are taking the course on a part-time basis, you will return to your existing jobs with enhanced potential for progression.

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UK’s leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
Reach the next level of expertise with a master’s degree in structural engineering. You’ll enjoy convenient scheduling and one-on-one interaction with expert faculty who bring their real-world experience to the classroom. Read more
Reach the next level of expertise with a master’s degree in structural engineering. You’ll enjoy convenient scheduling and one-on-one interaction with expert faculty who bring their real-world experience to the classroom.

MSOE’s M.S. in Architectural Engineering degree emphasizes building structural design and analysis. It meets the needs of architectural, civil or structural engineers who desire increased knowledge to design structural systems for modern buildings.

With the MSST degree, you’ll enhance your analytical and design capabilities and increase your professional flexibility. For recent graduates with a civil or architectural engineering degree, earning an MSST will accelerate the Professional Engineer credential.

Program Overview

The MSST requires that you have completed an undergraduate curriculum that included indeterminate structural analysis, structural steel and reinforced concrete design and soil mechanics.

MSST courses focus on structural design topics like advanced design of structural steel members and systems, light gage metal members and structure, wood structures, masonry structures, foundations and selection of structural systems. Courses on advanced structural analysis are included and provide a broad theoretical background for structural design.

Curriculum Format

The MSST is a flexible program, with courses offered evenings with the option of a two-, three- or five-year program. Classes meet one evening per week during the academic quarter. Students enrolled in MSOE’s bachelor in architectural engineering program may pursue a dual degree.

The MSST program requires completion of 45 graduate credits, with at least 36 of the credits obtained in structural engineering courses. There are two curriculum tracks available – the Capstone Report Track and the Capstone Project Track.

Outcomes and Objectives

Student Outcomes

The outcomes of the M.S. in Architectural Engineering program are such that, at the time of graduation, each graduate will be able to:
- perform structural analysis on structural systems and structural components comprised of many types of material subjected to gravity, wind and/or seismic loads.
- design structural systems made up of many structural components and structural materials; structural members; and connections in accordance with current building codes and specifications.
- individually complete a structural engineering project addressing the complex requirements of modern structures.

Program Educational Objectives

The M.S. in Architectural Engineering program will produce graduates who:
- will be able to confidently meet the responsibilities of a professional structural engineer
- will, if so desired, be employed in the field of structural engineering
- will, if so desired, be able to become licensed professional engineers
- will, if so desired, be able to obtain a Ph.D. in structural engineering or civil engineering.

Read less
This is an advanced postgraduate course specialising in structural engineering covering advanced structural analysis and design, structural computing simulation and also offering units linked with steel, concrete, timber and other structural designs. Read more
This is an advanced postgraduate course specialising in structural engineering covering advanced structural analysis and design, structural computing simulation and also offering units linked with steel, concrete, timber and other structural designs. It will also provide you with knowledge to design structures under dynamic and earthquake conditions.

The modules taught focus on learning advanced methods and techniques while developing analytic skills across a range of structural engineering topics.

Two modules, Finite Elements and Stress Analysis and Advanced Computing Structural Simulation, focus on learning advanced computing methods and commercial computing software for structures modelling and simulation.

Advanced Structural Analysis and Design and the Masonry and Timber Engineering modules will cover advanced structural theory and designing traditional structures, such as, steel, concrete, masonry and timbers. Earthquake Engineering will cover design of structures in seismic areas and analysis of structures under dynamic loading.

Soil-Structure Engineering will cover interaction of geotechnics and structures as well as foundation structures. Finally, you'll either conduct a structural related research project or a design project.

Accreditation

This degree is accredited by the Institution of Civil Engineers, the Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and the Institute of Highway Engineers on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Modules

Teaching techniques include: lectures, workshops, tutorials, laboratories, field trips and IT based blended learning. Visiting lecturers from industry contribute in some modules.

Module descriptions
Advanced structural design
Soil-structure engineering
Finite elements and stress analysis
Masonry and timber engineering
Structural dynamics and earthquake engineering
Advanced computing and structural simulation
Project / dissertation

Please visit the website to see how these modules are assessed

http://www.lsbu.ac.uk/courses/course-finder/structural-engineering-msc#course_tab_modules

Employability

Employment prospects for graduates of Structural Engineering are strong. Successful students will enter into a variety of positions with employers which might include: structural engineer, consultant, project manager, government advisor and researcher.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
The University of South Wales Civil & Structural Engineering MSc is a taught postgraduate course offering full-time and part-time pathways. Read more

The University of South Wales Civil & Structural Engineering MSc is a taught postgraduate course offering full-time and part-time pathways.

