• University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Nottingham Trent University Featured Masters Courses
Cass Business School Featured Masters Courses
King’s College London Featured Masters Courses
University of Cambridge Featured Masters Courses
University of Leeds Featured Masters Courses
"stem" AND "cell" AND "th…×
0 miles

Masters Degrees (Stem Cell Therapy)

We have 20 Masters Degrees (Stem Cell Therapy)

  • "stem" AND "cell" AND "therapy" ×
  • clear all
Showing 1 to 15 of 20
Order by 
This Master's degree in Cell and Gene Therapy provides an in-depth education in this cutting-edge and rapidly developing field. Read more

This Master's degree in Cell and Gene Therapy provides an in-depth education in this cutting-edge and rapidly developing field. It is delivered by scientists and clinicians researching, developing and testing new treatments for genetically inherited and acquired diseases using gene delivery technology, stem cell manipulation and DNA repair techniques.

About this degree

The degree covers all aspects of the subject, including basic biomedical science, molecular basis of disease, current and developing technologies and clinical applications. Students also receive vocational training in research methodology and statistics, how to perform a research project and complete a practical laboratory-based project.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a research dissertation (60 credits).

A Postgraduate Diploma (120 credits, full-time nine months or flexible up to five years) is offered

A Postgraduate Certificate (60 credits, full-time 12 weeks, part-time nine months, or up to two years flexible) is offered.

Core modules

  • Molecular Aspects of Cell and Gene Therapy
  • Clinical Applications of Cell and Gene Therapy
  • Research Methodology and Statistics
  • Stem Cell and Tissue Repair

Research Methodology and Statistics is not a core module for the PG Certificate. Students of the PG Certificate can choose an optional module.

Optional modules

  • Foundations of Biomedical Sciences
  • Applied Genomics
  • HIV Frontiers from Research to Clinics
  • Molecular and Genetic Basis of Paediatric Disease
  • Understanding Research and Critical Appraisal: Biomedicine
  • Laboratory Methods in Biomedical Science
  • Research Methodology and Statistics

Dissertation/report

All MSc students undertake an independent research project which culminates in a dissertation.

Teaching and learning

Teaching includes lectures, seminars, problem classes and tutorials. Assessment varies depending on the module, but includes written coursework, multiple-choice questions, written examinations, a practical analysis examination and the dissertation of up to 10,000 words

Further information on modules and degree structure is available on the department website: Cell and Gene Therapy MSc

Careers

This programme aims to equip students for careers in research, education, medicine and business in academic, clinical and industrial settings. Examples of potential careers could include academic research and/or lecturing in a university or other higher education setting, conducting clinical trials as part of a team of clinicians, scientists and allied health professionals, monitoring and analysing the results of clinical trials as part of a clinical trials unit, developing new therapies or intellectual property in the pharmaceutical industry or other business ventures.

Several of our graduates have gone on to secure PhD places. You can read testimonials from past students which include their destinations following graduation.

Recent career destinations for this degree

  • Biomedical Scientist, Science Health Society
  • Post-Doctoral Fellow, University of London
  • PhD in Cell and Gene Therapy, UCL
  • Research Assistant, The Magdi-Yacoub Institute / Heart Science
  • Scientist, Unspecified Pharmaceuticals Company

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The UCL Great Ormond Street Institute of Child Health (UCL GOS ICH), and its clinical partner Great Ormond Street Hospital (GOSH), is the largest centre in Europe devoted to clinical, basic research and postgraduate education in children's health, including haematopoietic stem cell transplantation (HSCT) and gene therapy.

The UCL School of Life & Medical Sciences (SLMS) has the largest concentration of clinicians and researchers active in cell and gene therapy research in Europe. This is reflected by the many groups conducting high-quality research and clinical trials in the field including researchers at UCL GOS ICH, the Division of Infection & Immunity, the Institute of Ophthalmology, the Institute for Women's Health, the Institute of Genetics and the Cancer Institute.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Great Ormond Street Institute of Child Health

80%: Clinical Medicine subjects; 81%: Public Health, Health Services and Primary Care subjects rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Human tissue repair after injury and in disease and the development of effective treatments are the focus of all biomedical research. Read more

Human tissue repair after injury and in disease and the development of effective treatments are the focus of all biomedical research. This MSc programme, taught by leading scientists and clinicians, provides an integrated approach to human tissue repair focusing on inflammation, immunotherapy and transplantation science, and preparation for PhD study and a career in biomedicine.

About this degree

The MSc will provide knowledge of the fundamentals of inflammation and immune response in human health and disease, cellular and molecular mechanisms of human tissue repair, the development of therapies designed to repair and restore tissue function, and treatments including immunotherapy, transplantation, tissue constructs and medical devices. Students will obtain additional practical, analytic and transferable skills essential in biomedical research.

Students undertake modules to the value of 180 credits.

This programme consists of six core modules (90 credits), two specialisation optional modules (30 credits) and a research project (60 credits).

Core modules

  • Principles of Immunology
  • Practical Research Skills
  • Principles of Inflammation
  • Research Methodologies for Human Tissue Repair
  • Tissue Repair and Regeneration
  • Practical Cell Culture Analysis

Students choose one of the following specialisation modules depending on the route they wish to follow: Inflammation; Immunotherapy; Transplantation Science:

  • Immunological Basis of Disease
  • Inflammation and Disease
  • Transplantation Science

Optional modules

Students choose two optional modules from their chosen specialisation route below:

Inflammation specialisation

  • Biological Molecules as Therapies
  • Ethics, Translation & Commercialisation
  • Immunological Basis of Disease
  • Stem Cell Therapy
  • Transplantation Science

Immunotherapy specialisation

  • Inflammation and Disease
  • Stem Cell Therapy
  • Ethics, Translations & Commercialisation
  • Tissue Engineering and Regenerative Medicine
  • Transplantation Science

Transplantation Science specialisation

  • Applied Biomaterials
  • Ethics, Translation & Commercialisation
  • Immunological Basis of Disease
  • Stem Cell Therapy
  • Tissue Engineering and Regenerative Medicine
  • Inflammation and Disease

Dissertation/report

Students undertake a research project culminating in a dissertation of 5,000 words in the style of a manuscript for scientific publication.

Teaching and learning

The programme is delivered through a combination of seminars, lectures, e-learning, laboratory work and tutorials. Assessment is through examination, presentations, essays, practical reports and dissertation.

