• University of Northampton Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
University College Cork Featured Masters Courses
Cranfield University Featured Masters Courses
Swansea University Featured Masters Courses
"stress" AND "analysis"×
0 miles

Masters Degrees (Stress Analysis)

We have 104 Masters Degrees (Stress Analysis)

  • "stress" AND "analysis" ×
  • clear all
Showing 1 to 15 of 104
Order by 
Modern industry operates within a highly competitive global market, the adoption, exploration and management of technology across both design and manufacture and product simulation performance is at the forefront of providing successful business with the competitive edge needed to survive and grow. Read more

Modern industry operates within a highly competitive global market, the adoption, exploration and management of technology across both design and manufacture and product simulation performance is at the forefront of providing successful business with the competitive edge needed to survive and grow. In addition, society is demanding that such business enterprises become evermore proactive in terms of adopting a more socially conscious approach, such as sustainability, across all their strategies and operations.

This course aims to develop your knowledge and understanding of modern engineering analysis and simulation tools and techniques in terms of product development and optimisation before manufacture. You will gain a comprehensive understanding of how various IT-based tools and systems function while also gaining insights into how these are implemented effectively, within the manufacturing and industrial sectors. You will be equipped to undertake cross-functional management roles and to evaluate how modern organisations can strategically exploit existing and emerging technologies. This reflects the growing demand for specialists with advanced skills and knowledge to drive forward effective, new, product development and their introduction across all of the major industrial sectors including automotive, aerospace and general manufacture.

The course will allow you acquire advanced knowledge and systematic understanding of contemporary finite element modelling techniques to analyse the behaviour of complex engineering systems and components. It will involve a comprehensive understanding of advanced solid mechanics and analytical techniques pertinent to product development and sustainability, and to apply these advanced techniques to synthesise novel designs of a range of engineering systems.

What happens on the course?

  • Research Methods and Professional Skills
  • Project Management Tools and Techniques
  • CAD and Product Definition
  • Emerging Design Tools
  • Dissertation
  • Simulation and Design Optimisation
  • Applied Stress Analysis

Why Wolverhampton?

This course provides you with the unique opportunity to experience the practicalities and applications of modern Engineering Analysis Techniques. The dedicated IT simulation resources and expertise of our specialised staff, based at our Telford Campus, is well renowned and often called upon to support and advise external agencies and key industries across the aerospace, automotive and automotive sports and power generation sectors. You can therefore rest assured of access to a variety of significant simulation techniques facilities and expertise. Beyond this, the course will encourage and guide you to explore and conduct research into emerging Design and use the latest industry standard simulation software to produce complex, economical and sustainable part/component part production. Our expectation is that the exposure offered by the course, to modern and newly emerging manufacturing technologies coupled with the project managerial aspects of the course will ensure that you are well placed to take up a key role in this dynamic industrial sector.

You will have the opportunity to engage with a range of learning approaches during the course of your study.

You will take part in lectures and seminars. Some of these will be more traditional whereas others will require you to undertake research before coming together to discuss technical issues with a range of students and academic staff. You will have seminars from industry practitioners and have the opportunity to discuss your projects with them to gain real world insight into the problems you are trying to solve.

You will have the opportunity to work in a range of dedicated facilities such as the Dedicated IT Laboratories to develop practical skills and understand the link between the theory and practical implementation of integrated CAD, Simulation and Finite Element Analysis Techniques. Throughout the weekly class sessions and through use of the on-line support material, you will obtain skills required to successfully implement and manage a range of modern design and simulation systems, processes and methodologies.

Often working on assessment and project briefs specified by industry practitioners, you will develop solutions to meet real world problems/requirements and be able to present these to your peers, practitioners and third parties in order to obtain balanced and current feedback.

Career path

The course is aimed at Science and Technology graduates who aspire to Engineering and Manufacturing management roles, in leading industrial organisations.

On completion of the programme, you can expect to develop your career leading to senior management where strategic thinking skills, project management experience and a deeper technological knowledge-base would be beneficial.

What skills will you gain?

  • Develop novel strategies for the management and deployment of advanced and emerging technologies, tools and techniques.
  • Select and apply appropriate industry standard computer aided engineering software and analysis methods to model, analyse and evaluate engineering systems and solve engineering problems.
  • Apply knowledge to create original concepts for products, engineering systems or processes.
  • Make use of high level skills and abilities to exploit generic and bespoke software tools, solve complex design, configuration or process problems and thereby develop industrially appropriate solutions for delivery to a range of audiences.
  • Be fully conversant with the theories underpinning the fundamental principles that govern Stress Analysis
  • Model and analytically analyse the behaviour of structures and engineering components under complex loading conditions especially in specific applications such as those encountered in the automotive, aeronautical, aerospace and power generation industries


Read less
Modern industry operates within a highly competitive global market, the adoption, exploration and management of technology across both design and manufacture and product simulation performance is at the forefront of providing successful business with the competitive edge needed to survive and grow. Read more

Modern industry operates within a highly competitive global market, the adoption, exploration and management of technology across both design and manufacture and product simulation performance is at the forefront of providing successful business with the competitive edge needed to survive and grow. In addition, society is demanding that such business enterprises become evermore proactive in terms of adopting a more socially conscious approach, such as sustainability, across all their strategies and operations.

This course aims to develop your knowledge and understanding of modern engineering analysis and simulation tools and techniques in terms of product development and optimisation before manufacture. You will gain a comprehensive understanding of how various IT-based tools and systems function while also gaining insights into how these are implemented effectively, within the manufacturing and industrial sectors. You will be equipped to undertake cross-functional management roles and to evaluate how modern organisations can strategically exploit existing and emerging technologies. This reflects the growing demand for specialists with advanced skills and knowledge to drive forward effective, new, product development and their introduction across all of the major industrial sectors including automotive, aerospace and general manufacture.