Students complete a sequence of optional and compulsory modules, plus a final dissertation, before graduating with the 180 credit Master of Science degree.

This degree is your opportunity to establish or consolidate your career as a civil or structural design engineer. The course is accredited for the Further Learning Programme (formerly ‘Matching Sections’) at Chartered Engineer (CEng) level by the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

There is also an opportunity for working professionals to progress towards CEng status through a tailor-made route. This will help you accelerate to the remaining steps of CEng status by working with your employer in the process. This is a unique feature of a Masters course and significantly reduces the period required to achieve Chartered status.

To provide the latest specialist knowledge and technical competence, all design-related modules are taught in accordance with the new structural Eurocodes. As well as developing your analytical and problem-solving skills, tuition covers project planning and contract management. The course is also underpinned by research into areas such as the use of novel and sustainable environmentally-friendly materials, geotechnics and structural modelling.

See the website http://courses.southwales.ac.uk/courses/577-msc-civil-and-structural-engineering

What you will study

You will study the following modules:

- Advanced Civil Engineering Materials

- Integrative Project Planning and Management

- Geo-environmental Engineering

- Advanced Structural Analysis and Structural Concrete Design

- Further Advanced Structural Analysis and Steel/Composite Design

- Dissertation

Optional modules include:

- Seismic Analysis and Design to Eurocodes*

- Structural Timber and Masonry Design to Eurocodes*

- Further Finite Element Analysis*

- Non-Destructive Testing*

*10 credit module

Learning and teaching methods

The course is delivered in three major blocks that offer an intensive but flexible learning pattern, with two entry opportunities for applicants each year – February and September. You will learn through lectures, tutorials and seminars, as well as guest lectures and seminars with prominent industry experts. You will complete a research project using our excellent laboratory facilities and a dissertation on a chosen topic of interest.

Work Experience and Employment Prospects

On completion of this course, you will be able to develop a career as a structural engineer, technical manager, or research and development manager. These roles can be with leading international consultancies, contractors, national and local consulting companies, as well as international research and government organisations.

Assessment methods

Some modules are assessed through coursework, others by a combination of design projects and a formal examination. If you want to continue working in industry, you can apply to study individual modules as short courses on a day-release or block-delivery basis.

Facilities

The University of South Wales has excellent facilities, and is committed to investment and refurbishment. We’ve just completed a £130m investment programme in new buildings and facilities, including significant investment in the Faculty of Computing, Engineering and Science. The University has also announced a further investment of £28m ensure that you’re using equipment and software that is state-of-the-art and industry-standard, we continually evaluate our labs and teaching spaces and regularly re-fit and re-equip them. A recent refurbishment of a number of our Civil and Mechanical Engineering labs is part of this programme of continuous enhancement of our facilities.

Accreditations

The MSc Civil and Structural Engineering is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree*. See http://www.jbm.org.uk for further information.

* It should be noted that candidates completing the MSc who hold an underpinning accredited IEng degree or a non-accredited bachelor degree will need to apply for an academic assessment to determine whether they will meet the educational base for CEng registration.

Applications

Apply directly to the University if you are applying for a part-time, professional or postgraduate course, an Erasmus/Exchange programme, the Legal Practice (part-time) course, to top up your Foundation Degree or HND, or to transfer to USW from another institution.  

Funding

The following postgraduate funding may be available to study the Civil & Structural Engineering MSc at The University of South Wales.

UK postgraduate loans:

Erasmus funding:

Funding from FindAMasters:

Fees

Full Time (UK / EU): £6,000

Full Time (international): £12,600

Part Time (UK /EU): £670 per 20 credit 



Read less
The programme is designed for graduates and professionals involved in the civil engineering, structural engineering and construction sectors who wish to deepen and broaden their technical knowledge and understanding of specialised areas of civil and structural engineering. Read more
The programme is designed for graduates and professionals involved in the civil engineering, structural engineering and construction sectors who wish to deepen and broaden their technical knowledge and understanding of specialised areas of civil and structural engineering.