Further information on modules and degree structure is available on the department website: Human Tissue Repair MSc

Careers

The programme will prepare students for further academic study and to work at the highest levels within the biomedical sciences. It will also provide the foundation for careers in the public healthcare sector and the NHS, in industry and biopharma, government and research councils, biomedical charities and stakeholders, sports medicine, and scientific media and publishing houses.

Employability

Students will gain awareness of the commercial opportunities and diverse funding mechanisms for the development of new ideas, technologies and applications. Our learning methods will prepare students for careers in academic or industrial biomedical sciences, as well as equipping them with transferable skills in presentation, writing, organisation and team work.

Why study this degree at UCL?

UCL offers a world-class research and teaching environment in biomedical sciences.

The UCL Divisions of Medicine and Surgery & Interventional Science jointly offer this MSc within the new Institute of Immunity and Transplantation (IIT) based at the Royal Free Campus, to deliver the only programme with an integrated multidisciplinary approach to learning about human tissue repair, regeneration and therapy.

The programme aims to harness basic, biomedical and clinical expertise and research strengths assembled from across UCL institutes and divisions and UCL partner hospitals, and together with industrial colleagues will provide world-leading cohesive teaching and training in inflammation, immunology, tissue engineering, transplantation, drug discovery and in understanding and treating human disease.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Division of Medicine

80% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The first course of its kind in the UK, the Stem Cell & Regenerative Therapies. From Bench to Market MSc combines biological and medical science with business, law and bioethics. Read more

The first course of its kind in the UK, the Stem Cell & Regenerative Therapies: From Bench to Market MSc combines biological and medical science with business, law and bioethics. It is designed to develop expertise in the biological, commercial and regulatory aspects of cellular therapy, along with its application in biomedicine and equips students to pursue a business-based career in cellular therapy or related disciplines.

Key benefits

  • Work alongside leaders in the field at King’s Centre for Stem Cells and Regenerative Medicine – a focal point in the UK for cutting edge research in this field.
  • Produce credible business plans for the application of cellular therapy in clinical settings, taking into consideration science, patient benefits, ethical code, regulations and market laws.
  • Learn to conduct investigations, analyse the results using various qualitative and quantitative methods and draw valid conclusions for commercialisation of cellular therapy.
  • Mentoring sessions by King’s academics and external guests
  • Outstanding networking opportunities with leaders in the field (scientists, biotechnology/pharma, financial services, stem cell manufacturing, regulatory and public sectors)

Description

Cellular therapies have attracted much interest in recent years in virtually all disciplines of medicine with over 2,700 clinical trials enrolled between 2000 and 2010. As of today, http://www.clinicaltrials.gov has over 27,800 registered cellular therapy clinical trials. The complexity of issues relating to cell manufacturing, the underlying regulatory framework, reimbursement and viable business models, each represent challenges that profoundly undermine the timing and the delivery of a viable healthcare model. Our programme will provide tools that aid the understanding of these complex issues within an integrated and commercial context.

This one-year advanced study course explores the biological, regulatory and business aspects of cellular therapy in the fields of biomedicine. You will study a range of modules that include Stem Cells in Cellular Therapies & Regenerative Medicine and Cellular Therapies in Immunology. You will also complete a dissertation related to business strategy development for cellular therapy.

You will study modules totalling 180 credits throughout the year, with 60 credits coming from the 15,000 – 18,000-word dissertation.

Course format and assessment

Teaching style and study time

We use lectures, seminars and group tutorials to deliver most of the modules on the course. You will also be expected to undertake a significant amount of independent study.

Methods of assessment

This course is assessed through a combination of the following:

  • essays
  • poster presentation
  • journal club-style presentation
  • oral presentations
  • case study.

The study time and assessment methods detailed above are typical and give you a good indication of what to expect. However, they may change if the course modules change.

 Location

The majority of learning for this degree takes place at the King’s College London Denmark Hill and Guy’s campus. Please note that locations are determined by where each module is taught and may vary depending on the optional modules you select.

Regulating body

King’s College London is regulated by the Higher Education Funding Council for England.

Career prospects

Many of our graduates go on to careers in business development and commercialisation of stem cells products and services, while others go on to pursue a career in the research sector.



Read less
Why study at Roehampton. Develop advanced research skills required in preparation for your career within biomedical research, a clinical environment, or in the health industry. Read more

Why study at Roehampton

  • Develop advanced research skills required in preparation for your career within biomedical research, a clinical environment, or in the health industry.
  • Collaborate with leading, internationally renowned experts in the field who will teach topical and current issues in biomedicine.
  • Conduct your own research project in our state-of-the-art molecular biology laboratories equipped with microscopy analysers, autoradiography, flow cytometry, high sensitivity HPLC and LC-MS, and neural stem cell and tissue culture facilities.
  • We are the most research-intensive modern university in the UK (Research Excellence Framework 2014).
  • Roehampton is ranked best modern university in London (Sunday Times Good University Guide 2016).

Course summary

This innovative degree offers a fascinating opportunity to study modern and topical research areas in Cell Biomedicine. You will gain the essential skills required to prepare for your career in either biomedical research, a clinical setting or within the health industry.

This postgraduate degree will provide you with advanced research training in medical aspects of cell biology and pathology and you will conduct your own lab based research project. With a focus on research methods, you will take you research methods to the next level in producing your own research design, understanding ethics in research projects and best practice in handling statistical data-sets. The programme includes a variety of subject-specific lectures, seminars, tutorials and practical work that will give keep you up-to-date with the current advances in the field. You will learn the theoretical and technological aspects of cellular biomedicine and their practical applications within industry.

You will be taught by enthusiastic, research active experts in the field who conduct research in a diverse range of topics that you can choose to study such as cellular and molecular mechanisms of cancer, microbial resistance to antibiotics, immune mechanisms of disease, stem cell research and molecular modelling in cell biology.

You will conduct your research project in our state-of-the-art laboratories equipped with microscopy analysers, autoradiography, flow cytometry, high sensitivity HPLC and LC-MS, and neural stem cell and tissue culture facilities.

You will automatically be a part of our Health Sciences Research Centre, a community of leading experts who are currently investigating a range of topical issues. You will participate in engaging discussions within research seminars on the latest developments within neuroscience and the health sciences.

Content

In this postgraduate programme, you will be trained in medical aspects of cell biology and pathology with a focus on the lab based research project. The programme has a strong focus on research methods and will provide you with necessary skills in research design, ethics and statistical methods.

