• University of Oxford Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Coventry University Featured Masters Courses
Vlerick Business School Featured Masters Courses
Swansea University Featured Masters Courses
"stochastic"×
0 miles

Masters Degrees (Stochastic)

We have 140 Masters Degrees (Stochastic)

  • "stochastic" ×
  • clear all
Showing 1 to 15 of 140
Order by 
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Stochastic Processes. Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Stochastic Processes: Theory and Application at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MRes in Stochastic Processes: Theory and Application is delivered through optional modules for the taught element followed by a large research project that contributes to the field in an explicit way, rather than merely applying existing knowledge.

The Department of Mathematics hosts one of the strongest research groups in probability theory, especially in stochastic processes, in the UK. The senior members of this group are world leaders in their fields.

The Department’s research groups include:

Algebra and Topology Group

Areas of interest include: Noncommutative geometry, Categorical methods in algebra and topology, Homotopy theory and homological algebra and others.

Analysis and Nonlinear Partial Differential Equations Group

Areas of interest include: Reaction-diffusion and reaction-diffusion-convection equations and systems, Navier–Stokes equations in fluid dynamic, Complexity in the calculus of variations and others.

Stochastic Analysis Group

Areas of interest include: Functional inequalities and applications, Lévy-type processes, Stochastic modelling of fractal, multi-fractal and multi-scale systems, Infinite dimensional stochastic analysis and others.

Mathematical Methods in Biology and Life Sciences Group

Areas of interest include: Mathematical pharmacology; heat and mass transfer models for plant cooling; modelling cellular signal transduction dynamics; mathematical oncology: multi-scale modelling of cancer growth, progression and therapies, and modelling-optimized delivery of multi-modality therapies; multi-scale analysis of individual-based models; spreading speeds and travelling waves in ecology; high performance computing.

Key Features

The Department of Mathematics hosts one of the strongest research groups in probability theory, especially in stochastic processes, in the UK. The senior members of this group are world leaders in their fields.

Course Content

As a student on the MRes Stochastic Processes programme you will study a range of topics for the taught element including:

Stochastic Calculus based on Brownian Motion

Levy processes and more general jump processes

The advanced Black-Scholes theory

Theory and numerics of parabolic differential equations

Java programming

The Stochastic Processes: Theory and Application course consists of a taught part (60 credits) and a research project (120 credits). Students will have a personal supervisor for their research project from the start of their studies.

Research projects could be of a theoretical mathematical nature, or they could be more applied, for example in financial mathematics or actuarial studies. Some of the research projects will be of an interdisciplinary character in collaboration with some of Swansea's world class engineers. For such projects it is likely that EPSRC funding would be available.

Facilities

The Aubrey Truman Reading Room, located in the centre of the Department of Mathematics, houses the departmental library and computers for student use. It is a popular venue for students to work independently on the regular example sheets set by their lecturers, and to discuss Mathematics together.

Our main university library, Information Services and Systems (ISS), contains a notably extensive collection of Mathematics books.

Careers

The ability to think rationally and to process data clearly and accurately are highly valued by employers. Mathematics graduates earn on average 50% more than most other graduates. The most popular areas are the actuarial profession, the financial sector, IT, computer programming and systems administration, and opportunities within business and industry where employers need mathematicians for research and development, statistical analysis, marketing and sales.

Some of our students have been employed by AXA, BA, Deutsche Bank, Shell Research, Health Authorities and Local Government. Teaching is another area where maths graduates will find plenty of career opportunities.

Research

The results of the Research Excellence Framework (REF) 2014 show that our research environment (how the Department supports research staff and students) and the impact of our research (its value to society) were both judged to be 100% world leading or internationally excellent.

All academic staff in Mathematics are active researchers and the department has a thriving research culture.



Read less
The programme provides graduates with strong mathematical skills, the necessary computational techniques and finance background relevant to subsequent employment in a sector of finance such as investment banks, hedge funds, insurance companies and the finance departments of large corporations where mathematics plays a key role. Read more
The programme provides graduates with strong mathematical skills, the necessary computational techniques and finance background relevant to subsequent employment in a sector of finance such as investment banks, hedge funds, insurance companies and the finance departments of large corporations where mathematics plays a key role.

The depth of the mathematics taught should enable graduates to pursue research careers in stochastic analysis, financial mathematics or other relevant areas.

The period October to June is devoted to lectures, tutorials and practical sessions comprising the core and optional modules. This is followed by a period of about 14 weeks devoted to an individual project.

Core study areas include measure theory and martingales, stochastic models in finance, stochastic calculus and theory of stochastic pricing and a research project.

Optional study areas include programming and numerical methods, regular and chaotic dynamics, financial economics, functional analysis, elements of PDEs, static and dynamic optimisation, asset management and derivatives, and corporate finance

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mathematics/mathematical-finance/

Programme modules

Semester 1:
Compulsory Modules
- Introduction to Measure Theory and Martingales
- Stochastic Models in Finance

Optional Modules (choose two)
- Programming and Numerical Methods
- Regular and Chaotic Dynamics
- Financial Economics

Semester 2:
Compulsory Modules
- Stochastic Calculus and Theory of Stochastic Pricing
- Research Project

Optional Modules (choose three)
- Functional Analysis
- Elements of PDEs
- Static and Dynamic Optimisation
- Either Asset Management and Derivatives or Corporate Finance

Assessment

A combination of written examinations, reports, individual and group projects, and verbal presentations.

Careers and further study

This programme may lead to a wide range of employment within industry, the financial sectors, and research establishments. It may also provide an ideal background for postgraduate research in Stochastic Analysis, Probability Theory, Mathematical Finance and other relevant areas.

Scholarships and sponsorships

A number of part-fee studentships may be available to appropriately qualified international students.