Course details

You enhance your technical skills in various core areas of civil engineering that are in demand in the construction industry, such as advanced geotechnics and river and coastal engineering. You also further develop your conceptual understanding of critical aspects of structural engineering, such as advanced structural analysis and design, and become familiar with complex analysis and design techniques, modelling the causes and solutions of problems involving the real behaviour of structures. You also acquire an advanced knowledge and understanding of the design of structures under dynamic and earthquake conditions. Advanced project planning and visualisation methods, such as building information modelling, are also integrated into the course. The 60-credit dissertation gives you the opportunity to conduct a supervised research project developing original knowledge in a specific area of civil or structural engineering. The programme structure is divided into a combination of 10 and 20-credit taught modules, delivered over two semesters. By successfully completing these modules, you proceed to a 60-credit research project.

Starting salaries for new graduate civil and structural engineers can reach £32,000, increasing to £70,000 when a senior level is reached (prospects.ac.uk, 2015).

Professional accreditation

Our MSc Civil and Structural Engineering is accredited by the Joint Board of Moderators (representing the ICE, IStructE, IHE and CIHT) as a technical master's. This means it meets the requirements for further learning for Chartered Engineer (CEng) under the provisions of UK-SPEC for candidates who have already acquired a CEng-accredited BEng (Hons) undergraduate first degree.

By completing this professionally accredited MSc you benefit from an easier route to professional membership or chartered status. It also helps improve your job prospects, enhancing your career and earning potential. Some companies show preference for graduates who possess a professionally accredited qualification.

The Joint Board of Moderators represents the following four professional bodies:
-Institution of Civil Engineers
-Institution of Structural Engineers
-Chartered Institution of Highways and Transportation
-Institute of Highway Engineers

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

Examples of past MSc research projects include:
-Shear strength of composite and non-composite steel beam and concrete slab construction
-Investigation into the self-healing capability of bacterial concrete
-A review of the use of smart materials and technologies in cable stayed bridge construction
-FRP and its use as structural components
-Non-linear modelling of ground performance under seismic conditions

Core modules
-Advanced Geotechnics
-Advanced Project Planning and Visualisation
-Advanced Structural Analysis with Dynamics
-Advanced Structural Design
-Advanced Structural Engineering
-Practical Health and Safety Skills
-Research and Study Skills
-River and Coastal Engineering

MSc only
-Research Project

Modules offered may vary.

Teaching

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning, while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems.

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. Some of the modules require using specialised technical software and practical computer-based sessions are timetabled.

In addition to the taught sessions, you undertake a substantive MSc research project.

Assessment varies from module to module. The assessment methodology could include in-course assignments, presentations or formal examinations. For your MSc project, you prepare a dissertation.

Employability

The course will equip you with the relevant technical and transferrable skills to pursue a career as a civil/structural engineer or technical manager with leading multidisciplinary consultancies, contractors, as well as research and government organisations.

Read less
Structural Design aims to provide an understanding of aircraft structures, airworthiness requirements, design standards, stress analysis, fatigue and fracture (damage tolerance) and fundamentals of aerodynamics and loading. Read more

Course Description

Structural Design aims to provide an understanding of aircraft structures, airworthiness requirements, design standards, stress analysis, fatigue and fracture (damage tolerance) and fundamentals of aerodynamics and loading. The suitable selection of materials, both metallic and composite is also covered. Manufacturers of modern aircraft are demanding more lightweight and more durable structures. Structural integrity is a major consideration of today’s aircraft fleet. For an aircraft to economically achieve its design specification and satisfy airworthiness regulations, a number of structural challenges must be overcome. This course trains engineers to meet these challenges, and prepares them for careers in civil and military aviation.

Overview

This course is suitable for students with a background in aeronautical or mechanical engineering or those with relevant industrial experience.

The Structural Design option consists of a taught component and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:
- To build upon knowledge to enable students to enter a wide range of aerospace and related activities concerned with the design of flying vehicles such as aircraft, missiles, airships and spacecraft
- To ensure that the student is of immediate use to their employer and has sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression
- To provide teaching that integrates the range of disciplines required by modern aircraft design
- To provide the opportunity for students to be immersed in a 'Virtual Industrial Environment' giving them hands-on experience of interacting with and working on an aircraft design project.