The course will allow you acquire advanced knowledge and systematic understanding of contemporary finite element modelling techniques to analyse the behaviour of complex engineering systems and components. It will involve a comprehensive understanding of advanced solid mechanics and analytical techniques pertinent to product development and sustainability, and to apply these advanced techniques to synthesise novel designs of a range of engineering systems.

What happens on the course?

  • Research Methods and Professional Skills
  • Project Management Tools and Techniques
  • CAD and Product Definition
  • Emerging Design Tools
  • Dissertation
  • Simulation and Design Optimisation
  • Applied Stress Analysis

Why Wolverhampton?

This course provides you with the unique opportunity to experience the practicalities and applications of modern Engineering Analysis Techniques. The dedicated IT simulation resources and expertise of our specialised staff, based at our Telford Campus, is well renowned and often called upon to support and advise external agencies and key industries across the aerospace, automotive and automotive sports and power generation sectors. You can therefore rest assured of access to a variety of significant simulation techniques facilities and expertise. Beyond this, the course will encourage and guide you to explore and conduct research into emerging Design and use the latest industry standard simulation software to produce complex, economical and sustainable part/component part production. Our expectation is that the exposure offered by the course, to modern and newly emerging manufacturing technologies coupled with the project managerial aspects of the course will ensure that you are well placed to take up a key role in this dynamic industrial sector.

You will have the opportunity to engage with a range of learning approaches during the course of your study.

You will take part in lectures and seminars. Some of these will be more traditional whereas others will require you to undertake research before coming together to discuss technical issues with a range of students and academic staff. You will have seminars from industry practitioners and have the opportunity to discuss your projects with them to gain real world insight into the problems you are trying to solve.

You will have the opportunity to work in a range of dedicated facilities such as the Dedicated IT Laboratories to develop practical skills and understand the link between the theory and practical implementation of integrated CAD, Simulation and Finite Element Analysis Techniques. Throughout the weekly class sessions and through use of the on-line support material, you will obtain skills required to successfully implement and manage a range of modern design and simulation systems, processes and methodologies.

Often working on assessment and project briefs specified by industry practitioners, you will develop solutions to meet real world problems/requirements and be able to present these to your peers, practitioners and third parties in order to obtain balanced and current feedback.

Career path

The course is aimed at Science and Technology graduates who aspire to Engineering and Manufacturing management roles, in leading industrial organisations.

On completion of the programme, you can expect to develop your career leading to senior management where strategic thinking skills, project management experience and a deeper technological knowledge-base would be beneficial.

What skills will you gain?

  • Develop novel strategies for the management and deployment of advanced and emerging technologies, tools and techniques.
  • Select and apply appropriate industry standard computer aided engineering software and analysis methods to model, analyse and evaluate engineering systems and solve engineering problems.
  • Apply knowledge to create original concepts for products, engineering systems or processes.
  • Make use of high level skills and abilities to exploit generic and bespoke software tools, solve complex design, configuration or process problems and thereby develop industrially appropriate solutions for delivery to a range of audiences.
  • Be fully conversant with the theories underpinning the fundamental principles that govern Stress Analysis
  • Model and analytically analyse the behaviour of structures and engineering components under complex loading conditions especially in specific applications such as those encountered in the automotive, aeronautical, aerospace and power generation industries


Read less
Modern industry operates within a highly competitive global market, the adoption, exploration and management of technology across both design and manufacture and product simulation performance is at the forefront of providing successful business with the competitive edge needed to survive and grow. Read more

Modern industry operates within a highly competitive global market, the adoption, exploration and management of technology across both design and manufacture and product simulation performance is at the forefront of providing successful business with the competitive edge needed to survive and grow. In addition, society is demanding that such business enterprises become evermore proactive in terms of adopting a more socially conscious approach, such as sustainability, across all their strategies and operations.

This course aims to develop your knowledge and understanding of modern engineering analysis and simulation tools and techniques in terms of product development and optimisation before manufacture. You will gain a comprehensive understanding of how various IT-based tools and systems function while also gaining insights into how these are implemented effectively, within the manufacturing and industrial sectors. You will be equipped to undertake cross-functional management roles and to evaluate how modern organisations can strategically exploit existing and emerging technologies. This reflects the growing demand for specialists with advanced skills and knowledge to drive forward effective, new, product development and their introduction across all of the major industrial sectors including automotive, aerospace and general manufacture.

The course will allow you acquire advanced knowledge and systematic understanding of contemporary finite element modelling techniques to analyse the behaviour of complex engineering systems and components. It will involve a comprehensive understanding of advanced solid mechanics and analytical techniques pertinent to product development and sustainability, and to apply these advanced techniques to synthesise novel designs of a range of engineering systems.

What happens on the course?

  • Research Methods and Professional Skills
  • Project Management Tools and Techniques
  • CAD and Product Definition
  • Emerging Design Tools
  • Dissertation
  • Simulation and Design Optimisation
  • Applied Stress Analysis

Why Wolverhampton?

This course provides you with the unique opportunity to experience the practicalities and applications of modern Engineering Analysis Techniques. The dedicated IT simulation resources and expertise of our specialised staff, based at our Telford Campus, is well renowned and often called upon to support and advise external agencies and key industries across the aerospace, automotive and automotive sports and power generation sectors. You can therefore rest assured of access to a variety of significant simulation techniques facilities and expertise. Beyond this, the course will encourage and guide you to explore and conduct research into emerging Design and use the latest industry standard simulation software to produce complex, economical and sustainable part/component part production. Our expectation is that the exposure offered by the course, to modern and newly emerging manufacturing technologies coupled with the project managerial aspects of the course will ensure that you are well placed to take up a key role in this dynamic industrial sector.

