• University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Kingston University Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
King’s College London Featured Masters Courses
Cranfield University Featured Masters Courses
University of London International Programmes Featured Masters Courses
"stem" AND "cell" AND "re…×
0 miles

Masters Degrees (Stem Cell Research)

We have 128 Masters Degrees (Stem Cell Research)

  • "stem" AND "cell" AND "research" ×
  • clear all
Showing 1 to 15 of 128
Order by 
This Master's degree in Cell and Gene Therapy provides an in-depth education in this cutting-edge and rapidly developing field. Read more

This Master's degree in Cell and Gene Therapy provides an in-depth education in this cutting-edge and rapidly developing field. It is delivered by scientists and clinicians researching, developing and testing new treatments for genetically inherited and acquired diseases using gene delivery technology, stem cell manipulation and DNA repair techniques.

About this degree

The degree covers all aspects of the subject, including basic biomedical science, molecular basis of disease, current and developing technologies and clinical applications. Students also receive vocational training in research methodology and statistics, how to perform a research project and complete a practical laboratory-based project.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a research dissertation (60 credits).

A Postgraduate Diploma (120 credits, full-time nine months or flexible up to five years) is offered

A Postgraduate Certificate (60 credits, full-time 12 weeks, part-time nine months, or up to two years flexible) is offered.

Core modules

  • Molecular Aspects of Cell and Gene Therapy
  • Clinical Applications of Cell and Gene Therapy
  • Research Methodology and Statistics
  • Stem Cell and Tissue Repair

Research Methodology and Statistics is not a core module for the PG Certificate. Students of the PG Certificate can choose an optional module.

Optional modules

  • Foundations of Biomedical Sciences
  • Applied Genomics
  • HIV Frontiers from Research to Clinics
  • Molecular and Genetic Basis of Paediatric Disease
  • Understanding Research and Critical Appraisal: Biomedicine
  • Laboratory Methods in Biomedical Science
  • Research Methodology and Statistics

Dissertation/report

All MSc students undertake an independent research project which culminates in a dissertation.

Teaching and learning

Teaching includes lectures, seminars, problem classes and tutorials. Assessment varies depending on the module, but includes written coursework, multiple-choice questions, written examinations, a practical analysis examination and the dissertation of up to 10,000 words

Further information on modules and degree structure is available on the department website: Cell and Gene Therapy MSc

Careers

This programme aims to equip students for careers in research, education, medicine and business in academic, clinical and industrial settings. Examples of potential careers could include academic research and/or lecturing in a university or other higher education setting, conducting clinical trials as part of a team of clinicians, scientists and allied health professionals, monitoring and analysing the results of clinical trials as part of a clinical trials unit, developing new therapies or intellectual property in the pharmaceutical industry or other business ventures.

Several of our graduates have gone on to secure PhD places. You can read testimonials from past students which include their destinations following graduation.

Recent career destinations for this degree

  • Biomedical Scientist, Science Health Society
  • Post-Doctoral Fellow, University of London
  • PhD in Cell and Gene Therapy, UCL
  • Research Assistant, The Magdi-Yacoub Institute / Heart Science
  • Scientist, Unspecified Pharmaceuticals Company

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The UCL Great Ormond Street Institute of Child Health (UCL GOS ICH), and its clinical partner Great Ormond Street Hospital (GOSH), is the largest centre in Europe devoted to clinical, basic research and postgraduate education in children's health, including haematopoietic stem cell transplantation (HSCT) and gene therapy.

The UCL School of Life & Medical Sciences (SLMS) has the largest concentration of clinicians and researchers active in cell and gene therapy research in Europe. This is reflected by the many groups conducting high-quality research and clinical trials in the field including researchers at UCL GOS ICH, the Division of Infection & Immunity, the Institute of Ophthalmology, the Institute for Women's Health, the Institute of Genetics and the Cancer Institute.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Great Ormond Street Institute of Child Health

80%: Clinical Medicine subjects; 81%: Public Health, Health Services and Primary Care subjects rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Tissue Engineering and Regenerative Medicine at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Tissue Engineering and Regenerative Medicine at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Every day we are hearing of ground breaking advances in the field of tissue engineering which offer tremendous potential for the future of regenerative medicine and health care. Staff at Swansea University are active in many aspects of tissue engineering.

Key Features of Tissue Engineering and Regenerative Medicine

We are actively researching many aspects of tissue engineering including the following areas:

- Characterisation and control of the stem cell niche

- Mechanical characterisation of stem cells and tissues

- Production of novel scaffolds for tissue engineering

- Electrospinning of scaffold materials

- Cartilage repair and replacement

- Bone repair and replacement

- The application of nanotechnology to regenerative medicine

- Wound healing engineering

- Reproductive Immunobiology

- Bioreactor design

As an MSc By Research Tissue Engineering and Regenerative Medicine student, you will join one of the teams at Swansea University working in tissue engineering and use state of the art research equipment within the Centre for NanoHealth, a collaborative initiative between the College of Engineering and Swansea University Medical School.

The MSc by Research in Tissue Engineering and Regenerative Medicine typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Aim of Tissue Engineering and Regenerative Medicine programme

The aim of this MSc by Research in Tissue Engineering and Regenerative Medicine is to provide you with a solid grounding within the field of tissue engineering and its application within regenerative medicine.

This will be achieved through a year of research in a relevant area of tissue engineering identified after discussion with Swansea academic staff. Working with two academic supervisors you will undertake a comprehensive literature survey which will enable the formulation of an experimental research programme.

As a student on the MSc by Research Tissue Engineering and Regenerative Medicine course, you will be given the relevant laboratory training to undertake the research program. The research will be written up as a thesis that is examined. You will also be encouraged to present your work in the form of scientific communications such as journals and conference poster presentation.