English Language Requirements

If you are an international student you will need to provide evidence that you have achieved a satisfactory test result in an English qualification. The minimum standard expected from a number of accepted courses are as follows:

IELTS - 6.5
TOEFL - 92
Pearson PTE Academic - 65
Cambridge English Scale - 180
Cambridge English: Advanced - C
Cambridge English: Proficiency - C

In addition to these minimum scores you are also expected to achieve a balanced score across all elements of the test. We reserve the right to reject any test score if any one element of the test score is too low.

We can only accept tests taken within two years of your registration date (with the exception of Cambridge English tests which have no expiry date).

Core Modules

The taught programme for the Structural Design masters is generally delivered from October to March. After completion of the four compulsory taught modules, students have an extensive choice of optional modules to match specific interests.

Core:
- Fatigue Fracture Mechanics and Damage Tolerance
- Finite Element Analysis (including NASTRAN/PATRAN Workshops)
- Design and Analysis of Composite Structures
- Structural Stability

Optional:
- Loading Actions
- Computer Aided Design (CAD)
- Aircraft Aerodynamics
- Aircraft Stability and Control
- Aircraft Performance
- Detail Stressing
- Structural Dynamics
- Aeroelasticity
- Design for Manufacture and Operation
- Initial Aircraft Design (including Structural Layout)
- Airframe Systems
- Aircraft Accident Investigation
- Crashworthiness
- Aircraft Power Plant Installation
- Avionic System Design
- Flight Experimental Methods (Jetstream Flight Labs)
- Reliability, Safety Assessment and Certification
- Sustaining Design (Structural Durability)

Individual Project

The individual research project aims to provide the training necessary for you to apply knowledge from the taught element to research, and takes place from January to September.

Recent Individual Research Projects include:
- Review, Evaluation and Development of a Microlight Aircraft
- Investigation of the Fatigue Life of Hybrid Metal Composite Joints
- Design for Additive Layer Manufacture
- Rapid Prototyping for Wind Tunnel Model Manufacturing.

Group project

There is no group project for this option of the Aerospace Vehicle Design MSc.

Assessment

Taught modules (20%); Individual Research Project (80%)

Career opportunities

The AVD option in Structural Design is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

Graduates from the have gone onto pursue engineering careers in disciplines such as structural design, stress analysis or systems design. Many of our former graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry.

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Typical student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce.

For further information

On this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/AVD-Option-in-Structural-Design

Read less
This MSc offers you the knowledge and expertise for a career as a consulting structural engineer within this specialist professional area of civil engineering. Read more
This MSc offers you the knowledge and expertise for a career as a consulting structural engineer within this specialist professional area of civil engineering. It is designed to provide specialist postgraduate professional development across the areas of steel, concrete and timber design, structural dynamics, and structural mechanics. It will provide you with a sound scientific, technical and commercial understanding of structural engineering issues and practice, while training you in engineering research methods in order to develop a range of related transferable skills. It will cover the diverse nature of structural engineering through the integration of knowledge from mechanics, materials, structural analysis and structural design. You will gain new advanced level skills in engineering theory and practice related to the management of structural engineering challenges.

Distinctive features:

• The employment record of graduates is excellent, with the majority of graduates joining engineering consultancies.

• The MSc in Structural Engineering is accredited by the ICE, IStructE, IHT and IHIE as meeting the requirements for Further Learning for a Chartered Engineer under the provisions of UK-SPEC for intakes 2014-2018 inclusive, for candidates that have already acquired a CEng accredited BEng (Hons) undergraduate first degree or an IEng accredited BSc (Hons) undergraduate first degree.

• You will be learning in a research-led teaching institution taught by staff rated in the highest possible category by independent Government assessment.

• It will give you the opportunity to work in facilities commensurate with a top-class research unit.

• Available as 1 year full-time study or 3 years part-time study which provides the flexibility for you to continue working and study at the same time.

Structure

The programme is presented as a one-year full-time Master's level programme, and is also available in part-time mode over three years.

The programme is presented in two stages:

• In Stage 1 you will follow taught modules to the value of 120 credits, with a limited amount of choice between option modules.
• Stage 2 consists of a Dissertation module worth 60 credits.

Summative assessment is undertaken at the end of each stage (or each year if part-time).

For a list of modules for the FULL-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/structural-engineering-msc

For a list of the modules for the PART-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/structural-engineering-msc-part-time

Teaching

A wide range of teaching styles will be used to deliver the diverse material forming the curriculum of the programme. You will attend lectures and participate in examples classes. All students must complete 120 credits in Stage 1 in order to progress to the dissertation, for which they are allocated a supervisor from among the teaching staff. Dissertation topics are normally chosen from a range of project titles proposed by academic staff, usually in areas of current research interest, although you are encouraged to put forward your own project ideas.