You will learn the most recent advances in cellular biomedicine by being part of engaging subject-specific lectures, seminars, tutorials and conducting your own research. You will study the theoretical and technological and their practical applications in cellular biomedicine.

Modules:

  • Research Project
  • Research Methods
  • Cells, Disease and Therapy
  • Communication

Career options

This postgraduate programme provides both a solid academic basis and practical hands-on experience in the area of cellular biomedical sciences. It will prepare you for careers in academia, clinical research, the health industry or within government organisations.

Email Now



Read less
We invite postgraduate research proposals in a number of disease areas that impact significantly on patient care. We focus on exploring the mechanisms of disease, understanding the ways disease impacts patients’ lives, utilising new diagnostic and therapeutic techniques and developing new treatments. Read more

We invite postgraduate research proposals in a number of disease areas that impact significantly on patient care. We focus on exploring the mechanisms of disease, understanding the ways disease impacts patients’ lives, utilising new diagnostic and therapeutic techniques and developing new treatments.

As a student you will be registered with a University research institute, for many this is the Institute for Cellular Medicine (ICM). You will be supported in your studies through a structured programme of supervision and training via our Faculty of Medical Sciences Graduate School.

We undertake the following areas of research and offer MPhil, PhD and MD supervision in:

Applied immunobiology (including organ and haematogenous stem cell transplantation)

Newcastle hosts one of the most comprehensive organ transplant programmes in the world. This clinical expertise has developed in parallel with the applied immunobiology and transplantation research group. We are investigating aspects of the immunology of autoimmune diseases and cancer therapy, in addition to transplant rejection. We have themes to understand the interplay of the inflammatory and anti-inflammatory responses by a variety of pathways, and how these can be manipulated for therapeutic purposes. Further research theme focusses on primary immunodeficiency diseases.

Dermatology

There is strong emphasis on the integration of clinical investigation with basic science. Our research include:

  • cell signalling in normal and diseased skin including mechanotransduction and response to ultraviolet radiation
  • dermatopharmacology including mechanisms of psoriatic plaque resolution in response to therapy
  • stem cell biology and gene therapy
  • regulation of apoptosis/autophagy
  • non-melanoma skin cancer/melanoma biology and therapy.

We also research the effects of UVR on the skin including mitochondrial DNA damage as a UV biomarker.

Diabetes

This area emphasises on translational research, linking clinical- and laboratory-based science. Key research include:

  • mechanisms of insulin action and glucose homeostasis
  • insulin secretion and pancreatic beta-cell function
  • diabetic complications
  • stem cell therapies
  • genetics and epidemiology of diabetes.

Diagnostic and therapeutic technologies

Focus is on applied research and aims to underpin future clinical applications. Technology-oriented and demand-driven research is conducted which relates directly to health priority areas such as:

  • bacterial infection
  • chronic liver failure
  • cardiovascular and degenerative diseases.

This research is sustained through extensive internal and external collaborations with leading UK and European academic and industrial groups, and has the ultimate goal of deploying next-generation diagnostic and therapeutic systems in the hospital and health-care environment.

Kidney disease

There is a number of research programmes into the genetics, immunology and physiology of kidney disease and kidney transplantation. We maintain close links between basic scientists and clinicians with many translational programmes of work, from the laboratory to first-in-man and phase III clinical trials. Specific areas:

  • haemolytic uraemic syndrome
  • renal inflammation and fibrosis
  • the immunology of transplant rejection
  • tubular disease
  • cystic kidney disease.

The liver

We have particular interests in:

  • primary biliary cirrhosis (epidemiology, immunobiology and genetics)
  • alcoholic and non-alcoholic fatty liver disease
  • fibrosis
  • the genetics of other autoimmune and viral liver diseases

Magnetic Resonance (MR), spectroscopy and imaging in clinical research

Novel non-invasive methodologies using magnetic resonance are developed and applied to clinical research. Our research falls into two categories:

  • MR physics projects involve development and testing of new MR techniques that make quantitative measurements of physiological properties using a safe, repeatable MR scan.
  • Clinical research projects involve the application of these novel biomarkers to investigation of human health and disease.

Our studies cover a broad range of topics (including diabetes, dementia, neuroscience, hepatology, cardiovascular, neuromuscular disease, metabolism, and respiratory research projects), but have a common theme of MR technical development and its application to clinical research.

Musculoskeletal disease (including auto-immune arthritis)

We focus on connective tissue diseases in three, overlapping research programmes. These programmes aim to understand:

  • what causes the destruction of joints (cell signalling, injury and repair)
  • how cells in the joints respond when tissue is lost (cellular interactions)
  • whether we can alter the immune system and ‘switch off’ auto-immune disease (targeted therapies and diagnostics)

This research theme links with other local, national and international centres of excellence and has close integration of basic and clinical researchers and hosts the only immunotherapy centre in the UK.

Pharmacogenomics (including complex disease genetics)

Genetic approaches to the individualisation of drug therapy, including anticoagulants and anti-cancer drugs, and in the genetics of diverse non-Mendelian diseases, from diabetes to periodontal disease, are a focus. A wide range of knowledge and experience in both genetics and clinical sciences is utilised, with access to high-throughput genotyping platforms.

Reproductive and vascular biology

Our scientists and clinicians use in situ cellular technologies and large-scale gene expression profiling to study the normal and pathophysiological remodelling of vascular and uteroplacental tissues. Novel approaches to cellular interactions have been developed using a unique human tissue resource. Our research themes include:

  • the regulation of trophoblast and uNk cells
  • transcriptional and post-translational features of uterine function
  • cardiac and vascular remodelling in pregnancy

We also have preclinical molecular biology projects in breast cancer research.

Respiratory disease

We conduct a broad range of research activities into acute and chronic lung diseases. As well as scientific studies into disease mechanisms, there is particular interest in translational medicine approaches to lung disease, studying human lung tissue and cells to explore potential for new treatments. Our current areas of research include:

  • acute lung injury - lung infections
  • chronic obstructive pulmonary disease
  • fibrotic disease of the lung, both before and after lung transplantation.

Pharmacology, Toxicology and Therapeutics

Our research projects are concerned with the harmful effects of chemicals, including prescribed drugs, and finding ways to prevent and minimise these effects. We are attempting to measure the effects of fairly small amounts of chemicals, to provide ways of giving early warning of the start of harmful effects. We also study the adverse side-effects of medicines, including how conditions such as liver disease and heart disease can develop in people taking medicines for completely different medical conditions. Our current interests include: environmental chemicals and organophosphate pesticides, warfarin, psychiatric drugs and anti-cancer drugs.