The MSc by Research in Tissue Engineering and Regenerative Medicine will equip you with a wealth of research experience and knowledge that will benefit your future career in academia or the health care industries.

Recent MSc by Research theses supervised in the area of Tissue Engineering at Swansea University include:

- Quality assurance of human stem cell/primary cell bank

- The development of electrospinning techniques for the production of novel tissue engineering scaffolds.

- The incorporation of pulsed electromagnetic fields into wound dressings.

- The application of pulsed electromagnetic fields for improved wound healing.

- The use of nanoparticles in the control of bacterial biofilms in chronic wounds.

- The control of bacterial adhesion at surfaces relevant to regenerative medicine.

- The production of micro-porous particles for bone repair

Facilities

The £22 million Centre for Nanohealth is a unique facility linking engineering and medicine, and will house a unique micro-nanofabrication clean room embedded within a biological research laboratory and with immediate access to clinical research facilities run by local NHS clinicians.

Links with industry

The academic staff of the Medical Engineering discipline have always had a good relationship with industrial organisations. The industrial input ranges from site visits to seminars delivered by clinical contacts.

The close proximity of Swansea University to two of the largest NHS Trusts in the UK outside of London also offers the opportunity for collaborative research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
This unique specialist course gives you practical experience in human embryonic stem cell techniques, helping you develop the professional skills employers want. Read more

About the course

This unique specialist course gives you practical experience in human embryonic stem cell techniques, helping you develop the professional skills employers want. You’ll also spend time in seminars considering the ethical and legal issues associated with the field.

Where your masters can take you

Graduates with skills in stem cell and regenerative medicine are in demand. Your degree will prepare you for a career in research in academia or industry, or in a clinical-related field. Our graduates are working all over the world – from the UK to China, India and the USA – and over half go on to doctoral study.

Learn from the experts

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research in this field. Our international reputation attracts highly motivated staff and students. Sheffield is a vibrant place to take a masters based on pioneering research.

Regular seminars from distinguished international experts help you to connect your studies to the latest developments. We’re also part of collaborative research groups for developmental biology, cell biology, physiology, pharmacology, neuroscience, models of human disease, stem cell science and regenerative medicine.

Our three research centres focus on translating laboratory research to the clinical environment: Bateson Centre, the Centre for Stem Cell Biology, and the Centre for Membrane Interactions and Dynamics.

Leaders in our field

We have a long track record of groundbreaking discoveries. These include breakthroughs in human stem cells for hearing repair, and the generation of animal models for Parkinson’s disease, schizophrenia, muscular dystrophies and their use for therapeutic studies.

Labs and equipment

We have purpose-built facilities for drosophila, zebrafish, chick and mouse genetics and for molecular physiology. Other facilities provide all the tools you’ll need to examine and analyse a range of cellular structures. We have an electron and a light microscopy centre, a PCR robotics facility, a flow cytometry unit and an RNAi screening facility.

Teaching and assessment

There are lectures, practical classes, tutorials and seminars. In small group teaching classes you’ll discuss, debate and present on scientific and ethical topics. Laboratory placements within the department provide you with one-to-one attention, training and support to do your individual research project. Assessment is by formal examinations, coursework assignments, debates, poster presentations and a dissertation.

Our teaching covers ethics, practical scientific skills and an overview of the current literature. You’ll also develop useful career skills such as presentation, communication and time management.

Core modules

Literature Review; Practical Research Project; Analysis of Current Science; Ethics and Public Understanding.

Examples of optional modules

Stem Cell Techniques; Practical Cell Biology; Practical Developmental Genetics; Bionanomaterials; Modelling Human Diseases; Stem Cell Biology.

Read less
The Institute of Genetic Medicine brings together a strong team with an interest in clinical and developmental genetics. Our research focuses on the causes of genetic disease at the molecular and cellular level and its treatment. Read more
The Institute of Genetic Medicine brings together a strong team with an interest in clinical and developmental genetics. Our research focuses on the causes of genetic disease at the molecular and cellular level and its treatment. Research areas include: genetic medicine, developmental genetics, neuromuscular and neurological genetics, mitochondrial genetics and cardiovascular genetics.

As a research postgraduate in the Institute of Genetic Medicine you will be a member of our thriving research community. The Institute is located in Newcastle’s Life Science Centre. You will work alongside a number of research, clinical and educational organisations, including the Northern Genetics Service.

We offer supervision for MPhil in the following research areas:

Cancer genetics and genome instability

Our research includes:
-A major clinical trial for chemoprevention of colon cancer
-Genetic analyses of neuroblastoma susceptibility
-Research into Wilms Tumour (a childhood kidney cancer)
-Studies on cell cycle regulation and genome instability

Cardiovascular genetics and development

We use techniques of high-throughput genetic analyses to identify mechanisms where genetic variability between individuals contributes to the risk of developing cardiovascular disease. We also use mouse, zebrafish and stem cell models to understand the ways in which particular gene families' genetic and environmental factors are involved in the normal and abnormal development of the heart and blood vessels.

Complex disease and quantitative genetics

We work on large-scale studies into the genetic basis of common diseases with complex genetic causes, for example autoimmune disease, complex cardiovascular traits and renal disorders. We are also developing novel statistical methods and tools for analysing this genetic data.

Developmental genetics

We study genes known (or suspected to be) involved in malformations found in newborn babies. These include genes involved in normal and abnormal development of the face, brain, heart, muscle and kidney system. Our research includes the use of knockout mice and zebrafish as laboratory models.

Gene expression and regulation in normal development and disease

We research how gene expression is controlled during development and misregulated in diseases, including the roles of transcription factors, RNA binding proteins and the signalling pathways that control these. We conduct studies of early human brain development, including gene expression analysis, primary cell culture models, and 3D visualisation and modelling.