Assessment

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January or May. Examinations count for 60%–70% of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and pieces of coursework.

Award of an MSc requires successful completion of Stage 2, the Dissertation, with a mark of 50% or higher. Candidates achieving a 70% average may be awarded a Distinction. Candidates achieving a 60% average may be awarded a Merit. Candidates failing to qualify for an MSc may be awarded a Postgraduate Diploma for 120 credits in Stage 1. Candidates failing to complete the 120 credits required for Stage 1 may still be eligible for the award of a Postgraduate Certificate for the achievement of at least 60 credits.

Career prospects

This course's graduate employment record is excellent, with the majority of graduates joining engineering consultancies.

Read less
IN THIS 24-MONTH INTENSIVE, PART TIME ONLINE PROGRAM YOU WILL LEARN. - Advanced skills and knowledge civil and structural engineering principles that can be applied in a variety of workplaces. Read more
IN THIS 24-MONTH INTENSIVE, PART TIME ONLINE PROGRAM YOU WILL LEARN:

- Advanced skills and knowledge civil and structural engineering principles that can be applied in a variety of workplaces
- The essential underpinning knowledge that guides a range of projects, including road, rail and drainage systems, dams, harbours, bridges, buildings and other structures
- Practical skills in the design and drafting of engineering plans to international standards
- Skills in engineering management

KEY BENEFITS OF THIS PROGRAM:

- Receive practical guidance from civil and structural engineering experts with real world industry skills
- Gain credibility in your firm
- Develop new contacts in the industry
- Improve career prospects and income

Due to extraordinary demand we have scheduled another intake this year.

Start date: September 04, 2017. Applications now open; places are limited.

There are limited placed available so contact us now to speak to a Course Advisor.

INTRODUCTION

Join the next generation of senior civil and structural engineering experts. Embrace a well paid, intensive yet enjoyable career by taking this comprehensive and practical course. It is delivered over 24 months by live distance learning and presented by some of the leading civil and structural engineering instructors in the world today.

Civil and structural engineering encompasses a range of disciplines, including road, rail and drainage systems, dams, harbours, bridges, buildings and other structures. Civil and structural designers and drafters plan, design, develop and manage construction and repair projects.

This qualification develops your skills and knowledge in the design and drafting of engineering plans to recognised standards. You will learn about different areas of civil engineering, including construction, project management, design and testing. You will also learn about the design and drafting of concrete, steelwork, roads and pipes, as well as hydrology, stormwater drainage and foundations.

While it is essential that those who work in the supervisory or management levels of this discipline have a firm understanding of drafting and planning principles, this qualification goes much further. To be effective on the job, you will need to know how to apply knowledge of fundamental civil and structural engineering concepts, including geotechnical engineering, hydraulic engineering, engineering maths, and properties of materials. Throughout the program this subject matter will be placed into the context of engineering management. Our aim is to ensure that you are an effective, knowledgeable and skilled supervisor or manager, someone who can work beyond a “plan and design” brief to ensure that a project is delivered effectively.
This qualification aims to provide theoretical and practical education and training such that graduates may gain employment at the engineering associate (“paraprofessional”) level within the building and construction industry.

There are eight threads in the course to give you maximum, practical coverage. These threads comprise environmental issues, engineering technologies, drawing, 2D and 3D CAD design, building materials, civil and structural sub-disciplines (roads, steel, concrete, pavement, drainage, soil, water supply, sewerage), construction sites and engineering management.

This program avoids too much emphasis on theory. This is rarely needed in the real world of industry where time is short and immediate results, with hard-hitting and useful know-how, are required as a minimal requirement. The instructors presenting this advanced diploma are highly experienced engineers from industry who have done the hard yards and worked in the civil and structural areas. The format of presentation — live, interactive distance learning with the use of remote learning technologies — means that you can hit the ground running and be of immediate benefit to your company or future employer.

WHO SHOULD ATTEND?

Anyone who wants to gain a solid working knowledge of the key elements of civil and structural engineering that can be applied at the supervisory and paraprofessional level. See “Entrance Requirements”

This program is particularly well suited to students for who on-campus attendance is less desirable than the flexibility offered by online delivery. When work, family and general lifestyle priorities need to be juggled this world class program becomes an attractive option to many students world-wide.