Pharmacy

Our new School of Pharmacy has scientists and clinicians working together on all aspects of pharmaceutical sciences and clinical pharmacy.



Read less
Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production?… Read more

Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production? Would you like to know whether it is possible to produce bio-polymers (plastics) and biofuels from municipal or agricultural waste? If you are thinking of a career in the pharma or biotech industries, the Biochemical Engineering MSc could be the right programme for you.

About this degree

Our MSc programme focuses on the core biochemical engineering principles that enable the translation of advances in the life sciences into real processes or products. Students will develop advanced engineering skills (such as bioprocess design, bioreactor engineering, downstream processing), state-of-the-art life science techniques (such as molecular biology, vaccine development, microfluidics) and essential business and regulatory knowledge (such as management, quality control, commercialisation).

Three distinct pathways are offered tailored to graduate scientists, engineers, or biochemical engineers.

Students undertake modules to the value of 180 credits.

The programme offers three distinct pathways tailored to: graduate scientists ("Engineering Stream"); graduate engineers from other disciplines ("Science Stream"); or graduate biochemical engineers ("Biochemical Engineering Stream"). The programme for all three streams consists of a combination of core and optional taught modules (120 credits) and a research or design project (60 credits).

Core modules

Students are allocated to one of the three available streams based on their academic background (life science/science, other engineering disciplines, biochemical engineering). The programme for each stream is tailored to the background of students in that stream. Core modules may include the following (depending on stream allocation). 

  • Advanced Bioreactor Engineering
  • Dissertation on Bioprocess Research
  • Fundamental Biosciences
  • Integrated Downstream Processing
  • Sustainable Industrial Bioprocesses and Biorefineries

Please go to the "Degree Structure" tab on the departmental website for a full list of core modules.

Optional modules

Optional modules may include the following (details will vary depending on stream allocation).

  • Bioprocess Management – Discovery to Manufacture
  • Bioprocess Microfluidics
  • Bioprocess Systems Engineering
  • Bioprocess Validation and Quality Control
  • Commercialisation and Bioprocess Research
  • Vaccine Bioprocess Development

Please go to the "Degree Structure" tab on the departmental website for a full list of optional modules

Research project/design project

Students allocated to the "Engineering" stream will have to complete a bioprocess design project as part of their MSc dissertation.

Students allocated to the "Science" and "Biochemical Engineering" streams will have to complete a research project as part of their MSc dissertation.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, and individual and group activities. Guest lectures delivered by industrialists provide a professional and social context. Assessment is through unseen written examinations, coursework, individual and group project reports, individual and group oral presentations, and the research or design project.

Further information on modules and degree structure is available on the department website: Biochemical Engineering MSc

Careers

The rapid advancements in biology and the life sciences create a need for highly trained, multidisciplinary graduates possessing technical skills and fundamental understanding of both the biological and engineering aspects relevant to modern industrial bioprocesses. Consequently, UCL biochemical engineers are in high demand, due to their breadth of expertise, numerical ability and problem-solving skills. The first destinations of those who graduate from the Master's programme in biochemical engineering reflect the highly relevant nature of the training delivered.

Approximately three-quarters of our graduates elect either to take up employment in the relevant biotechnology industries or study for a PhD or an EngD, while the remainder follow careers in the management, financial or engineering design sectors.

Recent career destinations for this degree

  • Biopharmaceutical Processing Engineer, Johnson & Johnson
  • Process Engineer, ExxonMobil
  • PhD Biochemical Engineering, UCL
  • Bio-Pharmaceutical Engineer, GSK (GlaxoSmithKline)
  • Research Analyst, CIRS (Centre for Innovation in Regulatory Science)

Employability

The department places great emphasis on its ability to assist its graduates in taking up exciting careers in the sector. UCL alumni, together with the department’s links with industrial groups, provide an excellent source of leads for graduates. Over 1,000 students have graduated from UCL with graduate qualifications in biochemical engineering at Master’s or doctoral levels. Many have gone on to distinguished and senior positions in the international bioindustry. Others have followed independent academic careers in universities around the world.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL was a founding laboratory of the discipline of biochemical engineering, established the first UK department and is the largest international centre for bioprocess teaching and research. Our internationally recognised MSc programme maintains close links with the research activities of the Advanced Centre for Biochemical Engineering which ensures that lecture and case study examples are built around the latest biological discoveries and bioprocessing technologies.

UCL Biochemical Engineering co-ordinates bioprocess research and training collaborations with more than a dozen UCL departments, a similar number of national and international university partners and over 40 international companies. MSc students directly benefit from our close ties with industry through their participation in the Department’s MBI® Training Programme.

The MBI® Training Programme is the largest leading international provider of innovative UCL-accredited short courses in bioprocessing designed primarily for industrialists. Courses are designed and delivered in collaboration with 70 industrial experts to support continued professional and technical development within the industry. Our MSc students have the unique opportunity to sit alongside industrial delegates, to gain deeper insights into the industrial application of taught material and to build a network of contacts to support their future careers. 

Accreditation

Our MSc is accredited by the Institute of Chemical Engineers (IChemE).

The “Science” and “Biochemical Engineering” streams are accredited by the IChemE as meeting the further learning requirements, in full, for registration as a Chartered Engineer (CEng, MIChemE).



Read less
What is the Master of Biomedical Sciences all about?. Biomedical sciences underwent a spectacular evolution during the past decades. Read more

What is the Master of Biomedical Sciences all about?

Biomedical sciences underwent a spectacular evolution during the past decades. New diseases such as bird flu arose, whereas others such as AIDS and diabetes have expanded. At the same time, researchers are discovering new ways to fight these diseases. The human genome has been decoded, gene technology is steadily growing, immunotherapy has been introduced for the treatment of several cancers and the first steps in the direction of stem cell therapy have been made. The laboratories at KU Leuven and University Hospital Gasthuisberg deliver cutting edge work in the field of disease and development of new therapies, stretching from bench to bedside. The Master of Biomedical Sciences at KU Leuven allows students to live this journey themselves, hands on.

Do you dream of working on the frontline of the ongoing battle for a better understanding of human health and diseases? Are dedicated to applying this knowledge to better prevention and treatment options? Then this programme is for you. During the two master's years you will be truly immersed in scientific biomedical research. By doing scientific research in a domestic or foreign laboratory, you will gain thorough know-how, strengthen your scientific skills and learn the newest scientific methods. All of these skills and accumulated knowledge will be applied in the most important part of the master's programme: your master's thesis.