Why choose mathematics at Loughborough?

Mathematics at Loughborough has a long history of innovation in teaching, and we have a firm research base with strengths in both pure and applied mathematics as well as mathematics education.

The Department comprises more than 34 academic staff, whose work is complemented and underpinned by senior visiting academics, research associates and a large support team.

The programmes on offer reflect our acknowledged strengths in pure and applied research in mathematics, and in some cases represent established collaborative training ventures with industrial partners.

- Mathematics Education Centre (MEC)
The Mathematics Education Centre (MEC) at Loughborough University is an internationally renowned centre of research, teaching, learning and support. It is a key player in many high-profile national initiatives.
With a growing number of academic staff and research students, the MEC provides a vibrant, supportive community with a wealth of experience upon which to draw.
We encourage inquiries from students who are interested in engaging in research into aspects of learning and teaching mathematics at Masters, PhD and Post Doc levels. Career prospects With 100% of our graduates in employment and/or further study six months after graduating, career prospects are excellent. Graduates go on to work with companies such as BAE Systems, Citigroup, Experian, GE Aviation, Mercedes Benz, Nuclear Labs USA and PwC.

- Career prospects
With 100% of our graduates in employment and/or further study six months after graduating, career prospects are excellent. Graduates
go on to work with companies such as BAE Systems, Citigroup, Experian, GE Aviation, Mercedes Benz, Nuclear Labs USA and PwC.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mathematics/mathematical-finance/

Read less
This programme gives you a flexible syllabus to suit the demands of employers that use modern financial tools and optimization techniques in areas such as the financial sector and energy markets. Read more

This programme gives you a flexible syllabus to suit the demands of employers that use modern financial tools and optimization techniques in areas such as the financial sector and energy markets.

We will give you sound knowledge in financial derivative pricing, portfolio optimization and financial risk management.

We will also provide you with the skills to solve some of today’s financial problems, which have themselves been caused by modern financial instruments. This expertise includes modern probability theory, applied statistics, stochastic analysis and optimization.

Adding depth to your learning, our work placement programme puts you at the heart of financial organisations such as Aberdeen Asset Management, Barrie & Hibbert and Lloyds Banking Group.

Programme structure

This programme involves two taught semesters of compulsory and option courses, followed by a dissertation project.

Compulsory courses

  • Discrete-Time Finance
  • Finance, Risk and Uncertainty
  • Fundamentals of Optimization
  • Optimization Methods in Finance
  • Research-Linked Topics
  • Risk-Neutral Asset Pricing
  • Simulation
  • Stochastic Analysis in Finance I
  • Stochastic Analysis in Finance II

Option courses

  • Advanced Time Series Econometrics
  • Combinatorial Optimization
  • Credit Scoring
  • Fundamentals of Operational Research
  • Financial Risk Management
  • Computing for Operational Research and Finance
  • Large Scale Optimization for Data Science
  • Microeconomics 2
  • Nonlinear Optimization
  • Numerical Partial Differential Equations
  • Parallel Numerical Algorithms
  • Programming Skills
  • Risk Analysis
  • Stochastic Modelling
  • Stochastic Optimization

Career opportunities

Graduates have gone on to work in major financial institutions or to continue their studies by joining PhD programmes.



Read less
Programme description. The MSc in Computational Mathematical Finance (CMF) is a dynamic new programme with the aim to deliver high quality training in the theory of Mathematical Finance with strong emphasis on computational methods. Read more

Programme description

The MSc in Computational Mathematical Finance (CMF) is a dynamic new programme with the aim to deliver high quality training in the theory of Mathematical Finance with strong emphasis on computational methods.

Currently graduates in this field are expected to have a working knowledge of advanced computational finance (including construction of algorithms and programming skills) as well as a sound knowledge of the theory of Probability and Stochastic Analysis. These are the core theories needed in the modern valuation of complex financial instruments.

This MSc programme delivers:

  • a flexible programme of study relevant to the needs of employers such as: top investment banks, hedge funds and asset management firms
  • a solid knowledge in financial derivative pricing, risk management and portfolio management
  • the transferable computational skills required by the modern quantitative finance world

Programme structure

You must obtain a total of 180 credits to be awarded the MSc. Over semesters 1 and 2, you will take compulsory courses worth a total of 85 credits and optional courses worth a further 35 credits. Successful performance in these courses (assessed through coursework or examinations or both) allows you to start work on a three-month dissertation project, worth 60 credits, for the award of the MSc degree.

There are two streams: the Financial stream and the Computational stream.

Compulsory courses (both streams):

  • Stochastic Analysis in Finance (20 credits, semester 1)
  • Discrete-Time Finance (10 credits, semester 1)
  • Finance, Risk and Uncertainty (10 credits, semester 1)
  • Object-Oriented Programming with Applications (10 credits, semester 1)
  • Risk-Neutral Asset Pricing (10 credits, semester 2)
  • Stochastic Control and Dynamic Asset allocation (10 credits, semester 2)
  • Monte Carlo Methods (5 credits, semester 2)
  • Research-Linked Topics (10 credits, semesters 1 and 2)

Optional courses - Computational stream:

  • Numerical Methods for Stochastic Differential Equations [compulsory] (5 credits, semester 2)
  • Numerical Partial Differential Equations [compulsory] (10 credits, semester 2)
  • Programming Skills - HPC MSc (10 credits, semester 1)
  • Parallel Numerical Algorithms - HPC MSc (10 credits, semester 1)

Optional courses - Financial stream:

  • Financial Risk Theory [compulsory] (10 credits, semester 2)
  • Optimization Methods in Finance [compulsory] (10 credits, semester 2)
  • Advanced Time Series Econometrics (10 credits, semester 2)
  • Credit Scoring (10 credits, semester 2)
  • Computing for Operational Research and Finance (10 credits, semester 1)
  • Financial Risk Management (10 credits, semester 2)
  • Stochastic Optimization (5 credits, semester 2)

Learning outcomes

At the end of this programme you will have:

  • developed personal communications skills, initiative, and professionalism within a mathematical context
  • developed transferable skills that maximise your prospects for future employment, including writing, oral presentation, team-working, numerical and logical problem-solving, planning and time-management
  • improved your ability to convey ideas in an articulate fashion, to build upon previous mathematical training and further develop logic and deductive skills
  • mastered standard and advanced mathematical tools used to solve applied problems relevant to the mathematical finance industry
  • developed quantitative and computational skills for the proficient fulfilment of tasks in the financial sector

Career opportunities

Graduates can expect to go on to work in major financial institutions or to continue their studies by joining PhD programmes.



Read less
Do you have an aptitude and passion for mathematics and statistics, a keen interest in finance and insurance and want to work for a major financial organisation in finance, insurance or the money market? This course will provide you with a deep understanding of the world of finance, and give you the ability to speak its 'language'. Read more
Do you have an aptitude and passion for mathematics and statistics, a keen interest in finance and insurance and want to work for a major financial organisation in finance, insurance or the money market? This course will provide you with a deep understanding of the world of finance, and give you the ability to speak its 'language'. This course combines theory with hands-on practical skills via an industry placement or research project – ensuring you graduate with the right skills increasingly being sought by banks and other financial institutions.

The Master of Financial Mathematics offers advanced training in the core areas of stochastic, financial and insurance modelling, statistical analysis and computational methodology, as well as in a wide range of elective topics from economics, econometrics, finance, mathematics and probability.

Graduates of this course are likely to enter specialist careers in research departments within banks, insurance and consultancy firms or derivatives of valuation and portfolio management within investment houses.

The School of Mathematical Sciences sits within the leading Faculty of Science at Monash University. This vibrant, dynamic and successful School is undergoing a period of growth with the appointment of several new senior academic staff including Professor Gregoire Loeper, Course Director for the Masters of Financial Mathematics. With mathematics as the fundamental underpinning of so many subject areas, sectors and disciplines, the School is also building ever stronger collaborations with relevant industries, including the financial sector.

Visit the website http://www.study.monash/courses/find-a-course/2016/financial-mathematics-s6001?domestic=true

Course Structure

The course is structured in three Parts. Part A. Orientation studies, Part B. Specialist studies, Part C. Applied professional practice. All students complete Part B. Depending upon prior qualifications, you may receive credit for Part A or Part C or a combination of the two.

Part A. Orientation studies
These studies provide an orientation to the field of Financial Mathematics. You will choose studies that complement your current knowledge relevant to financial mathematics, including principles of econometrics, mathematical methods and stochastic processes.

Part B. Specialist studies
These studies will provide you with advanced knowledge and skills relevant to thoughtful, innovative and evidence-based practice in financial modelling and analysis. You will acquire core knowledge of and skills in financial econometrics, and advanced mathematical modelling and computational methods in finance. You will complement these with study in areas of your choice, including interest rate modelling, Markov processes, statistical learning in finance, and global financial markets.

Part C. Applied professional practice
These studies will provide you with the opportunity to apply your knowledge skills developed in Part A and B to "real life" problems, through completing an industry project or an industry internship. Students admitted to the course who have a recognised honours degree or graduate diploma or graduate certificate in a cognate discipline including mathematics or statistics, will receive credit for this part however, should they wish to complete a 24 point research project as part of Part B they should consult with the course convenor.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/science

About Mathematical Sciences

The School of Mathematical Sciences at Monash University is leading the way towards finding effective solutions to some of society's most pressing problems. Maths is the language of science and forms the basis of most of modern science and engineering. Our enthusiastic mathematicians love finding the true magic and beauty in maths and subsequently pass this passion on to their students.

Teaching

Studying maths equips you with a range of valuable, unique skills. Some of the exciting areas mathematicians at Monash are working on include mathematical modelling to predict behaviour, analysis using pure maths, and stochastic processes involving risk, randomness and change.

Mathematics and statistics are also the two cornerstones for decision making and various quantitative activities in commerce, industry, education and defence. From direct and daily experience, most companies and organisations have realised that success depends critically on the level of analytical, quantitative and statistical skills of their workforce and they therefore seek employees with a sound mathematical training.

By studying mathematics at Monash, you will also develop general skills in problem-solving, critical thinking, modelling, learning, analysis, research and creativity, which can be used wherever your career may take you.

Research

The School of Mathematical Sciences focuses on these main areas of research:

- Applied and Computational Mathematics
- Pure Mathematics
- Stochastic Processes

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/financial-mathematics-s6001?domestic=true#making-the-application

Read less
This masters is run jointly with Heriot-Watt University. It provides you with expertise in financial mathematics, including stochastic calculus, and a range of practical techniques for analysing financial markets. Read more

This masters is run jointly with Heriot-Watt University. It provides you with expertise in financial mathematics, including stochastic calculus, and a range of practical techniques for analysing financial markets. You will also learn quantitative skills for developing and managing risk that are in high demand since the recent financial crisis.

Adding depth to your learning, our work placement programme puts you at the heart of organisations such as Aberdeen Asset Management, Moody’s Analytics and Lloyds Banking Group.

Programme structure

This programme involves two taught semesters of compulsory and option courses, followed by a dissertation project.