Genetics of neurological disorders

Our research includes:
-The identification of genes that in isolation can cause neurological disorders
-Molecular mechanisms and treatment of neurometabolic disease
-Complex genetics of common neurological disorders including Parkinson's disease and Alzheimer's disease
-The genetics of epilepsy

Kidney genetics and development

Kidney research focuses on:
-Atypical haemolytic uraemic syndrome (aHUS)
-Vesicoureteric reflux (VUR)
-Cystic renal disease
-Nephrolithiasis to study renal genetics

The discovery that aHUS is a disease of complement dysregulation has led to a specific interest in complement genetics.

Mitochondrial disease

Our research includes:
-Investigation of the role of mitochondria in human disease
-Nuclear-mitochondrial interactions in disease
-The inheritance of mitochondrial DNA heteroplasmy
-Mitochondrial function in stem cells

Neuromuscular genetics

The Neuromuscular Research Group has a series of basic research programmes looking at the function of novel muscle proteins and their roles in pathogenesis. Recently developed translational research programmes are seeking therapeutic targets for various muscle diseases.

Stem cell biology

We research human embryonic stem (ES) cells, germline stem cells and somatic stem cells. ES cell research is aimed at understanding stem cell pluripotency, self-renewal, survival and epigenetic control of differentiation and development. This includes the functional analysis of genes involved in germline stem cell proliferation and differentiation. Somatic stem cell projects include programmes on umbilical cord blood stem cells, haematopoietic progenitors, and limbal stem cells.

Pharmacy

Our new School of Pharmacy has scientists and clinicians working together on all aspects of pharmaceutical sciences and clinical pharmacy.

Read less
We invite postgraduate research proposals in a number of disease areas that impact significantly on patient care. We focus on exploring the mechanisms of disease, understanding the ways disease impacts patients’ lives, utilising new diagnostic and therapeutic techniques and developing new treatments. Read more

We invite postgraduate research proposals in a number of disease areas that impact significantly on patient care. We focus on exploring the mechanisms of disease, understanding the ways disease impacts patients’ lives, utilising new diagnostic and therapeutic techniques and developing new treatments.

As a student you will be registered with a University research institute, for many this is the Institute for Cellular Medicine (ICM). You will be supported in your studies through a structured programme of supervision and training via our Faculty of Medical Sciences Graduate School.

We undertake the following areas of research and offer MPhil, PhD and MD supervision in:

Applied immunobiology (including organ and haematogenous stem cell transplantation)

Newcastle hosts one of the most comprehensive organ transplant programmes in the world. This clinical expertise has developed in parallel with the applied immunobiology and transplantation research group. We are investigating aspects of the immunology of autoimmune diseases and cancer therapy, in addition to transplant rejection. We have themes to understand the interplay of the inflammatory and anti-inflammatory responses by a variety of pathways, and how these can be manipulated for therapeutic purposes. Further research theme focusses on primary immunodeficiency diseases.

Dermatology

There is strong emphasis on the integration of clinical investigation with basic science. Our research include:

  • cell signalling in normal and diseased skin including mechanotransduction and response to ultraviolet radiation
  • dermatopharmacology including mechanisms of psoriatic plaque resolution in response to therapy
  • stem cell biology and gene therapy
  • regulation of apoptosis/autophagy
  • non-melanoma skin cancer/melanoma biology and therapy.

We also research the effects of UVR on the skin including mitochondrial DNA damage as a UV biomarker.

Diabetes

This area emphasises on translational research, linking clinical- and laboratory-based science. Key research include:

  • mechanisms of insulin action and glucose homeostasis
  • insulin secretion and pancreatic beta-cell function
  • diabetic complications
  • stem cell therapies
  • genetics and epidemiology of diabetes.

Diagnostic and therapeutic technologies

Focus is on applied research and aims to underpin future clinical applications. Technology-oriented and demand-driven research is conducted which relates directly to health priority areas such as:

  • bacterial infection
  • chronic liver failure
  • cardiovascular and degenerative diseases.

This research is sustained through extensive internal and external collaborations with leading UK and European academic and industrial groups, and has the ultimate goal of deploying next-generation diagnostic and therapeutic systems in the hospital and health-care environment.

Kidney disease

There is a number of research programmes into the genetics, immunology and physiology of kidney disease and kidney transplantation. We maintain close links between basic scientists and clinicians with many translational programmes of work, from the laboratory to first-in-man and phase III clinical trials. Specific areas:

  • haemolytic uraemic syndrome
  • renal inflammation and fibrosis
  • the immunology of transplant rejection
  • tubular disease
  • cystic kidney disease.

The liver

We have particular interests in:

  • primary biliary cirrhosis (epidemiology, immunobiology and genetics)
  • alcoholic and non-alcoholic fatty liver disease
  • fibrosis
  • the genetics of other autoimmune and viral liver diseases

Magnetic Resonance (MR), spectroscopy and imaging in clinical research

Novel non-invasive methodologies using magnetic resonance are developed and applied to clinical research. Our research falls into two categories:

  • MR physics projects involve development and testing of new MR techniques that make quantitative measurements of physiological properties using a safe, repeatable MR scan.
  • Clinical research projects involve the application of these novel biomarkers to investigation of human health and disease.

Our studies cover a broad range of topics (including diabetes, dementia, neuroscience, hepatology, cardiovascular, neuromuscular disease, metabolism, and respiratory research projects), but have a common theme of MR technical development and its application to clinical research.

Musculoskeletal disease (including auto-immune arthritis)

We focus on connective tissue diseases in three, overlapping research programmes. These programmes aim to understand:

  • what causes the destruction of joints (cell signalling, injury and repair)
  • how cells in the joints respond when tissue is lost (cellular interactions)
  • whether we can alter the immune system and ‘switch off’ auto-immune disease (targeted therapies and diagnostics)

This research theme links with other local, national and international centres of excellence and has close integration of basic and clinical researchers and hosts the only immunotherapy centre in the UK.