You will have the opportunity to engage with a range of learning approaches during the course of your study.

You will take part in lectures and seminars. Some of these will be more traditional whereas others will require you to undertake research before coming together to discuss technical issues with a range of students and academic staff. You will have seminars from industry practitioners and have the opportunity to discuss your projects with them to gain real world insight into the problems you are trying to solve.

You will have the opportunity to work in a range of dedicated facilities such as the Dedicated IT Laboratories to develop practical skills and understand the link between the theory and practical implementation of integrated CAD, Simulation and Finite Element Analysis Techniques. Throughout the weekly class sessions and through use of the on-line support material, you will obtain skills required to successfully implement and manage a range of modern design and simulation systems, processes and methodologies.

Often working on assessment and project briefs specified by industry practitioners, you will develop solutions to meet real world problems/requirements and be able to present these to your peers, practitioners and third parties in order to obtain balanced and current feedback.

Career path

The course is aimed at Science and Technology graduates who aspire to Engineering and Manufacturing management roles, in leading industrial organisations.

On completion of the programme, you can expect to develop your career leading to senior management where strategic thinking skills, project management experience and a deeper technological knowledge-base would be beneficial.

What skills will you gain?

  • Develop novel strategies for the management and deployment of advanced and emerging technologies, tools and techniques.
  • Select and apply appropriate industry standard computer aided engineering software and analysis methods to model, analyse and evaluate engineering systems and solve engineering problems.
  • Apply knowledge to create original concepts for products, engineering systems or processes.
  • Make use of high level skills and abilities to exploit generic and bespoke software tools, solve complex design, configuration or process problems and thereby develop industrially appropriate solutions for delivery to a range of audiences.
  • Be fully conversant with the theories underpinning the fundamental principles that govern Stress Analysis
  • Model and analytically analyse the behaviour of structures and engineering components under complex loading conditions especially in specific applications such as those encountered in the automotive, aeronautical, aerospace and power generation industries


Read less
This is an advanced postgraduate course specialising in structural engineering covering advanced structural analysis and design, structural computing simulation and also offering units linked with steel, concrete, timber and other structural designs. Read more
This is an advanced postgraduate course specialising in structural engineering covering advanced structural analysis and design, structural computing simulation and also offering units linked with steel, concrete, timber and other structural designs. It will also provide you with knowledge to design structures under dynamic and earthquake conditions.

The modules taught focus on learning advanced methods and techniques while developing analytic skills across a range of structural engineering topics.

Two modules, Finite Elements and Stress Analysis and Advanced Computing Structural Simulation, focus on learning advanced computing methods and commercial computing software for structures modelling and simulation.

Advanced Structural Analysis and Design and the Masonry and Timber Engineering modules will cover advanced structural theory and designing traditional structures, such as, steel, concrete, masonry and timbers. Earthquake Engineering will cover design of structures in seismic areas and analysis of structures under dynamic loading.

Soil-Structure Engineering will cover interaction of geotechnics and structures as well as foundation structures. Finally, you'll either conduct a structural related research project or a design project.

Accreditation

This degree is accredited by the Institution of Civil Engineers, the Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and the Institute of Highway Engineers on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Modules

Teaching techniques include: lectures, workshops, tutorials, laboratories, field trips and IT based blended learning. Visiting lecturers from industry contribute in some modules.

Module descriptions
Advanced structural design
Soil-structure engineering
Finite elements and stress analysis
Masonry and timber engineering
Structural dynamics and earthquake engineering
Advanced computing and structural simulation
Project / dissertation

Please visit the website to see how these modules are assessed

http://www.lsbu.ac.uk/courses/course-finder/structural-engineering-msc#course_tab_modules

Employability

Employment prospects for graduates of Structural Engineering are strong. Successful students will enter into a variety of positions with employers which might include: structural engineer, consultant, project manager, government advisor and researcher.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
The MSc/Diploma in Structural and Foundation Engineering is designed for graduates and practising engineers who wish to improve their knowledge of structural and foundation engineering. Read more

Programme Background

The MSc/Diploma in Structural and Foundation Engineering is designed for graduates and practising engineers who wish to improve their knowledge of structural and foundation engineering. The structure and content of the programme has been carefully designed following liaison with a wide range of employers in the sector.

The staff members who deliver the programme have wide ranging expertise in specialist subjects which include reinforced concrete technology, dynamic and impact testing of materials, offshore engineering, structural safety, soil-structure interaction and numerical modelling.

The research activities of the programme involve combinations of experimental, numerical and theoretical work. The School has excellent practical facilities for static, dynamic, and impact testing and it has access to advanced computer and networking facilities that include a state-of-the-art parallel processing computer.

Professional Recognition

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) or an accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. See http://www.jbm.org.uk for further information.

Programme Content

The curriculum covers the specialist technical and computational skills necessary for today’s construction industry and therefore offers excellent preparation for employment across an industry that includes consulting and contracting engineers, public authorities and local government. In addition, the programme also provides a suitable springboard for graduates seeking a career in a research lead environment.

Both MSc and Diploma students undertake the eight taught courses listed below. MSc students also complete a Masters dissertation.

Semester 1:
Indeterminate Structures
Stability and Dynamics
Ground Engineering
FEA & Stress Analysis A

Semester 2:
Safety, Risk and Reliability
Earthquake Engineering
Foundation Engineering
FEA & Stress Analysis B

Dissertation

MSc students are also required to submit a research dissertation, the research topic normally aligns with the research interests of the staff in the School but can be tailored to suit the interests of the student or student’s employer. Distance learning and part time students are encouraged to suggest project topics based on their own work experience.