Compulsory courses:

  • Credit Risk Modelling
  • Derivatives Markets
  • Derivative Pricing and Financial Modelling
  • Discrete-Time Finance
  • Financial Markets
  • Special Topics 1
  • Special Topics 2
  • Stochastic Analysis in Finance

Option courses:

  • Deterministic Optimization Methods in Finance
  • Financial Econometrics
  • Portfolio Theory
  • Numerical Techniques of Partial Differential Equations
  • Optimization Methods in Finance
  • Simulation
  • Statistical Methods
  • Statistical Inference
  • Time Series Analysis
  • Stochastic Control and Dynamic Asset Allocation

Career opportunities

Graduates typically work in major financial institutions or continue their studies by joining PhD programmes.



Read less
Statistical science skills are powerful tools that play a valuable role in all pure and applied sciences as well as in finance, law and marketing. Read more
Statistical science skills are powerful tools that play a valuable role in all pure and applied sciences as well as in finance, law and marketing. New and exciting opportunities in industry, medicine, government, commerce or research await the graduate who has gained the quantitative skills training provided by this MSc.

Degree information

The programme uses a broad-based approach to statistics, providing up-to-date training in the major applications and an excellent balance between theory and application. It covers modern ideas in statistics including applied Bayesian methods, generalised linear modelling and object-oriented statistical computing, together with a grounding in traditional statistical theory and methods.

Students undertake modules to the value of 180 credits.

The programme consists of a foundation module, four core modules (60 credits) four optional modules (60 credits) and a research dissertation (60 credits).

Core modules
-Foundation Course (not credit bearing)
-Statistical Models and Data Analysis
-Statistical Design of Investigations
-Statistical Computing
-Applied Bayesian Methods

Optional modules
-Decision and Risk
-Stochastic Systems
-Forecasting
-Statistical Inference
-Medical Statistics I
-Medical Statistics II
-Stochastic Methods in Finance I
-Stochastic Methods in Finance II
-Factorial Experimentation
-Selected Topics in Statistics
-Bayesian Methods in Health Economics
-Quantitative Modelling of Operational Risk and Insurance Analytics

Dissertation/report
All MSc students undertake an independent research project, culminating in a dissertation of approximately 10,000–12,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials and classes, some of which are dedicated to practical work. External organisations deliver technical lectures and seminars where possible. Assessment is through written examination and coursework. The research project is assessed through the dissertation and a 15-minute presentation.

Workshops running during the teaching terms provide preparation for this project and cover the communication of statistics e.g. the presentation of statistical graphs and tables.

Careers

Graduates typically enter professional employment across a broad range of industry sectors or pursue further academic study.

Top career destinations for this degree:
-Management Associate, HSBC
-Statistical Analyst, Nielsen
-PhD Statistics, University College London (UCL)
-Mortgage Specialist, Citibank
-Research Assistant Statistician, Cambridge Institute of Public Health

Employability
The Statistics MSc provides skills that are currently highly sought after. Graduates receive advanced training in methods and computational tools for data analysis that companies and research organisations value. For instance, the new directives and laws for risk assessments in the banking and insurance industries, as well as the healthcare sector, require statistical experts trained at graduate level. The large amount of data processing in various industries (known as "data deluge") also necessitates cutting-edge knowledge in statistics. As a result, our recent graduates have been offered positions as research analysts or consultants, and job opportunities in these areas are increasing.

Why study this degree at UCL?

One of the strengths of UCL Statistical Science is the breadth of expertise on offer; the research interests of staff span the full range from foundations to applications, and make important original contributions to the development of statistical science.

London provides an excellent environment in which to study statistical science, being the home of the Royal Statistical Society as well as a base for a large community of statisticians, both academic and non-academic.

The Statistics MSc has been accredited by the Royal Statistical Society. Graduates will automatically be granted the society's Graduate Statistician status on application.

Read less
This programme provides an exciting opportunity to gain an insight into the pressing economic issues of our times and learn how to assess, adapt and apply modern macroeconomic and microeconomic models to shape organisational or government policy. Read more
This programme provides an exciting opportunity to gain an insight into the pressing economic issues of our times and learn how to assess, adapt and apply modern macroeconomic and microeconomic models to shape organisational or government policy.

Our programme is designed to equip you with the skills of a professional economist, for careers in government, international organisations and business.

You will learn to understand and model issues affecting financial markets through the lens of an economist, assessing both the microeconomic impacts for firms, as well as the macroeconomic implications for the global economy.

You will develop advanced theoretical and quantitative skills, highly sought after by employers in the financial services sectors of industry and government, as well as transferable skills that will be of value for a range of other sectors.

There is the opportunity to specialise in various fields of finance. All students register for the MSc in Economics and Finance. However, depending on the choice and availability of modules and dissertation topic, it is possible to graduate with an MSc in Financial Economics instead.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/business-economics/economics-finance/

Programme modules

Semester 1:
Compulsory Modules
- Macroeconomics Analysis
- Microeconomics Analysis
- Research Communication (two-semester module)
- Research Methods

Optional Modules (choose one)
- Financial Economics
- Introduction to Measure Theory and Martingales
- Stochastic Models in Finance
- The Financial System

Semester 2:
Compulsory Modules
- Further Quantitative Techniques for Finance and Economics
- Research Communication (two semester module)

Optional Modules (choose three)
- Applied Banking and Financial Modelling
- Asset Management and Derivatives
- Banking and Financial Markets
- Comparative Banking
- Corporate Finance
- Credit Risk Management
- Development Finance
- Economics and Energy Policy
- Stochastic Calculus and Theory of Stochastic Pricing

Choice of Semester 2 modules may be restricted by the option selected in Semester 1. The School reserves the right to vary the list of optional modules.

Summer:
- Dissertation

Assessment

75% examination and 25% coursework for most modules.