Objectives

The main goal of the curriculum is to train researchers in biomedical sciences by providing a rigorous scientific training based on the acquisition of knowledge, the collection and interpretation of information and the use of modern research techniques. This is expected to stimulate the critical thinking and independence required to address a specific research question related to (dys)function of the human body and its interaction with the environment. Furthermore, the curriculum provides broad, intellectually rigorous training allowing for a wide array of job opportunities in industry, research centres and society.

The aims of the curriculum follow the educational principles of KU Leuven, important among which is the independence of the student. For the acquisition of knowledge, the university uses its own high-quality interdisciplinary scientific research. KU Leuven aims to be a centre of critical thinking where, in addition to factual knowledge, people are stimulated to identify, define and solve problems.

The quality of the curriculum is guaranteed due to the strong interconnection between education and research in the Biomedical Sciences in the broadest sense. The faculty commits itself to a future-oriented educational project in an academic setting that is at once intellectually stimulating, socially supportive and student friendly.

Career perspectives

Internationalisation has become an integral part of the profile of researchers in biomedical sciences. International exchange is the key to opening mindsets to global solutions in health and disease. Graduates can expect to embark on international-level careers in very diverse areas touching on human health.

First and foremost, biomedical scientists are prepared for a personal career full of exciting scientific research in academic or pharmaceutical laboratories dedicated to improving knowledge in human health and finding prevention strategies and cures for diseases. Beyond this, there are many different directions open to you.

Many graduates go on to careers in consultancy, policy, sales and marketing, communication and management in areas related to human health, such as the pharmaceutical industry, scientific writing agencies, regulatory agencies and government administration. Graduates find rewarding work in a wide variety of sectors: the pharmaceutical industry, the academic or educational world, healthcare, the environmental sector and food inspection, among others.

Programme graduates are in high demand in the pharmaceutical and medical industry. As a biomedical scientist, for example, you provide thoroughly prepared research, which is a crucial phase in the development of new drugs and other medical products. It is also possible to cooperate with the set-up and follow-up of preclinical trials in the pharmaceutical industry. The programme gives you the perfect profile for clinical trial design, as well as the monitoring and conducting of these trials, on both the business and clinical sides of the process.

You can also work for service companies that deliver or develop products or equipment to the medical sector. Positions in government are also open to you, especially in the area of public health. Some biomedical scientists choose to specialise in the legislation around patents and the protection of biomedical discoveries, and others begin careers as biology, chemistry or biotechnology teachers. Additionally, there is a current need for experts who can clearly communicate scientific information and research results to non-specialists and the general public.



Read less
Human tissue repair after injury and in disease and the development of effective treatments is the focus of all biomedical research. Read more

Human tissue repair after injury and in disease and the development of effective treatments is the focus of all biomedical research. This MRes, taught by leading research scientists and clinicians, offers specialised training and provides a foundation year for a biomedical research career.

About this degree

The programme will provide knowledge of the fundamentals of inflammation and the immune response in human health and disease; cellular and molecular mechanisms of human tissue repair and the development of therapies designed to repair and restore tissue function; treatments including immunotherapy, stem cell therapy, transplantation, tissue constructs and medical devices. Students will obtain additional practical, analytical and transferable skills essential in biomedical research.

Students undertake modules to the value of 180 credits.

This programme consists of five core modules (75 credits), one specialisation optional module (15 credits) and a research project (90 credits).

Core modules

  • Principles of Inflammation
  • Principles of Immunology
  • Tissue Repair and Regeneration
  • Research Methodologies for Human Tissue Repair
  • Practical Cell Culture Analysis

Students choose one of the following specialisation modules depending on the route they wish to follow: Inflammation; Immunotherapy; Transplantation Science:

  • Immunological Basis of Disease
  • Inflammation and Disease
  • Transplantation Science

Dissertation/report

Students undertake a six-month research project in a research laboratory.

Teaching and learning

The programme is delivered through a combination of seminars, lectures, e-learning, laboratory work, and practicals. Assessment is through examination, presentations, essays, practical reports and dissertation.

Further information on modules and degree structure is available on the department website: Human Tissue Repair MRes

Careers

The programme will prepare students for further academic study and to work at the highest levels within the biomedical sciences. It will also provide the foundation and links for careers engaged in the public healthcare sector and the NHS, in industry and biopharma, government and research councils, biomedical charities and stakeholders, sports medicine, and scientific media and publishing houses.

Employability

Students will gain awareness of the commercial opportunities and diverse funding mechanisms for the development of new ideas, technologies and applications. Our learning methods will prepare students for careers in academic or industrial biomedical sciences, as well as equipping them with transferable skills in presentation, writing, organisation and team work.

Why study this degree at UCL?

UCL offers a world-class research and teaching environment in biomedical sciences.

The UCL Divisions of Medicine and Surgery & Interventional Science jointly offer an MRes within the new Institute of Immunity and Transplantation (IIT) based at the Royal Free Campus, to deliver the only programme with an integrated multidisciplinary approach to learning about human tissue repair, regeneration and therapy.

The programme aims to harness basic, biomedical and clinical expertise and research strengths assembled from across UCL institutes and divisions and UCL partner hospitals, and together with industrial colleagues will provide world-leading cohesive teaching and training in inflammation, immunology, tissue engineering, transplantation, drug discovery and in understanding and treating human disease.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Division of Medicine

80% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
This masters course will bring you up to speed with the post genomic era. We are now in a scientific age that has followed the game changing breakthrough that was the sequencing of the human genome. Read more
This masters course will bring you up to speed with the post genomic era. We are now in a scientific age that has followed the game changing breakthrough that was the sequencing of the human genome. But that was not the end, just the beginning. The “big” data being generated is coming out at an amazing rate. Personalised medicine is around the corner. We need skilled and talented biologists who are capable of analysing, processing and innovating. Gene therapy is hitting the headlines. Stem cell therapy may treat the previously untreatable. You can be part of this new golden age with a masters in medical genomics.

More about this course

We will be enhancing knowledge of genomic science from a health perspective. With our superb laboratory facilities we’re able to offer unique research project opportunities together with outstanding quality of teaching from research active staff.

We have access to guest lecturers at the highest levels of their profession who are collaborating with our staff (Barts, Imperial, Kings, UCL, St Georges, Brunel). In addition, we have a strong collaboration with the prestigious ACFIES in Columbia, which offers exciting international work exchange opportunities.
Students will be eligible to join the Royal Society of Biology with whom we are registering to be accredited.