At the discretion of the Programme Leader, MSc students may choose to nominate a research project which enables them to investigate a problem they have encountered in their workplace or elsewhere. The research project can be undertaken in conjunction with a suitable industrial partner on campus or in industry if the industrial partner has the facilities to provide adequate supervision.

Mode of Study

The programme may be studied on a part-time basis and will therefore appeal to practising engineers. It is also delivered via distance learning which enables students from all around the globe to study without the need to interrupt their career and travel to Scotland. Examinations may be organised in each student’s country of residence to avoid unnecessary travel costs.

Read less
This specialist option of the . MSc Aerospace Vehicle Design.  provides you with an understanding of aircraft structures, airworthiness requirements, design standards, stress analysis, fatigue and fracture (damage tolerance) and fundamentals of aerodynamics and loading. Read more

This specialist option of the MSc Aerospace Vehicle Design provides you with an understanding of aircraft structures, airworthiness requirements, design standards, stress analysis, fatigue and fracture (damage tolerance) and fundamentals of aerodynamics and loading. Also covered is the selection of suitable materials, both metallic and composite.

Who is it for?

Manufacturers of modern aircraft are demanding more lightweight and more durable structures. Structural integrity is a major consideration of today’s aircraft fleet. For an aircraft to economically achieve its design specification and satisfy airworthiness regulations, a number of structural challenges must be overcome. This course trains engineers to meet these challenges, and prepares them for careers in civil and military aviation. It is suitable if you have a background in aeronautical or mechanical engineering, or relevant industrial experience.

Why this course?

We have been at the forefront of postgraduate education in aerospace engineering since 1946. Aerospace Vehicle Design at Cranfield University was one of the original foundation courses of the College of Aeronautics. Graduates of this course are eligible to join the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which hold a number of networking and social events throughout the year.

Cranfield University is well located for students from all over the world, and offers a range of library and support facilities to support your studies. This enables students from all over the world to complete this qualification whilst balancing work/life commitments. 

Informed by Industry

The course has an Industrial Advisory Committee with senior members from major UK aerospace companies, government bodies, and the military services. The committee meets twice a year to review and advise on course content, acquisition skills and other attributes are desirable from graduates of the course. Panel members include:

  • Airbus
  • BAE Systems
  • BOEING
  • Department of National Defence and the Canadian Armed Forces.
  • GKN Aerospace 
  • Messier-Dowty
  • Royal Air Force
  • Royal Australian Air Force
  • Thales UK

We also arrange visits to sites such as BAE Systems, Marshall Aerospace, GKN and RAF bases which specialise in the maintenance of military aircraft. This allows you to get up close to the aircraft components and help with your understanding.

Accreditation

The MSc in Aerospace Vehicle Design is accredited by the Royal Aeronautical Society (RAeS) & Institution of Mechanical Engineers (IMechE) as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

This option is comprised of 4 compulsory modules and a minimum of 120 hours of optional modules, selected from a list of 18 options. You will also complete an individual research project. Delivered via a combination of structured lectures, industry guest lectures, computer based workshops and private study.

A unique feature of the course is that we have four external examiners; two from industry who assess the group design project and two from academia who assess the individual research project.

Individual project

The individual research project aims to provide the training necessary for you to apply knowledge from the taught element to research, and takes place from January to September. It is sometimes associated with a real-world problem that one of our industry partners are looking to resolve.

Examples of recent Individual Research Projects include:

  • Review, Evaluation and Development of a Microlight Aircraft
  • Investigation of the Fatigue Life of Hybrid Metal Composite Joints
  • Design for Additive Layer Manufacture
  • Rapid Prototyping for Wind Tunnel Model Manufacturing.

Assessment

Taught modules 20%, Individual research project 80%

Your career

This Aerospace Vehicle Design option in Structural Design is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

Graduates from this option have gone onto pursue engineering careers in disciplines such as structural design, stress analysis or systems design. Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Student destinations have included BAE Systems, Airbus, Dassault and Rolls-Royce.



Read less
This course, which is accredited by Royal Aeronautical Society, provides a strategic overview of aerospace engineering and management issues. Read more
This course, which is accredited by Royal Aeronautical Society, provides a strategic overview of aerospace engineering and management issues. It will help you to develop a wider perspective and understanding of the challenges facing the aerospace engineering industry, and includes subjects such as entrepreneurship, business, finance, research techniques and green environmental issues.

What will you study?

You will gain a broad understanding of the practical requirements of aerospace engineering, as well as an in-depth knowledge of aerospace stress analysis and advanced materials, alongside computational fluid dynamics (CFD) for aerospace applications. Complementary subjects covered include computer-integrated product development, advanced CAD/CAM plus green engineering and energy efficiency. In addition, the Engineering Research Techniques, Entrepreneurship and Quality Management module will develop your business and management skills. The Aerospace Group Design Project module provides you with the experience of working in a multidisciplinary team within an engineering organisation – with real industrial constraints. You'll get the chance to apply the theory you've learnt to real-world contexts and evaluate methodologies, whilst developing your critical thinking and creativity.
As well as the professional, analytical and management skills necessary for employment, the course will provide you with the transferable skills required in the workplace, such as communication, IT, teamwork, planning, decision making, independent learning ability and problem solving.

Assessment

Coursework and/or exams, industrial project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.
-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Engineering Research Techniques, Entrepreneurship and Quality Management
-Computational Fluid Dynamics for Aerospace Applications
-Aerospace Stress Analysis and Advanced Materials
-Aerospace Group Design Project

Option modules (choose one)
-Green Engineering and Energy Efficiency
-Advanced CAD/CAM Systems
-Engineering Projects and Risk Management

Read less
This is a broad based civil engineering course covering the areas of structures, geotechnics, water engineering and water transportation. Read more
This is a broad based civil engineering course covering the areas of structures, geotechnics, water engineering and water transportation.