Pharmacogenomics (including complex disease genetics)

Genetic approaches to the individualisation of drug therapy, including anticoagulants and anti-cancer drugs, and in the genetics of diverse non-Mendelian diseases, from diabetes to periodontal disease, are a focus. A wide range of knowledge and experience in both genetics and clinical sciences is utilised, with access to high-throughput genotyping platforms.

Reproductive and vascular biology

Our scientists and clinicians use in situ cellular technologies and large-scale gene expression profiling to study the normal and pathophysiological remodelling of vascular and uteroplacental tissues. Novel approaches to cellular interactions have been developed using a unique human tissue resource. Our research themes include:

  • the regulation of trophoblast and uNk cells
  • transcriptional and post-translational features of uterine function
  • cardiac and vascular remodelling in pregnancy

We also have preclinical molecular biology projects in breast cancer research.

Respiratory disease

We conduct a broad range of research activities into acute and chronic lung diseases. As well as scientific studies into disease mechanisms, there is particular interest in translational medicine approaches to lung disease, studying human lung tissue and cells to explore potential for new treatments. Our current areas of research include:

  • acute lung injury - lung infections
  • chronic obstructive pulmonary disease
  • fibrotic disease of the lung, both before and after lung transplantation.

Pharmacology, Toxicology and Therapeutics

Our research projects are concerned with the harmful effects of chemicals, including prescribed drugs, and finding ways to prevent and minimise these effects. We are attempting to measure the effects of fairly small amounts of chemicals, to provide ways of giving early warning of the start of harmful effects. We also study the adverse side-effects of medicines, including how conditions such as liver disease and heart disease can develop in people taking medicines for completely different medical conditions. Our current interests include: environmental chemicals and organophosphate pesticides, warfarin, psychiatric drugs and anti-cancer drugs.

Pharmacy

Our new School of Pharmacy has scientists and clinicians working together on all aspects of pharmaceutical sciences and clinical pharmacy.



Read less
Stem cells are utilised in various ways in modern biosciences. Read more

Stem cells are utilised in various ways in modern biosciences. Especially in Neuroscience, use of induced pluripotent stem cells (iPSCs) from patients and genome engineered pluripotent stem cells (PSCs) has recently provided us with a new complimentary human brain disease model system. In addition, this provides researchers with the ability to follow human neural development in a dish, and possibilities of generating cell sources for regenerative therapies. The Master of Research (MRes) in Stem Cell Neurobiology is designed to provide you with greater knowledge, understanding, experience, and skills in this fast developing and innovative field.

Cardiff University has internationally recognised stem cell scientists and neuroscientists who will deliver lectures to this programme and will also offer research project opportunities. In addition, the programme includes advanced practical training in the Neuroscience and Mental Health Research Institute (NMHRI). Moreover, you will develop key skills such as scientific writing, research presentation, statistics and bioinformatics that are essential skills required by modern scientists.

The MRes in Stem Cell Neurobiology is suitable for those:

  • Wishing to gain Stem Cell Neurobiology relevant research skills before embarking on a PhD.
  • Those who require Stem Cell and/or Neuroscience related research qualifications but not necessarily a PhD to become a more competent and employable researcher.
  • Those that want to experience research before deciding on whether or not to undertake a PhD.


Read less
Cell-to-cell signalling in development and disease. Do you have a clear and specific interest in cancer, stem cells or developmental biology? Our Master’s programme. Read more

Cell-to-cell signalling in development and disease

Do you have a clear and specific interest in cancer, stem cells or developmental biology? Our Master’s programme Cancer, Stem Cells and Developmental Biology combines research in three areas: oncology, molecular developmental biology and genetics. The focus is on molecular and cellular aspects of development and disease, utilising different model systems (mice, zebrafish, C. elegans, organoids and cell lines). The programme will guide you through the mysteries of embryonic growth, stem cells, signalling, gene regulation, evolution, and development as they relate to health and disease.

The right choice for you?

Given that fundamental developmental processes are so often impacted by disease, an understanding of these processes is vital to the better understanding of disease treatment and prevention. Adult physiology is regulated by developmental genes and mechanisms which, if deregulated, may result in pathological conditions. If you have a specific interest in cancer, stem cells or developmental biology, this Master’s programme is the right choice for you. Cancer, Stem Cells and Developmental Biology offers you international, high ranked research training and education that builds on novel methodology in genomics, proteomics, metabolomics and bioinformatics technology applied to biomedical and developmental systems and processes.

What you’ll learn

In the Cancer, Stem Cells and Developmental Biology programme you will learn to focus on understanding processes underlying cancer and developmental biology using techniques and applications of post-genomic research, including microarray analysis, next generation sequencing, proteomics, metabolomics and advanced microscopy techniques. You explore research questions concerning embryonic growth, stem cells, signaling pathways, gene regulation, evolution and development in relation to health and disease using various model systems. As a Master’s student you will take theory courses and seminars, as well as master classes led by renowned specialists in the field. The courses are interactive, and challenge you to further improve your writing and presenting skills.

Why study Cancer, Stem Cells and Developmental Biology at Utrecht University?

Compared to most other Master’s programmes in cancer and stem cell biology in the Netherlands, in Utrecht we offer:

  • Strong focus on fundamental molecular aspects of disease related questions, particularly questions related to cancer and the use of stem cells in regenerative medicine
  • A unique emphasis on Developmental Biology, a process with many connections to cancer
  • The opportunity to carry out two extensive research projects at renowned research groups
  • An intensive collaboration with national and international research institutes, allowing you to do your internship at prestigious partner institutions all around the world

Career in Cancer, Stem Cells and Developmental Biology

As a MSc graduate trained in both fundamental and disease-oriented aspects of biomedical genetics you are in great demand. You’ll be prepared for PhD study in one of the participating or associated groups. Alternatively, leaving after obtaining your MSc degree you will profit from a solid education in molecular genetics, in addition to your specialised knowledge of developmental biology. You’ll find your way to biotechnology, the pharmaceutical industry or education.