We can offer unrivalled student learning support and our location means that the job market is on our doorstep. Connections with other prestigious universities mean that students will have the opportunity to meet and discuss their career options and secure work placements or apply for studentships.

You’ll be tested using a wide variety of assessment tools. We will ask students to write laboratory reports, give presentations, sit written exams, take part in debates, answer quizzes and experience virtual labs via asynchronous e-learning, make posters and defend their work aurally.

Modular structure

The modules listed below are for the academic year 2016/17 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules includes:
-Biomedical Informatics (core, 20 credits)
-Fundamentals of Medical Genetics and Genomics (core, 20 credits)
-Medical Genetics (core, 20 credits)
-Research Project for Medical Genomics (core, 60 credits)
-Scientific Frameworks for Research (core, 20 credits)
-Advanced Immunology (option, 20 credits)
-Bioinformatics and Molecular Modelling (option, 20 credits)
-Biomedical Diagnostics (option, 20 credits)
-Epidemiology of Emerging Infectious Disease (option, 20 credits)
-Ethical Issues in Biomedical Science (option, 20 credits)
-Molecular Oncology (option, 20 credits)

After the course

Genomics is important in both public and private domains. It is key for the NHS and via governmental initiatives (the 100,000 genome project). Thus there is a commensurate burgeoning of new genome centres in the UK and abroad: ie the Cambridge Genome centre. There are opportunities for people with degrees and training in human genetics. As genetic testing becomes part of many routine medical evaluations, more geneticists are needed to perform the tests. As genetics is recognised to be a basic part of all biological sciences, more teachers with expertise in genetics will also be needed. In India, genomics is growing through companies like Medgenome. It is indubitable that this is a currently growing area of the job market.

Read less
Regenerative Medicine is a vibrant area multidisciplinary area, encompassing life science and medicine, pharmaceutical-related approaches, as well as the use of cell-based therapies, to include also various types of stem-cells, bioactive scaffolds and drug delivery modalities. Read more

The Exciting Area of Regenerative Medicine

Regenerative Medicine is a vibrant area multidisciplinary area, encompassing life science and medicine, pharmaceutical-related approaches, as well as the use of cell-based therapies, to include also various types of stem-cells, bioactive scaffolds and drug delivery modalities. This 21st Century Medicine holds the promise of contributing to the development of alternatives to long-term, high-cost care approaches for many degenerative and age-related diseases, but at the same time is a rich area for question-driven research.

About the Course

The MSc Regenerative Medicine (taught masters) will provide students with a multidisciplinary approach to gaining a critical knowledge and training in the biological and chemical basis of tissue regeneration. You will cover subject such as stem cell biology, biotechnology, and tissue engineering. Students will be also made aware of the basics of intellectual property law, regulatory affairs, and ethical issues playing a role in the regenerative medicine industry. The delivery of the course comprises a mixture of structured taught modules, practical activities and self-directed study. The degree culminates in a laboratory-based research dissertation project.
Students will access high-specification laboratory facilities and benefit from the expertise of academics active in research projects at national and international level, with numerous opportunities to network with expert in the fields.

It is a vibrant area of endeavour, involving multidisciplinary interactions and strong employment opportunities for those trained in the field. Master Graduates will be well placed to secure jobs in academic research, as well as a wide range of careers outside the laboratory to include biotechnology business, legal sciences, and science communication. Additionally, the course prepares students for studies at PhD level.

Module on this Course

The delivery of the course Comprises a mixture of structured taught modules, practical activities and self-directed study. Students are set regular tasks and formative assessments helping strengthening skills of communication, team working, and self-evaluation. The Master degree culminates with a research project dissertation providing you with the opportunity to fully engage with contemporary research in the field; numerous opportunities for conducting part or the entirety of this research project outside the University or abroad can be discussed as required.

These are the Modules on this Course:
• Cell Biology and Biotechnology
• Developmental Biology and regeneration
• Advanced Laboratory Skills
• Research Methods
• Stem Cell Biology
• Cell Therapy and Tissue Engineering
• Dissertation Project

Read less
Tissue engineering is an ever-emerging interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. Read more
Tissue engineering is an ever-emerging interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. The Cardiff Institute of Tissue Engineering & Repair (CITER) MSc in Tissue Engineering aims to provide graduates from life sciences and clinical backgrounds with an advanced knowledge, understanding and skills in the science and practice of tissue engineering; from theoretical science, through to research translation and clinical application. The Programme provides in-depth training in this branch of biomedical science, including stem cell biology, biomaterials and tissue/organ engineering. The MSc offers a balanced combination of theory and practice; and can serve either as preparation for a PhD or as a self-contained advanced qualification in its own right. The MSc in Tissue Engineering is both lecture- and laboratory-based, and includes a number of opportunities to visit relevant clinical settings and local industrial partners. Graduates from this Programme will have a broad spectrum of knowledge and a variety of skills, making them highly attractive both to potential employers and research establishments.

Distinctive features of this course include:

• The first course of its kind in the UK, created in response to demand in the field of tissue engineering for interdisciplinary teaching.

• Excellent clinical, academic and research facilities.

• High probability of further research study and careers in tissue engineering and repair, relevant to the CITER MSc remit.

• Opportunity to study at Cardiff University, one of the UK’s major teaching and research universities.

• Opportunity to join a vibrant postgraduate community.

Structure

The CITER MSc Programme commences in September each year with Stage 1, a 6-month, taught component.

Stage 1 is taught almost entirely at a small group teaching level, supported by laboratory sessions, interactive workshops and tutorials, in addition to visits to relevant hospital clinics and local companies involved in producing tissue engineering and repair therapies. Modules are assessed by various written assignments, presentations and formal examinations.

On completing Stage 1, students undertake a 5-month, laboratory-based research project within the CITER network, between April-September (Stage 2). Projects are chosen by students from topics supplied by academic supervisors within CITER. Previous student projects have been in research areas such as embryonic or mesenchymal stem cell biology; cartilage, bone, skin or oral tissue repair; fibrosis; and biomaterials and drug delivery. Stage 2 culminates in the submission of an MSc Dissertation, based on MSc Project findings.

Core modules:

Cellular & Molecular Biology
Tissue Engineering From Concept To Clinical Practice
Research Methods
Stem Cells and Regenerative Medicine
Dissertation

Teaching

Teaching is delivered via lectures, laboratory sessions, interactive workshops and tutorials, in addition to visits to relevant hospital clinics, such as orthopaedics, nephrology and dermatology, and local companies involved in producing tissue engineering and repair therapies.