The technical modules of the course aim to develop the understanding and application of advanced theoretical contents of the specialist subject.

Structural topics are taught in the two modules of Finite Elements and Stress Analysis, and Advanced Structural Design. The interaction of geotechnics and structures is covered in the Soil-Structure Engineering module. The Water Resources Systems Management module looks into the water engineering aspects. The transportation field is studied in the Highway and Railway Engineering and Operations module. The final module, Asset Management and Project Appraisal of Infrastructures examines the methods, merits and economics of repairs of existing structures.

You'll be required to complete an individual project into a specific area of the programme studied, providing you with the opportunity of pursuing a programme of independent study. The work is to be of an investigative nature having an experimental, analytical, computer-based or fieldwork input.

Modules

Teaching techniques include lectures, workshops, tutorials, laboratories, field trips and IT based blended learning. Visiting lecturers from industry contribute in some modules.

Advanced structural design
Soil-structure engineering
Finite elements and stress analysis
Highway engineering and operation
Railway engineering and operation
Water engineering
Project

Accreditation

This degree is accredited by the Institution of Civil Engineers, the Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and the Institute of Highway Engineers on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Employability

Employment prospects for graduates of these courses are very good, especially in view of the upturn in new infrastructure projects in the UK and overseas. Successful students enter into a variety of positions within the construction industry, ranging from working in a design office, with contractors and in local authorities.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
Computer Aided Engineering (CAE) covers the use of computers in all activities from the design to the manufacture of a product. It is at the forefront of information technology and of crucial importance to economies around the world. Read more

Computer Aided Engineering (CAE) covers the use of computers in all activities from the design to the manufacture of a product. It is at the forefront of information technology and of crucial importance to economies around the world. It is a vital part of many global industries including those of automotive, aerospace, oil, defence, finance and health. 

This specialist option of the MSc Computational and Software Techniques in Engineering has been developed to reflect the wide application of CAE and to deliver qualified engineers of the highest standard into industries operating in the fields of computational and software engineering.

Who is it for?

Suitable for candidates from a broad range of engineering and applied mathematical backgrounds, including aeronautic, automotive, mechanical and electrical engineering, in addition to those with a mathematical and computational sciences training, who wish to both develop and complement their existing skill-set in these important areas.

The specialist taught modules are designed to provide you with the knowledge, programming techniques and practical skills necessary to develop and use core CAE solution software over a wide range of industrial settings.

Why this course?

We are a leader in applied mathematics and computing applications. The CAE option benefits from the knowledge and experience gained by the staff through their strong industrial links, particularly our well-established research collaborations with the petrochemical, automotive, aeronautical and financial sectors.

This course produces well qualified graduates, ready to take on professional roles without additional training on the job. In recent years, key employers have requested a student visit to showcase their graduate roles.

This course is also available on a part-time basis, enabling you to combine studying alongside full-time employment. We are very well located for visiting part-time students from across the UK and Europe.

Informed by Industry

This course is directed by an industrial advisory panel who meet twice a year to ensure that it provides generic hands-on skills and up-to-date knowledge adaptable to the wide variety of applications that this field addresses.

A number of members also attend the annual student thesis presentations which take place at the end of July, a month or so before the end of the course. This provides a good opportunity to meet key employers.

Industry Advisory Panel members include:

  • Dr Adam Vile, Excelian
  • Mr Darren Baldwin, Excelian
  • Mr Matthew Breach, Ultra Electronics Sonar Systems
  • Mr Nigel Sedgewick, Selex
  • Dr Sanjiv Sharma, Airbus UK
  • Dr Steve King, Rolls Royce
  • Dr Julian Turnbull, AV
  • Mr Jon Loach, FACTSET
  • Prof David Emerson (Scientific Computing, STFC Daresbury )
  • Dr Stuart Barnes (Software Engineer, Cambridge).

Course details

The course consists of twelve core modules, including a group design project, plus an individual research project. A combination of mathematical, computational and hands-on use of industry standard CAE systems form the basis of the specialist modules, covering the theory and application of CAE based software for the modelling, analysis and simulation, in diverse fields such as automotive, aeronautical, flow related industries, data fitting and visualisation.

Group project

The process of software production is rarely an activity undertaken by an individual developer. In today’s software industry, many different specialists are required to contribute to the creation of software. To ensure a high level of quality in the final product, different roles and responsibilities must be brought together into a single team and therefore clear lines of communication between team members are crucial if the project is to be a success.

The group design project is intended to give you invaluable experience of delivering a project within an industry structured team. The project allows you to develop a range of skills including learning how to establish team member roles and responsibilities, project management, delivering technical presentations and gaining experience of working in teams that include members with a variety of expertise and often with members who are based remotely.

Part-time students are encouraged to participate in a group project as it provides a wealth of learning opportunities. However, an option of an individual dissertation is available if agreed with the Course Director.

Previous Group Projects have included:

  • Component Stress Analysis
  • Steel Tube Joints Flow Study.

Individual project

The individual research project allows you to delve deeper into an area of specific interest. It is very common for industrial partners to put forward real world problems or areas of development as potential research project topics. For part-time students it is common that their research project is undertaken in collaboration with their place of work.

Previous Individual Research Projects have included:

  • Analysis of Aircraft Control Surface
  • Comparative Analysis of Parallel Performance and Scalability of Incompressible CFD Solvers
  • Automated Workflow for a Car Roof-box Optimisation
  • Design Optimisation of Helical Gear Pair in Helicopter Transmission Systems
  • Design and Analysis of an Adjustable Rear View Car Spoiler
  • Surfboard Modelling Using CFD
  • Displacement Mapping Using Splines.
  • Aircraft Fuel System Failure Detection.