Read less
This pioneering course aims to maximise the employability of students. Our track record shows 90% of graduates secure ste cell technology-related posts including PhDs, positions in industry and government-funded agencies (e.g. Read more

Overview

This pioneering course aims to maximise the employability of students. Our track record shows 90% of graduates secure ste cell technology-related posts including PhDs, positions in industry and government-funded agencies (e.g. stem cell banks).

The course content has been designed in consultation with stem cell experts and potential employers in biotechnology, academia, industry and bodies regulating stem cells, to provide the necessary expertise to compete in an ever changing world.

Highlights

- Students learn a broad range of transferable skills including critical analysis, data handling, and oral and written skills.
- Teaching is by leading research scientists who are working at the cutting edge of new developments, ensuring the most recent research is integrated into the course.
- Teaching also incorporates guest speakers recognised as international experts in the stem cell technology field, including clinicians who want to use stem cells in regenerative medicine.

Modules

The course incorporates the following modules:

- Cell, Developmental and Molecular Biology
- Module 2: Embryonic Stem Cells
- Module 3: Adult and Fetal Stem Cells
- Module 4: Translational Technologies for Stem Cells
- Module 5: Research Skills & Stem Cell Technology Exploitation
- Module 6: Regenerative Medicine Research Project

Approximately 40% of the taught modules encompass direct laboratory training. This high level of practical work means we take a maximum of 16 students. This ensures we have good tutor/student ratios and specialist equipment is widely accessible.

Read less
This innovative master program enables you to meet the demands of employers in the scientific field worldwide. You will be trained in all aspects of cutting edge molecular stem cell biology including legal and ethical aspects, good medical practice and acquisition of third party funding. Read more

Overview

This innovative master program enables you to meet the demands of employers in the scientific field worldwide. You will be trained in all aspects of cutting edge molecular stem cell biology including legal and ethical aspects, good medical practice and acquisition of third party funding. The course combines cutting edge approaches such as iPSC and bioprinting with traditional basic disciplines such as histology to secure an in-depth understanding towards innovative translational approaches in medicine. The course is entirely taught in English.

Learning outcome

Holding our degree means you have acquired a robust expertise in theory and practice in one of the most scientifically and ethically demanding biomedical fields of today.

During the first year of the program, students achieve a fundamental understanding of developmental processes that are linked to the current progress of stem cell research. This theoretical knowledge is further deepened and expanded on by hands-on experience in the relevant laboratories.

The inclusion of local national and international guest lecturers gives students the opportunity to get an idea what is going on in the field of stem cell research and which labs can be chosen for specialized practicals.

During the second year, the curriculum emphasizes application-oriented courses suited to understand the cellular and molecular basis of human diseases and to familiarize with the complex demands of modern medicine. The 4th semester is reserved for the master thesis; multiple international collaborations and a mobility window offer the chance to perform practicals and master thesis abroad.

Modules

The major modules in the program are listed below:

Stem Cell Physiology (I and II)
3x Lecture Series on recent developments in stem cell research (by national and international experts)
Bioinformatics
Stem Cell Practical Courses- 2 weeks-long practical courses (4 times)
Molecular Tracing Methods
Molecular Genetic Methods
Tissue Engineering
Lab Rotation
Pathology of Degenerative Diseases
Course in Animal Care and Handling
Scientific Responsibility in Biomedicine
Lab Bench Project & Grant Writing
Master Project
Language Courses

Possibility for International Double degree program `Stem Cell Biology and Regenerative Medicine´

In addition to the regular master program, we also offer a double degree master program in `Stem Cell Biology and Regenerative Medicine’ in collaboration with Jinan University in China. This program is supported by the DAAD (Deutscher Akademischer Austauschdienst) with a stipend of 800, -- Euros/month plus travel expenses (flight) for every participating student. The selection for this program will be made from the regular master students. More information is available on our website.

Ruhr University Bochum (RUB)

Ruhr University Bochum (RUB) has a very international outlook and it is closely interconnected with the thriving research and business initiatives of the surrounding Ruhr region. Aside from the RUB, the surrounding Ruhr region offers a lot of opportunities to young researchers, such as 15 universities, 4 Fraunhofer institutes, 4 Leibnitz institutes and 3 Max-Planck institutes, which makes it easy for the students to interact with the experts and get hands-on experience in the state-of-the-art laboratories.

Read less
The MSc in Molecular Medicine gives you the opportunity to develop as a scientist or scientifically-literate clinician through an advanced understanding of the molecular basis of many diseases and their treatments. Read more

The MSc in Molecular Medicine gives you the opportunity to develop as a scientist or scientifically-literate clinician through an advanced understanding of the molecular basis of many diseases and their treatments.

You’ll study how to apply molecular approaches to the diagnosis, prevention and treatment of a range of cancers, chronic, autoimmune and genetic diseases. You’ll also carry out a research project in one of these areas within a research group at the forefront of the field. Project supervision is assured by outstanding academics and clinicians working on cutting-edge research.

This flexible programme allows you to develop core scientific skills and follow your professional interests with a choice of optional modules. You'll be part of a world-renowned School and will be taught by internationally recognised scholars.

The MSc programme comprises 180 credits. You may choose to exit the programme at an earlier stage, with either a PG Certificate (60 credits) or a PG Diploma (120 credits).

Course content

You’ll build core scientific skills through four compulsory modules studied over two terms. Alongside these, your optional modules (two each term) allow you to tailor your study to your interests. Modules typically last 11 weeks.