This Programme is based within the School of Dentistry and taught by academic staff from across Cardiff University and by external speakers.

All taught modules within the Programme are compulsory and students are expected to attend all lectures, laboratory sessions and other timetabled sessions. Students will receive supervision to help them complete the dissertation, but are also expected to engage in considerable independent study. Dissertation topics are normally chosen by the students from a list of options proposed by CITER academic staff in areas relevant to the MSc in Tissue Engineering.

Assessment

The 4 taught Modules within the Programme are assessed through in-course assessments, including:

Extended essays.
Oral presentations.
Poster presentations.
Statistical assignments.
Critical appraisals.
Dissertation (no more than 20,000 words).

Career prospects

After successfully completing this MSc, you should have a broad spectrum of knowledge and a variety of skills, making you highly attractive both to potential employers and research establishments.

Since its introduction in 2006, 95% of our MSc graduates have progressed onto career paths highly relevant to the CITER MSc remit. These include PhDs within CITER and at other UK, EU and USA Universities, Graduate-Entry Medicine, Specialist Registrar Training, Teaching, and positions in Industry and Clinical Laboratory settings.

Placements

You will have the opportunity to attend clinical attachments, in areas such as orthopaedics, nephrology and dermatology. Furthermore, you will also have the opportunity to visit local companies involved in producing tissue engineering and repair therapies for clinical use. These include Cell Therapy Ltd., Reneuron plc, Biomonde Ltd., and MBI Wales Ltd.

Read less
This comprehensive programme is intended for professionals specialising in paediatrics and child health and is based at the UCL Great Ormond Street Institute of Child Health, which sits in a unique position in UK paediatrics because of its strong links to Great Ormond Street Hospital for Children and UCL. Read more

This comprehensive programme is intended for professionals specialising in paediatrics and child health and is based at the UCL Great Ormond Street Institute of Child Health, which sits in a unique position in UK paediatrics because of its strong links to Great Ormond Street Hospital for Children and UCL.

About this degree

Students on this pathway gain an understanding of the principles of evidence-based paediatrics, and of the impact of molecular genetics on diagnosis and management of the child and family. They will build an awareness of current and future developments in paediatric medicine and child health and gain the skills necessary to critically appraise practice and policy, and undertake independent research if the full MSc is taken.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a dissertation/report (60 credits).

A Postgraduate Diploma (120 credits, full-time 9 months, flexible 2-5 years) is offered. The programme consists of four core modules (60 credits) and four optional modules (60 credits).

A Postgraduate Certificate (60 credits, part-time 1 year, flexible 1-2) is offered. The programme consists of four core modules (60 credits).

Core modules

  • Evidence-based Child Health
  • Research Methodology and Statistics
  • Students must also choose at least two further core modules from the following:
  • Molecular Biology of Normal Development and Birth Defects
  • Molecular and Clinical Aspects of Childhood Cancers
  • Clinical Genomics, Genetics and Rare Diseases
  • Please note: those modules not taken as core will still be available as options

Optional modules

  • Students must take at least two modules from those available across the other pathways of the Paediatrics and Child Health MSc, with the following modules particularly recommended for students in this area:
  • Stem Cells and Tissue Repair
  • Molecular Aspects of Cell and Gene Therapy
  • Clinical Applications of Cell and Gene Therapy
  • Applied Genomics

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials and research project supervision. Assessment is through a combination of multiple choice questions and short answer questions, essays, posters, presentations, reflective portfolios, critical appraisal of the literature and, for the full MSc, a dissertation and oral presentation.

Further information on modules and degree structure is available on the department website: Paediatrics and Child Health: Molecular and Genomic Paediatrics MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The programme provides an ideal foundation for further doctoral research in this field and/or a career in research and evidence-based practice in paediatrics.

Why study this degree at UCL?

The UCL Great Ormond Street Institute of Child Health pursues an integrated, multidisciplinary approach to enhance understanding, diagnosis, therapy and prevention of childhood diseases. Our research and our educational portfolio covers a broad range of paediatric issues, from molecular genetics to population health sciences, and our structure facilitates interdisciplinary work and follows flexibility for the development of new areas of investigation.

Our close relationship with the Great Ormond Street Hospital for Children means that much of our research and teaching is combined.

Students benefit from excellent facilities in both laboratory and non-laboratory subjects.



Read less
ENGINEERING THE FUNCTIONAL RESTORATION OF TISSUES AND ORGANS. Regenerative Medicine and Technology. (RMT) combines fundamental disciplines such as stem cell biology, materials science and biomechanics with more applied disciplines such as cell therapy, implantology and imaging. Read more

ENGINEERING THE FUNCTIONAL RESTORATION OF TISSUES AND ORGANS

Regenerative Medicine and Technology (RMT) combines fundamental disciplines such as stem cell biology, materials science and biomechanics with more applied disciplines such as cell therapy, implantology and imaging. New collaborations amongst these disciplines can assist in innovation in fundamental life sciences but also in new patient therapies and clinical applications with the ultimate goal to restore lost tissue or organ function.

This Master’s programme aims to train multidisciplinary scientists and to stimulate innovative research at the interface between biomedical sciences, engineering and clinical application. The rapidly emerging multidisciplinary field of regenerative medicine has significant effects on current and future health care applications. Our strong focus on technology will equip you with an understanding of processes ranging from specific cell culturing techniques and the use of biomaterials to computer models and imaging modalities.

Utrecht University offers the Master’s programme in cooperation with the University Medical Center Utrecht and the Faculty of Biomedical Engineering at Eindhoven University of Technology (TU/e). The programme combines the expertise of both universities and provides access to their state-of-the-art laboratories and research groups.

WHY STUDY REGENERATIVE MEDICINE AND TECHNOLOGY AT UTRECHT UNIVERSITY?

  • A unique combination of the TU/e technological with the UMC Utrecht clinical and UU biomedical approach
  • Excellent international reputation in the RM field and partners in innovative research projects with partners worldwide allowing students to do their internship at prestigious partner institutions all around the world .
  • New Utrecht Regenerative Medicine Center realized in 2015 at the Uithof campus gives students the opportunity to familiarize themselves with innovative science and to collaborate with the scientists associated with it
  • As a student you will have the opportunity to carry out two hands-on research projects at renowned research groups.