Assessment

Taught modules 45%, Group project 5%, Individual research project 50%

Your career

The Computer Aided Engineering option is designed to equip you with the skills required to pursue a successful career working both in the UK and overseas. This course attracts enquiries from companies in rapidly expanding engineering IT industry sector across the EU and beyond who wish to recruit high quality graduates.

There is considerable demand for students with expertise in engineering software development and for those who have strong technical programming skills in industry standard languages and tools.

Typically our graduates are employed by software houses and consultancies, or by CAD/CAM and other engineering companies in software development roles and industrial research.  



Read less
Important. if you are an international student requiring a Tier 4 student visa to study in the UK you will also need an ATAS certificate for this course. Read more
Important: if you are an international student requiring a Tier 4 student visa to study in the UK you will also need an ATAS certificate for this course.

Choose Kingston's Mechanical Engineering MSc

This course, accredited by the Institution of Mechanical Engineers, is designed to provide you with the latest technological knowledge and industrial management skills, at an advanced level of study, in specific aspects of mechanical engineering that are in demand from industry. The course also provides you with a strategic overview of engineering and management skills necessary to take on leadership roles in major engineering projects.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features
-Teaching in many technical modules is backed up by appropriate hands-on experience and workshops, which can be transferred directly to your working environment.
-Academic teaching is complemented by visits from industry experts. You will also have plenty of opportunities to attend relevant technical seminars, both within and outside the University.
-You can tailor your course to enhance your career ambitions through your module choices, whilst the project dissertation gives you the opportunity to choose a field of study in which to establish yourself as a specialist.

What will you study?

This course will provide a broad and in-depth understanding of mechanical design engineering, modern materials application and advanced manufacturing technology. You will employ advanced computer-based mechanical engineering design analysis and problem solving, using cutting-edge technologies such as finite elements analysis (FEA), computational fluid dynamics (CFD) and mechanism design analysis and control. What's more, you will develop the entrepreneurial management and business skills necessary to take on leadership roles in major engineering projects.

The project dissertation challenges you to investigate a theoretical area in depth and solve a real-world problem.

Assessment

Coursework and/or exams, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Engineering Research Techniques, Entrepreneurship and Quality Management
-Computational Fluid Dynamics for Engineering Applications
-Advanced Stress Analysis and Materials
-Engineering Individual Project

Option modules (choose one)
-Advanced CAD/CAM Systems
-Green Engineering and Energy Efficiency
-Mechatronics Design and Automation

Read less
The UK continues to lead the world in power and propulsion technology. In addition to its established aerospace role, the gas turbine is finding increasing application in power generation, oil and gas pumping, chemical processing and power plants for ships and other large vehicles. Read more

The UK continues to lead the world in power and propulsion technology. In addition to its established aerospace role, the gas turbine is finding increasing application in power generation, oil and gas pumping, chemical processing and power plants for ships and other large vehicles.

Gas Turbine Technology is a specialist option of the MSc in Thermal Power providing a comprehensive background in the design and operation of different types of gas turbines for all applications.

Who is it for?

This course is designed for those seeking a career in the design, development, operations and maintenance of power and propulsion systems. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Suitable for graduates seeking a challenging and rewarding career in an international growth industry.

Why this course?

The MSc option in Gas Turbine Technology is structured to enable you to pursue your own specific interests and career aspirations. You may choose from a wide range of modules and select an appropriate research project. An intensive industrial management course is offered which assists in achieving exemptions from some engineering council requirements. You will receive a thorough grounding in gas turbine design principles for aerospace, marine and industrial applications. 

We have been at the forefront of postgraduate education in thermal power and gas turbine technology at Cranfield since 1946. We have a global reputation for our advanced postgraduate education, extensive research and applied continuing professional development. 

This MSc programme benefits from a wide range of cultural backgrounds which significantly enhances the learning experience for both staff and students.

Informed by Industry

Our industry partners help support our students in a number of ways - through guest lectures, awarding student prizes, recruiting course graduates and ensuring course content remains relevant to leading employers.

The Industrial Advisory Panel meets annually to maintain course relevancy and ensure that graduates are equipped with the skills and knowledge required by leading employers. Knowledge gained from our extensive research and consultancy activity is also constantly fed back into the MSc programme. The Thermal Power MSc Industrial Advisory Panel is comprised of senior engineers from companies such as:

  • Alstom
  • Canadian Forces
  • EASA
  • EasyJet
  • E-ON
  • RMC
  • Rolls-Royce
  • Royal Air Force (RAF).

Accreditation

Re-accreditation for the MSc in Thermal Power is currently being sought with the Institution of Mechanical Engineers (IMechE), and the Royal Aeronautical Society (RAeS) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

The course is comprised of up to 12 taught modules, depending on the course option chosen. Modules for each option vary; please see individual descriptions for compulsory modules which must be undertaken. There is also an opportunity to choose from an extensive choice of optional modules to match specific interests.

Individual project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Previous Individual Research Projects have included:

  • S-duct aerodynamic shape multi-objective optimisation
  • Performance modelling of evaporative gas turbine cycles for marine applications
  • Mechanical integrity/stress analysis of the high pressure compressor of a new engine
  • High pressure turbine blade life analysis for a civilian derivative aircraft conducting military operations
  • Engine performance degradation due to foulants in the environment
  • Effects of manufacturing tolerances on gas turbine performance and components
  • Development of a transient combustion model
  • Numerical fan modelling and aerodynamic analysis of a high bp ratio turbofan engine
  • Combustor modelling
  • Impact of water ingestion on large jet engine performance and emissions
  • Windmilling compressor and fan aerodynamics
  • Neural networks based sensor fault diagnostics for industrial gas turbine engines
  • Boundary layer ingestion for novel aircraft
  • Multidisciplinary design optimisation for axial compressors
  • Non-linear off design performance adaptation for a twin spool turbofan engine
  • Engine degradation analysis and washing effect on performance using measured data.