Throughout the programme you will:

  • gain an in-depth knowledge and understanding of the principles, application and potential of molecular medicine
  • learn techniques in the field of molecular biology, immunology, cell biology and chemistry
  • develop the ability to carry out molecular, biological and bioinformatics research for investigation of human diseases
  • be able to engage in research projects using the latest technologies that generate results with scientific impact and the potential for improving patient health
  • learn to critically evaluate current issues in molecular medicine, translate research findings into clinical applications, and recognise commercial opportunities.

Research project

You’ll spend approximately half of the programme on your individual research project, which usually runs from April to August. The research project allows you to work as part of a research team in a cutting edge discipline.

You will have a wide choice of research opportunities in Applied Health Research, Cancer and Pathology, Cardiovascular, Genes and Development and Musculoskeletal Research. You select your project from a range of research projects offered to MSc Molecular Medicine students.

The research project is based in one of the research laboratories at the St James’s University Hospital campus.

Course structure

Compulsory modules

  • Research Informatics and Dissemination 15 credits
  • Preparing for the Research Project 15 credits
  • Research Project 75 credits
  • Research Methods 15 credits

Optional modules

  • Introduction to Genetic Epidemiology 15 credits
  • Human Molecular Genetics 15 credits
  • Immunity and Disease 15 credits
  • Animal Models of Disease 15 credits
  • Stem Cell Biology: A Genomics and Systems Biology Approach to Haematopoiesis 15 credits
  • Cancer Biology and Molecular Oncology 15 credits

For more information on typical modules, read Molecular Medicine MSc in the course catalogue

Learning and teaching

The taught components of the programme provide a perfect knowledge background and research training to get the best out of your research project.

You’ll be taught by active scientists and clinicians who are world-leading in their research fields, through lectures, workshops, laboratory practicals, seminars and tutorials. All our students judged the programme as “intellectually stimulating” in 2014 student survey.

Teaching is mainly at St James's University Hospital, a busy research facility with research laboratories and a teaching laboratory, computer cluster, library and meeting rooms. You can easily get to and from the University campus with the free NHS shuttlebus.

We encourage you to participate in the School of Medicine Institutes’ activities, such as the invited speaker seminar series. You also have access to all the wider University of Leeds facilities.

Assessment

A major objective of the programme is to train you to formulate your own ideas and express them logically, and this will be tested in every module assessment.

A typical module will be assessed by two assignments. Assessments include written assignments, as well as delivering presentations and posters, and leading discussions.

The MSc programme comprises 180 credits. You may choose to exit the programme at an earlier stage, with either a PG Certificate (60 credits) or a PG Diploma (120 credits).

Career opportunities

This exciting programme provides excellent training for:

  • science graduates looking for an opportunity to go on to do doctoral research, enter academic medicine or pursue a career in industry, clinical service




Read less
This innovative distance-learning programme is taught online and will provide you with knowledge and understanding in the highly topical and exciting field of stem cell biology and regeneration. Read more
This innovative distance-learning programme is taught online and will provide you with knowledge and understanding in the highly topical and exciting field of stem cell biology and regeneration. You will be guided from the origins of this field through to its application (and potential applications) in treating human disease, covering the latest tools and technologies available for study in this area. Programme content is delivered by researchers active in the field, ensuring that the latest breakthroughs are communicated.

Using a creative distance-learning model, the programme delivers lectures, online discussions and assessments over the internet. This offers you more flexibility than traditional campus-based courses as you can study in your own environment. You will only be required to visit Bristol for your formal examinations at the end of the academic year. This distance-learning model, together with a part-time study option, makes the programme particularly appealing to those students who wish to combine full-time employment with study.

Programme structure

Core units
-Introduction to Stem Cells and Regeneration
-Neurodegeneration and Ophthalmic Disorders
-Molecular Tools in Stem Cells and Regeneration
-Peripheral Neuropathy and Spine
-Cell Signalling
-Biomaterials and their Use in the Skeletal System
-Stem Cells in Cardiac Systems
-Research Project/Dissertation

Careers

The programme can open up a number of different career opportunities. It can be used as a pathway to further studies (eg PhD) which in turn could lead to a research or academic career in the field. It can also open up opportunities in private industry, for example:
-Biotechnology sector research/sales
-Stem cell business development
-Stem cell banking
-Stem cell patents
-Stem cell clinical translation
-Charity research development
-Pharmaceutical industry
-Stem cell regulatory bodies

Read less
Training in biotechnology research with a strong emphasis on development of advanced practical skills and research methods. Course detail. Read more

Training in biotechnology research with a strong emphasis on development of advanced practical skills and research methods.

Course detail

MSc Biotechnology Research is designed to provide up-to-date knowledge and understanding of core areas of biotechnology with particular emphasis on enhancing practical and research skills. Within the programme, students will cover a range of diverse topics including: bioinformatics, diagnostics, genetic modification, stem cell technology and proteomics and modules will include "hands on" training in advanced laboratory techniques. Further study in research planning, scientific communication, and professional practice will provide opportunities for critical reflection and evaluation of current practice and policy, enabling lifelong learning and professional development in biotechnology.

The course has a strong practical element, with laboratory classes integrated in the modules across the first two semesters. Over the summer semester students also have the opportunity to undertake their own independent research project within one of the research groups in the internationally renowned Biomedical Sciences Research Institute (BMSRI) at Ulster. The BMSRI research covers biomedicine from the molecular to the whole human including disease development, prevention, diagnosis and therapy. BMSRI is ranked within the top five out of 94 universities submitted in the UK REF2014 panel in terms of research power in biomedical science. Significantly, in REF2014 our research environment was awarded an unprecedented 100% 4* (world-leading) and 95% of our research impact was scored world leading (4*) and internationally excellent (3*) while 81% of research published papers were judged to be world leading and internationally excellent (4* and 3*).

Career options

The course is primarily designed for those who wish to develop their career in the biosciences with particular emphasis on biotechnology research; including either academia or bio-pharmaceutical and bio-industries.