Careers and further study

Well-trained, numerate economists are in high demand in every sector. This programme prepares you for a career as a professional economist in banking, education, finance, government or industry, and for higher awards by research.

Example destinations include:
- HSBC – Analyst;
- SSR Group (Sweden) – Associate FX Broker;
- Siemens – Finance Officer.

Scholarships and sponsorships

School awards may be available for high-calibre national and international students.

Why choose business and economics at Loughborough?

Loughborough’s School of Business and Economics is a thriving forward-looking centre of education that aims to provide an exceptional learning experience.

Consistently ranked as a Top-10 UK business school by national league tables, our graduates are highly employable and enjoy starting salaries well above the national average.

The rich variety of postgraduate programmes we offer ranges from taught masters, MBA and doctoral programmes, to short courses and executive education, with subjects spanning Management, Marketing, Finance and Economics, Work Psychology, Business Analytics, International Crisis Management and Information Management. New for 2016, we are also launching two exciting new programmes in Human Resource Management. All of this contributes to a lively and supportive learning environment within the School.

- Internationally Accredited
The School of Business and Economics is one of less than 1% of business schools in the world to have achieved accreditation from all three major international accrediting bodies: The Association to Advance Collegiate Schools of Business (AACSB International), EQUIS accreditation from the European Foundation for Management Development (EFMD) and the Association of MBAs (AMBA).

- Career Prospects
Our graduates are in great demand. Over 94% of our postgraduate students were in work and/or further study six months after graduating.* As such, you will be equipped with skills and knowledge that will serve you well in your career or enable you to pursue further study and research.

*Source: DLHE

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/business-economics/economics-finance/

Read less
This programme is ideal for those who wish to pursue a career in the financial services sectors of industry or government, particularly banking and central banking. Read more
This programme is ideal for those who wish to pursue a career in the financial services sectors of industry or government, particularly banking and central banking.

Our modules are underpinned by the latest research and best practice, having been designed to equip you with up-to-date and relevant knowledge across a number of areas, including banking, finance and research methods.

The range of optional modules on the programme will enable you to specialise in areas of economics, banking and finance that best suit your career ambitions and interests.

Core study areas include financial economics, the financial system, research communication, research methods, asset management and derivatives, corporate finance, banking and financial markets, and further quantitative techniques.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/business-economics/banking-finance/

Programme modules

Semester 1:
Compulsory modules
- Financial Economics
- Research Methods
- The Financial System
- Research Communication (two-semester module)

Optional modules (choose one):
- Introduction to Measure Theory and Martingales
- Macroeconomic Analysis
- Microeconomic Analysis
- Stochastic Models in Finance

Semester 2:
Core modules
- Asset Management and Derivatives and/or Corporate Finance
- Banking and Financial Markets
- Further Quantitative Techniques for Finance and Economics
- Research Communication (two-semester module)

Optional modules (choose one):
- Applied Banking and Financial Modelling
- Comparative Banking
- Development Finance
- Stochastic Calculus and Theory of Stochastic Pricing

Summer period:
Students satisfy the research requirement by examined participation in research seminars. Subject to special conditions, students may submit a dissertation instead.

Assessment

Modules are assessed by a combination of examinations and assignments.

Careers and further study

Example destinations include:
- Bank of China – Senior Manager
- China Everbright Bank – Client Manager
- Deutsche Bank – Analyst
- KPMG – Audit Associate
- National Australia Bank – Senior Assistant in Research
- RBS – Financial Transfer Officer

Why choose business and economics at Loughborough?

Loughborough’s School of Business and Economics is a thriving forward-looking centre of education that aims to provide an exceptional learning experience.

Consistently ranked as a Top-10 UK business school by national league tables, our graduates are highly employable and enjoy starting salaries well above the national average.

The rich variety of postgraduate programmes we offer ranges from taught masters, MBA and doctoral programmes, to short courses and executive education, with subjects spanning Management, Marketing, Finance and Economics, Work Psychology, Business Analytics, International Crisis Management and Information Management. New for 2016, we are also launching two exciting new programmes in Human Resource Management. All of this contributes to a lively and supportive learning environment within the School.

- Internationally Accredited
The School of Business and Economics is one of less than 1% of business schools in the world to have achieved accreditation from all three major international accrediting bodies: The Association to Advance Collegiate Schools of Business (AACSB International), EQUIS accreditation from the European Foundation for Management Development (EFMD) and the Association of MBAs (AMBA).

- Career Prospects
Our graduates are in great demand. Over 94% of our postgraduate students were in work and/or further study six months after graduating.* As such, you will be equipped with skills and knowledge that will serve you well in your career or enable you to pursue further study and research.

*Source: DLHE

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/business-economics/banking-finance/

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mathematics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mathematics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

As an MSc by Research in Mathematics student you will be guided by internationally leading researchers and will carry out a large individual research project.

You will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research-led University and the Mathematics Department makes a significant contribution, meaning that as a postgraduate Mathematics student you will benefit from the knowledge and skills of internationally renowned academics.

In the Department of Mathematics at Swansea you will find friendly teaching staff that are fully committed to providing you with a supportive teaching and learning environment. This includes outstanding student support.

All postgraduate Mathematics programmes at Swansea will equip you with skills relevant for a rewarding career in a range of diverse fields. You will also further develop your communication, presentation and analytical skills.

The Mathematics Department’s research groups include:

Algebra and Topology Group

Areas of interest include: Noncommutative geometry, Categorical methods in algebra and topology, Homotopy theory and homological algebra and others.

Analysis and Nonlinear Partial Differential Equations Group

Areas of interest include: Reaction-diffusion and reaction-diffusion-convection equations and systems, Navier–Stokes equations in fluid dynamic, Complexity in the calculus of variations and others.