Assessment

Taught modules 50%, Individual research project 50%

Your career

Over 90% of the graduates of the course have found employment within the first year of course completion. Many of our graduates are employed in the following industries:

  • Gas turbine engine manufacturers
  • Airframe manufacturers
  • Airline operators
  • Regulatory bodies
  • Aerospace/Energy consultancies
  • Power production industries
  • Academia: doctoral studies.


Read less
In today's uncertain global competition platform and economy, manufacturing and engineering are two of the most important pinnacles for a sustainable growth of any country. Read more
In today's uncertain global competition platform and economy, manufacturing and engineering are two of the most important pinnacles for a sustainable growth of any country. Many engineering companies require graduates who can demonstrate not only technological, but also managerial and entrepreneurial skill sets. You will be taught how to select advanced manufacturing processes and materials when making new products, and how to turn innovative ideas into real products quickly, timely and within the constraints of available resources, enhancing your employability.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features

-A balanced syllabus blends aspects of technology and management to create a unique skill set, which is much sought after in industry.
-Academic teaching is also complemented by expert speakers from industry, keeping you up to date with the challenges and developments in the real world.
-Many modules are supported by practical workshops using the latest equipment and software. Such practical skills can easily be transferred into the working environment.

What will you study?

You will learn how to analyse complex technical problems and challenges faced by many real-world engineering companies of different sizes. You will also study the operational issues experienced by these companies through real case studies, and how to implement logical solutions under different scenarios. In addition, you will be able to measure the potentials of an engineering company not just through its technological adaptation but also from the entrepreneur viewpoint.

Throughout the course, you will have many hands-on sessions to practise what you have learned in the classroom. These practical skills will be obtained through using specialist software and hardware in engineering functions analysis, CAD/CAM, finite element modelling, operation management, quality analysis, business decision modelling, supply chain management and resources simulation. The project dissertation will allow you to develop a chosen field of knowledge which will complement your career ambition. Teamwork, group presentations, case studies and industrial speakers are other highlights of the course, enhancing your learning experience and employability.

Assessment

Coursework, group presentation, research project and exam.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Engineering Research Techniques, Entrepreneurship and Quality Management
-Advanced CAD/CAM Systems
-Mechatronic Design and Automation
-Engineering Individual Project

Option modules (choose one)
-Advanced Stress Analysis and Materials
-Industrial Operation Management and Resources Simulation
-E-engineering Systems
-Green Engineering and Energy Efficiency

Read less
This Masters in Mechanical Engineering is accredited by IMechE and meets Chartered Engineer status. Study with Liverpool John Moores University, master modern CAD software and progress quickly as a postgraduate in this exciting industry. Read more
This Masters in Mechanical Engineering is accredited by IMechE and meets Chartered Engineer status. Study with Liverpool John Moores University, master modern CAD software and progress quickly as a postgraduate in this exciting industry

•Complete this masters degree in one year (full time)
•Accredited by the Institution of Mechanical Engineers, this programme meets Chartered Engineer requirements
•Study at one the UK’s leading Engineering Schools
•Close industry links and programme widely recognised by employers as meeting requirements needed to succeed in the industry
•Excellent career opportunities with consultancies, government bodies and public utilities as well as technical design and mechanical engineer roles


The Mechanical Engineering MSc course is designed so that you can reach senior positions as engineers and technical managers within your career. There is a focus on advanced engineering design, analysis techniques and delivering high quality project results.

The programme adds more depth to experience you may develop within undergraduate Mechanical Engineering degrees and provides a progression route if you have graduated from other relevant programmes in mechanical and manufacturing engineering.

There is a strong emphasis on applying practical analysis tools using industry standard software. Examples of specialist projects include modelling non-linear behaviour in deformed components using Finite Stress Analysis (FSA) and solving complex problems using Computational Fluid Dynamics (CFD).

You will learn advanced analytical and experimental skills so that you can design new processes, products and services when you graduate. You will gain the skills to critically analyse existing designs, their functionality and reliability.

The course incorporates many opportunities for acquiring the communications and managerial skills expected at Chartered Engineer status level. Graduating from the programme will also provide you with a sound academic base for further study in the future.

Read less
The course at Brunel stands out from others in the market because NSIRC is the UK’s first industrially-led postgraduate education centre, which is a joint initiative between TWI and Brunel University London as the lead academic partner. Read more

About the course

The course at Brunel stands out from others in the market because NSIRC is the UK’s first industrially-led postgraduate education centre, which is a joint initiative between TWI and Brunel University London as the lead academic partner.

There are no other postgraduate opportunities that provide a dedicated, specialist training programme that combines academic excellence through Brunel University London, with extensive up-to-date industrial experience of TWI’s experts across the many and varied disciplines essential to structural integrity, as applied in the oil and gas, power generation and transportation sectors.
 
 The National Structural Integrity Research Centre (NSIRC), an education and research collaboration with Brunel University London, is contributing to the course.

Aims

This programme is specifically tailored to provide graduates or practising engineers with the necessary skills to pursue a successful engineering career, who are targeted for recruitment by companies and organisations globally. As industry-ready engineers, recent graduates of this MSc are in high demand and have been successful in gaining employment in:

Oil and gas industry
Engineering consultancies
Asset management
Research organisations

When structures fail, the results can be catastrophic. Not only in terms of potential loss of life and operational downtime, but also because of the huge costs associated with subsequent inspection and repair. Integrity engineers play a crucial role in preventing these failures. Their decisions influence structural design, determine service life extensions and improve safety for a wide range of sectors, including oil and gas, power generation and transportation.