On completion of this course, students will have gained experience of advanced laboratory techniques, problem-solving and research design in a range of Biotechnology areas and be well prepared to work in research positions or to proceed on to do a research degree in a related area.

How to apply: https://www.ulster.ac.uk/apply/how-to-apply#pg

Why Choose Ulster University ?

1. Over 92% of our graduates are in work or further study six months after graduation.

2. We are a top UK university for providing courses with a period of work placement.

3. Our teaching and the learning experience we deliver are rated at the highest level by the Quality Assurance Agency.

4. We recruit international students from more than 100 different countries.

5. More than 4,000 students from over 50 countries have successfully completed eLearning courses at Ulster University.

Flexible payment

To help spread the cost of your studies, tuition fees can be paid back in monthly instalments while you learn. If you study for a one-year, full-time master’s, you can pay your fees up-front, in one lump sum, or in either five* or ten* equal monthly payments. If you study for a master’s on a part-time basis (e.g. over three years), you can pay each year’s fees up-front or in five or ten equal monthly payments each year. This flexibility allows you to spread the payment of your fees over each academic year. Find out more by visiting https://www.ulster.ac.uk/apply/fees-and-finance/postgraduate

Scholarships

A comprehensive range of financial scholarships, awards and prizes are available to undergraduate, postgraduate and research students. Scholarships recognise the many ways in which our students are outstanding in their subject. Individuals may be able to apply directly or may automatically be nominated for awards. Visit the website: https://www.ulster.ac.uk/apply/fees-and-finance/scholarships

English Language Tuition

CELT offers courses and consultations in English language and study skills to Ulster University students of all subjects, levels and nationalities. Students and researchers for whom English is an additional language can access free CELT support throughout the academic year: https://www.ulster.ac.uk/international/english-language-support



Read less
This MSc offers a comprehensive guide to all aspects of modern day drug design. It is taught by research scientists, clinicians and industry experts. Read more

This MSc offers a comprehensive guide to all aspects of modern day drug design. It is taught by research scientists, clinicians and industry experts. Our graduates have progressed to undertake or obtain PhDs or medical studentships, or have found employment in both the private and public sector.

About this degree

The programme covers all aspects of drug design, including genomics, bioinformatics, structural biology, cheminformatics, molecular modelling and fragment-based drug design, drug target selection, intellectual property and marketing. New therapies and research areas such as antibodies, siRNA, stem cells and high throughput screening are covered. Students will develop essential skills such as research methods and techniques of drug design.

Students undertake modules to the value of 180 credits.

The programme consists of eight core modules (120 credits) and a research project (60 credits).

A Postgraduate Diploma (120 credits) is also offered.

A Postgraduate Certificate (60 credits) is also offered

Core modules

  • Bioinformatics and Structural Biology
  • Target Identification and High Throughput Screening
  • Cheminformatics and Computer Drug Design
  • Biological Molecules as Therapeutics - Antibodies, siRNA, and Stem Cells
  • Biophysical Screening Methods, Protein NMR and Phenotypic Screening
  • Fragment Based Drug Design (FBDD)
  • Target Selection - Scientific Grounds
  • Target Selection - Commercial and Intellectual Property

Optional modules

There are no optional modules for this programme.

Dissertation/report

All MSc students undertake an independent research project which can take the form of a wet lab or dry lab computational or modelling based project or an external project with an industrial sponsor.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, self study, practical sessions and discussion groups. The research project forms one third of the programme. Each of the taught modules is assessed by unseen written examination (50%) and coursework (50%). The research project is assessed by the dissertation and viva.

Further information on modules and degree structure is available on the department website: Drug Design MSc

Careers

The programme will provide a good background for students looking to establish a career in drug design/discovery and related industries (biotech, pharma, national research laboratories and NHS agencies), and for industry professionals seeking to gain a greater understanding of new methodology. The knowledge and transferable skills delivered will also be useful for those intent on further PhD or medical studies.

Recent career destinations for this degree

  • Clinical Research Assistant, King's College London
  • Laboratory Analyst, GSK (GlaxoSmithKline)
  • Scientist, AstraZeneca
  • PhD Biochemistry, University of Cambridge
  • PhD Researcher (Molecular Biology), EMBL (European Molecular Biology Laboratory)

Employability

Graduates from this programme have progressed to PhD/medical studentships at different universities and research institutes around the world, including Oxford, UCL, Grenoble, EMBL, and in the USA and China. Many alumni have secured positions in research teaching and technical sales in the private and public sectors.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL is ranked 7th in the QS World University Rankings 2018 and is located in the centre of one of the world's finest cities. UCL is one of Europe's best and largest centres for biomedical research.

At the Wolfson Institute for Biomedical Research, we have pioneered multidisciplinary research with a particular emphasis on translating that research into useful clinical benefit. Our research expertise includes: medicinal chemistry, computational drug design, neuronal development and signalling, cell cycle control, intensive care medicine, stem cells, mitochondrial biology and cancer.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Division of Medicine

80% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
This degree allows you to undertake a major research project in a specialised subject within the UCL Division of Biosciences. To cater for the diversity of topics available, the degree is split into ten subject streams, each with a dedicated tutor. Read more

This degree allows you to undertake a major research project in a specialised subject within the UCL Division of Biosciences. To cater for the diversity of topics available, the degree is split into ten subject streams, each with a dedicated tutor. The programme can act as a gateway into further research in academia or industry.

About this degree

Students gain knowledge of their chosen specialism through the major research project, alongside basic skills for planning research and the written, verbal and visual communication of science. The acquisition and critical analysis of primary scientific literature are essential, as is experiencing the multidisciplinary and collaborative nature of bioscience research.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), one optional module (15 credits) and a research dissertation (120 credits).