Stochastic Analysis Group

Areas of interest include: Functional inequalities and applications, Lévy-type processes, Stochastic modelling of fractal, multifractal and multiscale systems, Infinite dimensional stochastic analysis and others.

Mathematical Methods in Biology and Life Sciences Group

Areas of interest include: Mathematical pharmacology; heat and mass transfer models for plant cooling; modelling cellular signal transduction dynamics; mathematical oncology: multi-scale modelling of cancer growth, progression and therapies, and modelling-optimized delivery of multi-modality therapies; multi-scale analysis of individual-based models; spreading speeds and travelling waves in ecology; high performance computing

Employability

The ability to think rationally and to process data clearly and accurately are highly valued by employers. Mathematics graduates earn on average 50% more than most other graduates. The most popular areas are the actuarial profession, the financial sector, IT, computer programming and systems administration, and opportunities within business and industry where employers need mathematicians for research and development, statistical analysis, marketing and sales.

Facilities

The Aubrey Truman Reading Room, located in the centre of the Department of Mathematics, houses the departmental library and computers for student use, and is a popular venue for students to work independently on the regular exercise sheets set by their lecturers, and to discuss mathematics together.

The main university library, the Learning and Information Centre (LIC), contains a notably extensive collection of mathematics books.

As part of our expansion, we are building the Computational Foundry on our Bay Campus for computer and mathematical sciences. This development is exciting news for Swansea Mathematics who are part of the vibrant and growing community of world-class research leaders drawn from computer and mathematical sciences.

Research

The results of the Research Excellence Framework (REF) 2014 show that our research environment (how the Mathematics Department supports research staff and students) and the impact of our research (its value to society) were both judged to be 100% world leading or internationally excellent.

All academic staff in Mathematics are active researchers and the department has a thriving research culture.



Read less
This programme will help you develop professionally in the theory and practice of statistics and operational research (OR), providing the foundations for a successful career. Read more

This programme will help you develop professionally in the theory and practice of statistics and operational research (OR), providing the foundations for a successful career.

This programme will prepare you for work in areas such as the medical and health industry, government, the financial sector and any other area where modern statistical tools and OR techniques are used. You will also develop the wider skills required for solving problems, working in teams and time management.

You will be able to identify appropriate statistical or operational techniques, which can be applied to practical problems, and will acquire extensive skills in modelling using the packages R for Statistics and Arena for simulation. In addition, you will acquire the ability to use high-level applications in Excel.

Programme structure

This MSc consists of lecture-based courses and practical, lab-based courses. You will be assessed by exams, written reports, programming assignments and a dissertation project. The set of courses available is subject to review in order to maintain a modern and relevant MSc programme.

Previous compulsory courses for 2016-17:

  • Computing for Statistics
  • Fundamentals of Operational Research
  • Fundamentals of Optimization
  • Likelihood and Generalised Linear Models
  • Methodology, Modelling and Consulting Skills
  • Simulation
  • Statistical Regression Models
  • Stochastic Modelling
  • Statistical Theory or Bayesian Theory

Previous option courses for 2016-17 include:

  • The Analysis of Survival Data
  • Categorical Data Analysis
  • Clinical Trials
  • Computing for Operational Research and Finance
  • Credit Scoring
  • Data Analysis
  • Genetic Epidemiology
  • Large Scale Optimization for Data Science
  • Machine Learning & Pattern Recognition
  • Multivariate Data Analysis
  • Nonparametric Regression
  • Operational Research in the Airline Industry
  • Operational Research in Telecommunications
  • Risk Analysis
  • Stochastic Models in Biology
  • Stochastic Optimization
  • Time Series Analysis and Forecasting

Career opportunities

This programme is ideal for students who wish to apply their statistics and operational research knowledge within a wide range of sectors including the medical and health sector, government and finance. The advanced problem-solving skills you will develop will be highly prized by many employers.

Industry-based dissertation projects

The dissertation projects of approximately half the students on this programme take place in public and private sector organisations. Other students choose a University-based project.



Read less
This programme is especially suitable for students wishing to gain an in-depth understanding of the field of employment relations as preparation for a career in Employment Relations, Labour Relations or related fields. Read more
This programme is especially suitable for students wishing to gain an in-depth understanding of the field of employment relations as preparation for a career in Employment Relations, Labour Relations or related fields.

In addition to providing students with a thorough grounding in the theory and practice of Employment Relations it is anticipated that on completion of the programme students will also meet the knowledge requirements for chartered membership of the Chartered Institute for Personnel and Development (CIPD), the professional body for HR, Employment Relations and related professions in the UK.

Taught by academics with a strong track record in both Employment Relations related research and practical experience of Employment Relations and HRM, the programme focuses on developing critical thinking and analytical skills alongside of the more practical skills required for a career in Employment Relations and HR.

Core subjects include employment law, developing skills for business leadership, HRM theory and practice, employee engagement, motivation and voice, work design, organisational change and development, wellbeing and work, employment relations, strategic HRM, HRM research methods, and a dissertation.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/business-economics/employmentrelationsandhrm/

Programme modules

Semester 1:
Compulsory Modules
- Financial Economics
- Research Methods
- Research Communication (two-semester module)
- The Financial System

Optional Modules:
- Economics of Money and Finance
- Macroeconomic Analysis
- Microeconomics Analysis
- Stochastic Models in Finance
- Introduction to Measure Theory and Martingales

Semester 2:
Compulsory Modules
- Asset Management and Derivatives, or Corporate Finance
- Banking and Financial Markets
- Further Quantitative Techniques for Finance and Economics
- Research Communication (two-semester module)

Optional Modules (choose one)
- Applied Banking and Financial Modelling
- Comparative Banking
- Credit Risk Management
- Development Finance
- Stochastic Calculus and Theory of Stochastic Pricing

The School reserves the right to vary the list of optional modules.