This unique postgraduate programme provides the necessary training needed to detect the existence, formation and growth of damage and defects, and to assess the influence of loads and stresses arising from manufacture and applied in service. While being able to detect defects is vital, it is knowing what to do with these defects that is at the core of this programme. You can expect to be taught by industrial experts involved in developing codes, standards and working practices.

Being industry-led, this programme provides an opportunity to work on real engineering projects, equipping graduates with applied knowledge of material and structural failure, finite element analysis, non-destructive testing and project management. 

Course Content

The MSc in Structural Integrity is based around eight modules and an industry-led dissertation project. Please be aware modules may be subject to change.

Modules:

Fracture Mechanics and Fatigue Analysis
Materials - Metallurgy and Materials
NDT Inspection Methodology
Codes of Practice with Principles and Application
Stress Analysis and Plant Inspection
Numerical Modelling of Solids and Structures
Reliability Engineering
Structural Health Monitoring
Dissertation

Work Placements

All dissertation projects will be linked to an industrial research scheme thus providing opportunities for placements to various extents appropriate to the project requirement.

Teaching

The course runs from September to September, with the key activities in the period up to the end of April being taught lecture modules and seminars from leading experts in the UK. From May until the end of the programme, students work full-time on their industrially supported dissertation project.

The programme employs a wide range of teaching methods designed to create a demanding and varied learning environment including a structured lecture programme, self-study online videos, case studies, “hands on” computing and testing laboratory sessions and guest speakers.

Assessment

Each module is assessed through a range of assessment types (including group work), to ensure students have a comprehensive understanding and can readily apply the taught material to real engineering problems.

Special Features

The MSc in Structural Integrity of Brunel University London has significant industrial involvement with contribution from the NSIRC. The MSc course will combine academic excellence with the extensive up-to-date industrial experience of TWI's experts across the many and varied disciplines that are essential to structural integrity.

Student diversity
Our students come from a variety of personal and professional backgrounds. Many have specific careers in mind, or are already practising integrity engineers working in the oil and gas or power generation sectors. This mix of experience creates an extremely valuable learning environment and excellent opportunities for networking.

Location
Located in a purpose-built facility adjacent to the headquarters of TWI, this specialist off-campus programme is solely delivered at the Granta Park science campus just outside Cambridge. The setting allows students to work alongside leading academics and industrial experts who are at the forefront of structural integrity research.

Getting to Granta Park is convenient and straightforward, with several shuttle buses travelling directly from the city centre every day. Students can enjoy life in Cambridge and benefit from the many sporting, cultural and social events this compact cosmopolitan city provides. Cambridge is also conveniently close to London, just a 45-minute journey by train, and enjoys easy access to the major London airports and road links to the rest of the country. 

Excellent facilities
The bespoke teaching, research and experimental facilities are outstanding; with state-of-the-art equipment available to support a variety of research topics specified by our industrial partners and includes:

- Industry standard commercial software including Simulia ABAQUS, MATLAB and industry standard software developed by TWI, including CrackWISE (fracture and fatigue assessment procedures (BS 7910) for engineering critical assessment and IntegriWISE (Fitness-For-Service (FFS)) assessment software for evaluating the integrity of ageing pipework, pipelines, storage tanks, boilers, pressure vessels and high temperature equipment.

- Access to joint facilities across Brunel University London and TWI, which allows component and full scale testing, which includes mechanical and fatigue testing under different environmental conditions, NDT inspection, together with access to 4D tomography and microscopy facilities.

- Access to onsite, dedicated high performance computing facility, which permits large scale computational research projects to be performed.

- Combined access to Brunel and TWI library resources, which includes the latest publications, staff journal papers and the latest design codes and standards developed by TWI.

Accommodation
With a vast student mix in Cambridge, there is accommodation available minutes from TWI.

Women in Brunel Engineering and Computing Programme

Brunel’s Women in Brunel Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

Accreditation by external professional bodies is further testament to our teaching standards and course content. Graduates are able to use this degree to satisfy part of the further learning requirements for Chartered Engineer (CEng) status with the Institution of Mechanical Engineers and the Institute of Materials, Minerals and Mining.

Read less
Transport engineering is about efficiently moving people and goods through the use of scientific principles. Journeys may be made by foot, bicycle, private motorised transport and public transport. Read more
Transport engineering is about efficiently moving people and goods through the use of scientific principles.

Journeys may be made by foot, bicycle, private motorised transport and public transport. The varied means of transport available require infrastructure comprising either of public rights of way or dedicated systems such as railways, which need to be sized, designed, built and maintained.

Taken together, transport and its infrastructure has significant impacts on society and the environment and these impacts need to be estimated.

The MSc Transport Engineering and Planning provides systematic knowledge and skills in the analysis and design of transport systems which are grounded in advanced engineering science, statistical modelling and planning theory and practice.

Accreditation

This degree is accredited by the Institution of Civil Engineers, the Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and the Institute of Highway Engineers on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Modules

Analysis and design of transport systems
Asset management and project appraisal
Railway engineering and operation
Safety, survey techniques and quantitative methods
Transport society and planning
Finite elements and stress analysis
Project (masters)
Property development and regeneration

Employability

Employment prospects for graduates of the MSc Transport Engineering and Planning remain very good in the long term. Transport infrastructure is one of the most significant assets which a country possesses and there will remain a strong need for skilled professionals working in transport engineering and planning.

Career paths in transport engineering

Successful students will enter into a variety of positions with employers which might include:

• Designing and constructing transport systems
• Procuring and maintaining transport systems, including central and local government agencies
• Financing transport systems who need specialist transport engineering and planning knowledge to assist in financial assessments of proposed schemes involving private sector finance
• Management of transport operations

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less

Show 10 15 30 per page



Cookie Policy    X