- Site Supervisors
- Senior Trades Managers
- Trades Workers
- Construction Managers
- Maintenance Engineers or Supervisors
- Leading hands
- Consulting Engineers

Even those who are highly qualified in civil and structural engineering may find it useful to attend to gain practical know-how.

COURSE

This program is composed of 4 stages, delivered over 24 months. It is possible to achieve the advanced diploma qualification within the time period because the study mode is part-time intensive.

There are 8 threads around which the program is structured:

- Environmental issues
- Engineering technologies
- Drawing
- 2D and 3D CAD design
- Building materials
- Roads, steel, concrete, pavement, drainage, soil, water supply, sewerage
- Construction sites
- Engineering management

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.

Read less
Today, structural engineering is more than just design. Expert consultants are needed globally with a complete skill set; the ability to design, manage and maintain structures, but also to enable existing civil infrastructure to operate under changing loading and environment. Read more
Today, structural engineering is more than just design. Expert consultants are needed globally with a complete skill set; the ability to design, manage and maintain structures, but also to enable existing civil infrastructure to operate under changing loading and environment.

This programme will provide you with a solid understanding of the whole process of structural design, analysis and operation. You will discover how to design and manage the dynamic behaviour of structures using state of the art hardware and software for performance assessment, measurement, and instrumentation to withstand normal and extreme operational loads.

The programme is taught by our internationally leading academic team with expertise in structural performance analysis and health monitoring, structural dynamics, control, infrastructure management, systems and informatics.

Successful graduates will be equipped with specialist skills increasingly demanded by employing infrastructure consultants, contractors, operators, and government agencies and can expect to progress into international senior level positions in civil, construction and environmental industries.

Programme Structure

This programme is modular and flexible and consists of nine core engineering modules.

Core modules

The core modules can include; Structural Design; Software Modelling; Conceptual Design of Buildings; Conceptual Design of Bridges; Active and Passive Structural Control; Vibration Engineering; Structural Health and Performance Monitoring; Introduction to Earthquake Engineering and Structural Engineering Dissertation

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.

A world-class laboratory

The MSc Structural Engineering programme will take advantage of a cutting edge laboratory, with state of the art measurement and testing technology. This purpose-built teaching and research facility is dedicated to better understanding structural performance including in-situ testing and monitoring of prototype and real life structures. Featuring;
• Unique and reconfigurable prototype floor or footbridge structure weighing up to 15 tonnes
• Instruments capable of measuring static and dynamic structural movements from meter to nanometer
• Ambient and forced vibration testing, facilities including equipment and software
• Vibration control systems
• Individual and group human motion tracking and measurement systems
• Motion capture facilities

Read less
Develop skills in the analysis and design of steel and concrete structures. You can tailor the course to your specific interests, so it’s ideal for practising structural engineers who want to enhance their skills or for anyone pursuing a career in this field. Read more

About the course

Develop skills in the analysis and design of steel and concrete structures. You can tailor the course to your specific interests, so it’s ideal for practising structural engineers who want to enhance their skills or for anyone pursuing a career in this field.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Core modules

Linear Systems and Structural Analysis; Structural Design; Computational Structural Analysis and Research Skills; Structural Dynamics and Applications to Earthquake Engineering and Vibration.

Examples of optional modules

Innovations in Structural Concrete; Advanced Concrete Design; Structural Design and Fire Resistance of Medium Rise Steel-framed Buildings; Advanced Simulation of High Strain Rate Dynamics; Blast and Impact Effects on Structures; Design of Earthquake Resistant Structures; Geotechnical Design; Sustainable Concrete Technology.

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

All courses use lectures by academic staff and industrial partners, laboratory work, site visits, design projects and dissertation. Assessment is by formal examinations, coursework assignments and a dissertation with oral examination.

September–June: taught modules and preparation for your dissertation.
June–August: complete your dissertation.

Your research dissertation gives you the opportunity to work with an academic on a piece of research in a subdiscipline. We’ll give you training in research skills.

Read less
This programme enables you to focus on developing your technical engineering skills, as well as your management skills. Today, structural engineering is more than just design. Read more
This programme enables you to focus on developing your technical engineering skills, as well as your management skills

Today, structural engineering is more than just design. Expert consultants are needed globally with a complete skill set; the ability to design, manage and maintain structures, but also to enable existing civil infrastructure to operate under changing loading and environment.