Summer:
Students satisfy the research requirement by examined participation in research seminars. Subject to special conditions, students may submit a dissertation instead.

Careers and further study

Most large organisations in both the public and private sectors employ employment relations specialists. The grounding in Employment Relations and UK employment law, in addition to a grounding in more general HRM, that the programme provides also means graduates will be well equipped to bring expertise to both specialist Employment Relations and more general HR and management roles in both private and public sector organisations.

Scholarships and sponsorships

School awards may be available for high-calibre national and international students.

Why choose business and economics at Loughborough?

Loughborough’s School of Business and Economics is a thriving forward-looking centre of education that aims to provide an exceptional learning experience.

Consistently ranked as a Top-10 UK business school by national league tables, our graduates are highly employable and enjoy starting salaries well above the national average.

The rich variety of postgraduate programmes we offer ranges from taught masters, MBA and doctoral programmes, to short courses and executive education, with subjects spanning Management, Marketing, Finance and Economics, Work Psychology, Business Analytics, International Crisis Management and Information Management. New for 2016, we are also launching two exciting new programmes in Human Resource Management. All of this contributes to a lively and supportive learning environment within the School.

- Internationally Accredited
The School of Business and Economics is one of less than 1% of business schools in the world to have achieved accreditation from all three major international accrediting bodies: The Association to Advance Collegiate Schools of Business (AACSB International), EQUIS accreditation from the European Foundation for Management Development (EFMD) and the Association of MBAs (AMBA).

- Career Prospects
Our graduates are in great demand. Over 94% of our postgraduate students were in work and/or further study six months after graduating.* As such, you will be equipped with skills and knowledge that will serve you well in your career or enable you to pursue further study and research.

*Source: DLHE

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/business-economics/employmentrelationsandhrm/

Read less
Data science brings together computational and statistical skills for data-driven problem solving, which is in increasing demand in fields such as marketing, pharmaceutics, finance and management. Read more
Data science brings together computational and statistical skills for data-driven problem solving, which is in increasing demand in fields such as marketing, pharmaceutics, finance and management. This MSc will equip students with the analytical tools to design sophisticated technical solutions using modern computational methods and with an emphasis on rigorous statistical thinking.

Degree information

The programme combines training in core statistical and machine learning methodology, beginning at an introductory level, with a range of optional modules covering more specialised knowledge in statistical computing and modelling. Students choosing the statistics specialisation will take one compulsory module and up to two additional modules from computer science, with the remaining modules (including the research project) taken mainly from within UCL Statistical Science.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a research dissertation/report (60 credits).

Core modules
-Introduction to Statistical Data Science
-Introduction to Supervised Learning
-Statistical Design of Investigations
-Statistical Computing

Optional modules - st least two from a choice of Statistical Science modules including:
-Applied Bayesian Methods
-Decision & Risk
-Factorial Experimentation
-Forecasting
-Quantitative Modelling of Operational Risk and Insurance Analytics
-Selected Topics in Statistics
-Stochastic Methods in Finance I
-Stochastic Methods in Finance II
-Stochastic Systems

Up to two from a choice of Computer Science modules including:
-Affective Computing and Human-Robot Interaction
-Graphical Models
-Statistical Natural Language Processing
-Information Retrieval & Data Mining

Dissertation/report
All students undertake an independent research project, culminating in a dissertation usually comprising 10,000-12,000 words. Workshops running during the teaching terms provide preparation for this project and cover the communication of statistics.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials and classes, some of which are dedicated to practical work. Assessment is through written examination and coursework. The research project is assessed through the dissertation and a 15-minute presentation.

Careers

Graduates from UCL Statistical Science typically enter professional employment across a broad range of industry sectors or pursue further academic study.

The Data Science MSc is a new programme with the first cohort of students due to graduate in 2017. Recent career destinations for graduates of the related Statistics MSc include:
-Towers Watson, Actuary Analyst
-Proctor & Gamble, Statistician
-Ernst & Young, Audit Associate
-Collinson Group, Insurance Analyst
-UCL, PhD Statistical Science

Employability
Data science professionals will be highly sought after as the integration of statistical and computational analytical tools becomes increasingly essential in all kinds of organisations and enterprises. A solid understanding of the fundamentals is to be expected from the best practitioners. For instance, in applications in marketing, the healthcare industry and banking, computational skills should go along with statistical expertise as graduate level. Data scientists should have a broad background so that they will be able to adapt themselves to rapidly evolving challenges. Recent graduates from the related Statistics MSc have been offered positions as research analysts or consultants, and job opportunities in these areas are increasing.

Why study this degree at UCL?

UCL Statistical Science has a broad range of research interests, but has particular strengths in the area of computational statistics and in the interface between statistics and computer science.

UCL's Centre for Computational Statistics and Machine Learning, in which many members of the department are active, has a programme of seminars, masterclasses and other events. UCL's Centre for Data Science and Big Data Institute are newer developments, again with strong involvement of the department, where emphasis is on research into big data problems.

UCL is one of the founding members of the Alan Turing Institute, and both UCL Statistical Science and UCL Computer Science will be playing major roles in this exciting new development which will make London a major focus for big data research.

Read less
The Department of Mathematics offers graduate courses leading to M.Sc., and eventually to Ph.D., degree in Mathematics. The Master of Science program aims to provide a sound foundation for the students who wish to pursue a research career in mathematics as well as other related areas. Read more
The Department of Mathematics offers graduate courses leading to M.Sc., and eventually to Ph.D., degree in Mathematics. The Master of Science program aims to provide a sound foundation for the students who wish to pursue a research career in mathematics as well as other related areas. The department emphasizes both pure and applied mathematics. Research in the department covers algebra, number theory, combinatorics, differential equations, functional analysis, abstract harmonic analysis, mathematical physics, stochastic analysis, biomathematics and topology.