Core modules

  • Research Skills
  • The Scientific Literature
  • Seminar Series

Optional modules

Students select one optional module from the field of study of their chosen subject stream. Choice will be guided by the stream tutor and influenced by students' previous experience and project topic.

  • Genetics
  • Computational Biology
  • Stem Cells and Developmental Biology
  • Cell Biology
  • Structural Biology and Molecular Biophysics
  • Neuroscience
  • Biochemistry
  • Biotechnology
  • Biology of Ageing and Age-related Disease
  • Pharmacology

Dissertation/report

All students undertake an independent laboratory-based research project which culminates in a dissertation of 15,000-18,000 words.

Teaching and learning

The programme is delivered through lectures, seminars and tutorials, combining research-led and skills-based modules. The core modules are assessed by assignments and coursework, whereas the optional module will also have an examination element. The research project is assessed by an oral presentation, submission of a dissertation and is subject to oral examination.

Further information on modules and degree structure is available on the department website: Biosciences MRes

Careers

This programme provides an ideal foundation for further doctoral research in the field of biosciences, and we envisage that many of the graduates of this programme will undertake a PhD or enter employment in an advanced capacity in industry or the public sector. Approximately 70% of graduates have obtained a funded PhD position, either at UCL or elsewhere.

Recent career destinations for this degree

  • Assistant Editor, Biomed Central
  • Histopathology Trainee, London Deanery (NHS)
  • PhD in Biosciences (Brain Sciences), UCL
  • PhD in Structural and Molecular Biology, UCL
  • PhD in Evolutionary Development, University of York

Employability

The flexibility and responsiveness of the Biosciences MRes programme provides training in many areas of cutting-edge scientific research. This launches our students into prime academic and industrial careers. Most of our students progress to further study in PhD positions at leading universities but others in the past have used the generic training from the programme to enter medical publishing and commercial science laboratories, for example.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL is recognised as one of the world's best research environments within the field of biological and biomedical science.

The UCL Division of Biosciences is in a unique position to offer tuition, research opportunities in internationally recognised laboratories and an appreciation of the multidisciplinary nature of biosciences research.

The division includes the Departments of Cell & Developmental Biology; Neuroscience, Physiology & Pharmacology; Genetics, Evolution & Environment; and Structural & Molecular Biology and also hosts the Centre for Stem Cells & Regenerative Medicine, the UCL Genetics Institute and the Institute for Healthy Ageing.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Division of Biosciences

82% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Over the last two decades there has been an explosion of interest in brain science across academia, industry and the media. Read more

Over the last two decades there has been an explosion of interest in brain science across academia, industry and the media. The integration of cognitive brain imaging with neuroscience will play a central part in discovering how the brain functions in health and disease in the 21st century, as illustrated by the Human Brain Project in Europe and The Brain Initiative in the USA. The taught Brain Sciences degree will help you gain interdisciplinary knowledge “from molecules to mind” and enable you to develop research skills in cognitive brain imaging, fundamental neuroscience and brain disorders.

Why this programme

  • You will study the Brain Sciences degree in an institute that strives to understand the brain at multiple levels of function, from cells to cognition using approaches ranging from molecular, cellular and systems level investigations to brain imaging.
  • Lectures will be given by staff who are international research leaders and who publish cutting edge research at the forefront of brain sciences.
  • You will attend seminars on a wide range of topics given by eminent external speakers visiting the Institute from around the world as part of our Current Research Topics course. 
  • You will carry out a research project working in labs equipped with technology and expertise at the forefront of brain science research, including
  • 3 Tesla fMRI system to image human brain function
  • magnetoencephalography and electroencephalography to study neural activity
  • transcranial magnetic stimulation for non-invasive brain stimulation
  • 7 Tesla experimental MRI scanner for studying models of disease 
  • confocal microscopy for high resolution cellular imaging
  • models of disease for pharmcolgical, gene and stem cell therapies.
  • You will receive training in research design, data handling, data analysis, and reporting of results.
  • The brain science programme allows student choice and flexibility. Through your choice of optional taught courses you can develop in-depth specialist knowledge to enhance further academic research as well as transferable skills for a career outside academia.
  • You will join a vibrant community of masters students from other programmes and for your research project you will be based in laboratories alongside PhD students, postdocs and senior researchers.
  • Through the range of teaching methods and assessments used you will gain skills in critical appraisal, independent working, presentations, writing scientific documents and time management.

Programme structure

The programme will consist of compulsory taught courses, selected optional courses and a research project spread over 11-12 months.

Core courses and research project

  • Fundamentals for Neuroscience Research
  • Cognitive Brain Imaging
  • The Research Cycle
  • Current Research Topics in Brain Sciences
  • Neuroscience: Animal Models of Disease and Function
  • Designing a Research Project
  • Brain Sciences Research Project

Optional courses

  • Introduction to Matlab for Biologists
  • Neuroscience: In Vivo Models
  • In Vitro and Analytical Approaches in Neuroscience
  • Bioimaging for Life Sciences
  • Current Trends and Challenges in Biomedical Research and Health
  • Technology Transfer and Commercialisation of Biomedical Research
  • Neuroinflammation 
  • Statistics and Research Design

Teaching and learning methods

Taught courses are delivered by lectures, tutorials, problem-based learning and computer-based sessions supplemented by a wide range of electronic resources for independent or group study. You will use the primary scientific literature as an information resource and through project work will develop skills in team-working, experimental design and data interpretation. Through assessment of coursework you will gain skills in oral and written communication.

Career prospects

The University of Glasgow MSc in Brain Sciences provides you with many career opportunities. 

Research:  MSc students can enter a research career, mainly by undertaking further postgraduate research studies towards a PhD, or by working in research laboratories in academic settings.

Industry: Other options include going on to work in a wide range of commercial sectors including the pharmaceutical or biotechnological industries and scientific publishing.



Read less

Show 10 15 30 per page



Cookie Policy    X