STUDY PROGRAMME

As a Master’s student of Regenerative Medicine and Technology you will take theoretical courses and seminars as well as master classes led by renowned specialists in the field in both Eindhoven and Utrecht. The courses are interactive, and challenge students to further improve their communication, writing and presenting skills. During your six to nine month internships you work in a lively research environment in academia or in consultancy companies and industry.

CAREER IN REGENERATIVE MEDICINE AND TECHNOLOGY

Regenerative Medicine and Technology will address the shortage of donor organs/tissue by providing the opportunity to produce tissue substitutes. As a graduates you can pursue a career in academic (PhD) or in industrial and commercial directions, including R&D, sales and consultancy.



Read less
This study course is for students who wish to become specialised graduates with an advanced biomedical knowledge concerning the links between the structure and the purpose of biomolecules and bio-systems operating at cellular and tissue level of the human body, in both physiological and pathological conditions. Read more

This study course is for students who wish to become specialised graduates with an advanced biomedical knowledge concerning the links between the structure and the purpose of biomolecules and bio-systems operating at cellular and tissue level of the human body, in both physiological and pathological conditions. The wide knowledge of the techniques is based on a solid practical activity in laboratories during the internship.

Subject to the educational aims of Class LM-9, the acquired knowledge allows specialized graduates to assist physicians in the diagnostic and therapeutic tasks involving the manipulation of cells, genes, and other biosystems requiring applicants to learn special skills in experimental biotechnology (e.g. Diagnosis and gene therapy; therapy through the use of genetically engineered cells; rational design and development of new medicines based on models of molecular targets known or derived from pharmacogenomic knowledge; preparation of nano-biotechnological tools for advanced diagnostics imaging and drug delivery; modulation of the immune response; diagnostics based on innovative processes of science and medical laboratory techniques; immunotherapy to targeted cells); organize and coordinate laboratory activities for advanced research or for diagnostic examinations requiring the use of biotechnological methods and the manipulation of cells or biotechnological materials; organize and coordinate the experimental protocols of clinical research involving the use of materials or biotechnology techniques; design and perform with autonomy research in biotechnology applied to medicine; lead and coordinate, also in governance, development programs and surveillance of biotechnology applied to human beings, taking into account the ethical, technical, environmental and economic implications.

Course structure

First year: Advanced Biomedical Technologies Or Laboratory Activities 1: Cellular And Molecular Therapies Or Laboratory Activities 2: Molecular And Systems Biology, Laboratory Medicine Technologies And Molecular Diagnostics, Pharmaceutical Biotechnology: Design And Analysis Of Biopharmaceuticals, Seminar

Molecular Medicine Curriculum: 6 Months At Ulm University: Glp/Gsp Bioethics, Molecular Oncology, Trauma Research And Regenerative Medicine

Traditional Curriculum: Proteomics And Bioinformatics, Cell And Organ Physiology And Medical Pathophysiology, Genetics, Immunology And General Pathology, Nanobiotechnology

Second year: Experimental Models In Vivo And Vitro, Pharmacology And Molecular Therapies, Stem Cell Biology And Molecular Biology Of Development, Thesis Work

Molecular Medicine Curriculum + Proteomics And Bioinformatics

Career opportunities

Biotechnology physicians will be able to head research laboratories in a predominantly technological and pharmacological environment and coordinate, as well as in terms of management and administration, program development and the monitoring of biotechnology applied on human beings with emphasis on the development of pharmaceutical products and vaccines, taking into account the ethical, technical, and legal implications and environmental protection.

  • To work in industry (pharma, biotech companies) for new diagnostics, molecular therapeutics, regenerative medicine and vaccines
  • To work in academia as a researcher in one of the many fields of Molecular Medicine
  • To be an entrepreneur in Biotech start up companies as a result of scientific discoveries

Graduates will be able to assist doctors in the diagnostic and in the therapeutic phases when those imply the manipulation of cells, genes and other bio systems and when specific biotechnological experimental competences are required.

Scholarships and Fee Waivers

The University of Padova, the Veneto Region and other organisations offer various scholarship schemes to support students. Below is a list of the funding opportunities that are most often used by international students in Padova.

You can find more information below and on our website here: http://www.unipd.it/en/studying-padova/funding-and-fees/scholarships

You can find more information on fee waivers here: http://www.unipd.it/en/fee-waivers



Read less
Lead academic. Dr Martin Nicklin. This flexible course focuses on the molecular and genetic factors of human diseases. Understanding those factors is crucial to the development of therapies. Read more

About the course

Lead academic: Dr Martin Nicklin

This flexible course focuses on the molecular and genetic factors of human diseases. Understanding those factors is crucial to the development of therapies. Core modules cover the fundamentals. You choose specialist modules from the pathway that interests you most. We also give you practical lab training to prepare you for your research project. The project is five months of invaluable laboratory experience: planning, carrying out, recording and reporting your own research.

Recent graduates work in academic research science, pharmaceuticals and the biotech industry.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

From Genome to Gene Function; Human Gene Bioinformatics; Research Literature Review; Human Disease Genetics; Modulating Immunity; Laboratory Practice and Statistics.

You choose: six optional pathways

1. Genetic Mechanisms pathway:


Modelling Protein Interactions; Gene Networks: Models and Functions.

2. Microbes and Infection pathway:


Virulence Mechanisms of Viruses, Fungi and Protozoa; Mechanisms of Bacterial Pathogenicity; Characterisation of Bacterial Virulence Determinants.

3. Experimental Medicine pathway:


Molecular and Cellular Basis of Disease; Model Systems in Research; Novel Therapies.

4. Cancer pathway:

Molecular Basis of Tumourigenesis and Metastasis; Molecular Techniques in Cancer Research; Molecular Approaches to Cancer Diagnosis and Treatment.

5. Cardiovascular pathway:

Vascular Cell Biology; Experimental Models of Vascular Disease; Vascular Disease Therapy and Clinical Practice.

6. Clinical Applications pathway:

Apply directly to this pathway. Available only to medical graduates. Students are recruited to a specialist clinical team and pursue the taught programme (1-5) related to the attachment. They are then attached to a clinical team for 20 weeks, either for a clinical research project or for clinical observations. See website for more detail and current attachments.

Teaching and assessment

Lectures, seminars, tutorials, laboratory demonstrations, computer practicals and student presentations. Assessment is continuous. Most modules are assessed by written assignments and coursework, although there are some written exams. Two modules are assessed by verbal presentations.

Your research project is assessed by a thesis, possibly with a viva.

Read less

Show 10 15 30 per page



Cookie Policy    X