Current faculty projects and research interests:

• Ring Theory and Module Theory, especially Krull dimension, torsion theories, and localization

• Algebraic Theory of Lattices, especially their dimensions (Krull, Goldie, Gabriel, etc.) with applications to Grothendieck categories and module categories equipped with torsion theories

• Field Theory, especially Galois Theory, Cogalois Theory, and Galois cohomology

• Algebraic Number Theory, especially rings of algebraic integers

• Iwasawa Theory of Galois representations and their deformations Euler and Kolyvagin systems, Equivariant Tamagawa Number
Conjecture

• Combinatorial design theory, in particular metamorphosis of designs, perfect hexagon triple systems

• Graph theory, in particular number of cycles in 2-factorizations of complete graphs

• Coding theory, especially relation of designs to codes

• Random graphs, in particular, random proximity catch graphs and digraphs

• Partial Differential Equations

• Nonlinear Problems of Mathematical Physics

• Dissipative Dynamical Systems

• Scattering of classical and quantum waves

• Wavelet analysis

• Molecular dynamics

• Banach algebras, especially the structure of the second Arens duals of Banach algebras

• Abstract Harmonic Analysis, especially the Fourier and Fourier-Stieltjes algebras associated to a locally compact group

• Geometry of Banach spaces, especially vector measures, spaces of vector valued continuous functions, fixed point theory, isomorphic properties of Banach spaces

• Differential geometric, topologic, and algebraic methods used in quantum mechanics

• Geometric phases and dynamical invariants

• Supersymmetry and its generalizations

• Pseudo-Hermitian quantum mechanics

• Quantum cosmology

• Numerical Linear Algebra

• Numerical Optimization

• Perturbation Theory of Eigenvalues

• Eigenvalue Optimization

• Mathematical finance

• Stochastic optimal control and dynamic programming

• Stochastic flows and random velocity fields

• Lyapunov exponents of flows

• Unicast and multicast data traffic in telecommunications

• Probabilistic Inference

• Inference on Random Graphs (with emphasis on modeling email and internet traffic and clustering analysis)

• Graph Theory (probabilistic investigation of graphs emerging from computational geometry)

• Statistics (analysis of spatial data and spatial point patterns with applications in epidemiology and ecology and statistical methods for medical data and image analysis)

• Classification and Pattern Recognition (with applications in mine field and face detection)

• Arithmetical Algebraic Geometry, Arakelov geometry, Mixed Tate motives

• p-adic methods in arithmetical algebraic geometry, Ramification theory of arithmetic varieties

• Topology of low-dimensional manifolds, in particular Lefschetz fibrations, symplectic and contact structures, Stein fillings

• Symplectic topology and geometry, Seiberg-Witten theory, Floer homology

• Foliation and Lamination Theory, Minimal Surfaces, and Hyperbolic Geometry

Read less
The course provides you with a strong mathematical background with the skills necessary to apply your expertise to the solution of real finance problems. … Read more

The course provides you with a strong mathematical background with the skills necessary to apply your expertise to the solution of real finance problems. You will develop skills so that you are able to formulate a well posed problem from a description in financial language, carry out relevant mathematical analysis, develop and implement an appropriate numerical scheme and present and interpret these results.

The course lays the foundation for further research in academia or for a career as a quantitative analyst in a financial or other institution.

You will take three introductory courses in the first week. The introductory courses cover partial differential equations, probability and statistics and MATLAB.

The first term focuses on compulsory core material, offering 80 hours of lectures and 40 hours of classes/practical. The core courses are as follows:

  • Stochastic Calculus
  • Financial Derivatives
  • Numerical Methods I - Monte-Carlo
  • Numerical Methods I - Finite Differences
  • Statistics and Financial Data Analysis
  • Financial Programming with C++ 1

In the second term, three streams are offered; each stream consists of 32 hours of lectures and 16 hours of classes/practical. The Tools stream is mandatory and you will also take either the Modelling stream or the Data-driven stream.

Modelling stream

  • Exotic derivatives
  • Stochastic volatility, jump diffusions
  • Commodities
  • Fixed income

Data-driven stream

  • Asset pricing and inefficiency of markets
  • Market microstructure and trading
  • Algorithmic trading
  • Advanced financial data analysis
  • Machine learning
  • Python

Tools stream

  • Numerical methods 2 - Monte Carlo methods
  • Numerical methods 2 - Finite differences
  • Calibration
  • Optimisation
  • Introduction to stochastic control

As well as the streams, the course includes a compulsory one-week (24 hours of lectures) intensive module on quantitative risk management which is to be held in/around the week before the third term.

The third term is dedicated to a dissertation project which is to be written on a topic chosen in consultation with your supervisor.

The second component of the financial computing course, Financial Computing with C++ 2 (24 hours of lectures and practicals in total), is held shortly after the third term.

The examination will consist of the following elements:

  • two written examinations and one take-home project, each of two hours' duration - the written examinations will cover the core courses in mathematical methods and numerical analysis
  • a written examination on the Modelling stream or a written examination and a computer-based practical examination on the Data-driven stream
  • a written examination assessing the Tools stream
  • a take-home project assessing the course in quantitative risk management
  • two practical examinations assessing two courses in financial computing with C++.

Graduate destinations

MSc graduates have been recruited by prominent investment banks and hedge funds. Many past students have also progressed to PhD-level studies at leading universities in Europe and elsewhere.



Read less

Show 10 15 30 per page



Cookie Policy    X