Alongside the core engineering modules, you will also study two management modules taught by the Business School which will help you develop transferable professional management skills that will enhance your study experience and improve your career prospects.

This programme will provide you with a solid understanding of the whole process of structural design, analysis and operation. You will discover how to design and manage the dynamic behaviour of structures using state of the art hardware and software for performance assessment, measurement, and instrumentation to withstand normal and extreme operational loads.

The programme is taught by our internationally leading academic team with expertise in structural performance analysis and health monitoring, structural dynamics, control, infrastructure management, systems and informatics.

Successful graduates will be equipped with specialist skills increasingly demanded by employing infrastructure consultants, contractors, operators, and government agencies and can expect to progress into international senior level positions in civil, construction and environmental industries.

Programme Structure

This programme is modular and flexible and consists of eight core engineering modules and one option module.

Core modules

The core modules can include; Structural Design; Software Modelling; Conceptual Design of Buildings; Conceptual Design of Bridges; Active and Passive Structural Control; Vibration Engineering; Management Concepts and Structural Engineering Dissertation

Optional modules

Some examples of the optional modules are Strategic Innovation Management and Strategy.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.

A world-class laboratory

The MSc Structural Engineering programme will take advantage of a cutting edge laboratory, with state of the art measurement and testing technology. This purpose-built teaching and research facility is dedicated to better understanding structural performance including in-situ testing and monitoring of prototype and real life structures. Featuring;
• Unique and reconfigurable prototype floor or footbridge structure weighing up to 15 tonnes
• Instruments capable of measuring static and dynamic structural movements from meter to nanometer
• Ambient and forced vibration testing, facilities including equipment and software
• Vibration control systems
• Individual and group human motion tracking and measurement systems
• Motion capture facilities

Read less
If you are a busy professional this online advanced degree is an ideal method of studying structural engineering. The programme is fully accredited by the Energy Institute, Institution of Civil Engineers (ICE), Institution of Structural Engineers (IStructE) and Institution of Mechanical Engineers (IMechE). Read more

Your programme of study

If you are a busy professional this online advanced degree is an ideal method of studying structural engineering. The programme is fully accredited by the Energy Institute, Institution of Civil Engineers (ICE), Institution of Structural Engineers (IStructE) and Institution of Mechanical Engineers (IMechE). This level of credibility really assists you to gain new career opportunities and advance your job prospects internationally. The area is constantly being improved in terms of design and understanding. You learn with University of Aberdeen, situated in the heart of the European oil and gas industry since its inception and rise in the 1970s. Many multinational headquarters are situated in Aberdeen and the academic and business community have worked together over this time to provide a great deal of knowledge, expertise and vocational training at advanced level to offer very advanced degrees at master's level.

The programme offers you a full range of knowledge in structural engineering to understand brown field engineering, petrochemical structures, conceptual design of structures and management of structures. You understand how load and natural forces can affect structures and the elements of time.

Courses listed for the programme

Semester 1
Design of Connections
Concept of Design Topside Modules

Semester 2
Brown Field Structural Engineering
Petrochemical Structural Engineering
Finite Element Methods

Semester 3
Conceptual Design of Jackets and Subsea Structures
Design of Stiffened Plates
Re-Design of Existing Structures by Structural Reliability Analysis
Design of Jacket Attachments


Find out more detail by visiting the programme web page
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/217/oil-and-gas-structural-engineering/

Why study at Aberdeen?

• This programme is specifically aimed at practising Structural Engineers to improve your knowledge for the industry
• You study in Aberdeen City with academics spanning knowledge of the industry since its inception in the 1970s
• We work closely with employers to develop our degrees and ensure they offer you a robust set of skills and tools
• Half of the programme is taught by practising structural engineers

Where you study

• Online
• Part Time
• September or January

International Student Fees 2017/2018

Find out about fees:
https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page
https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php
https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:
• Your Accommodation
• Campus Facilities
• Aberdeen City
• Student Support
• Clubs and Societies

Find out more about living in Aberdeen:
https://abdn.ac.uk/study/student-life

Living costs
https://www.abdn.ac.uk/study/international/finance.php

Read less

Show 10 15 30 per page



Cookie Policy    X