• Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses

Postgrad LIVE! Study Fair

Edinburgh

University of Nottingham in China Featured Masters Courses
Southampton Solent University Featured Masters Courses
Ulster University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
University of Leeds Featured Masters Courses
"stem" AND "cell" AND "re…×
0 miles

Masters Degrees (Stem Cell And Regenerative Medicine)

We have 40 Masters Degrees (Stem Cell And Regenerative Medicine)

  • "stem" AND "cell" AND "regenerative" AND "medicine" ×
  • clear all
Showing 1 to 15 of 40
Order by 
This unique specialist course gives you practical experience in human embryonic stem cell techniques, helping you develop the professional skills employers want. Read more

About the course

This unique specialist course gives you practical experience in human embryonic stem cell techniques, helping you develop the professional skills employers want. You’ll also spend time in seminars considering the ethical and legal issues associated with the field.

Where your masters can take you

Graduates with skills in stem cell and regenerative medicine are in demand. Your degree will prepare you for a career in research in academia or industry, or in a clinical-related field. Our graduates are working all over the world – from the UK to China, India and the USA – and over half go on to doctoral study.

Learn from the experts

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research in this field. Our international reputation attracts highly motivated staff and students. Sheffield is a vibrant place to take a masters based on pioneering research.

Regular seminars from distinguished international experts help you to connect your studies to the latest developments. We’re also part of collaborative research groups for developmental biology, cell biology, physiology, pharmacology, neuroscience, models of human disease, stem cell science and regenerative medicine.

Our three research centres focus on translating laboratory research to the clinical environment: Bateson Centre, the Centre for Stem Cell Biology, and the Centre for Membrane Interactions and Dynamics.

Leaders in our field

We have a long track record of groundbreaking discoveries. These include breakthroughs in human stem cells for hearing repair, and the generation of animal models for Parkinson’s disease, schizophrenia, muscular dystrophies and their use for therapeutic studies.

Labs and equipment

We have purpose-built facilities for drosophila, zebrafish, chick and mouse genetics and for molecular physiology. Other facilities provide all the tools you’ll need to examine and analyse a range of cellular structures. We have an electron and a light microscopy centre, a PCR robotics facility, a flow cytometry unit and an RNAi screening facility.

Teaching and assessment

There are lectures, practical classes, tutorials and seminars. In small group teaching classes you’ll discuss, debate and present on scientific and ethical topics. Laboratory placements within the department provide you with one-to-one attention, training and support to do your individual research project. Assessment is by formal examinations, coursework assignments, debates, poster presentations and a dissertation.

Our teaching covers ethics, practical scientific skills and an overview of the current literature. You’ll also develop useful career skills such as presentation, communication and time management.

Core modules

Literature Review; Practical Research Project; Analysis of Current Science; Ethics and Public Understanding.

Examples of optional modules

Stem Cell Techniques; Practical Cell Biology; Practical Developmental Genetics; Bionanomaterials; Modelling Human Diseases; Stem Cell Biology.

Read less
Regenerative Medicine. MSc ( 1 year Full-time ). Overview. Regenerative medicine is an interdisciplinary field, which aims to repair diseased or damaged tissues using biological or cell-based technologies. Read more
Regenerative Medicine
MSc ( 1 year Full-time )

Overview

Regenerative medicine is an interdisciplinary field, which aims to repair diseased or damaged tissues using biological or cell-based technologies. It is a rapidly growing area of biomedical research that encompasses stem cell biology, tissue engineering, drug delivery, and nanotechnology. This MSc course provides advanced, multi-disciplinary training in the scientific principles and clinical applications of regenerative medicine, and is delivered jointly by Barts and The London School of Medicine and Dentistry and the School of Engineering and Materials Science.

Taught modules will develop a strong scientific foundation in the biology of stem cells and regeneration and the fundamental principles of biomaterials, tissue engineering and cellular reprogramming. Through an intensive 12-week research project, students will then gain hands on experience applying these concepts to problems in human health and the development of novel regenerative technologies.

Upon completion of the MSc in Regenerative Medicine, students will be well placed for further training at the PhD level or professional careers in the biotechnology and pharmaceutical industries.

Structure
The MSc in Regenerative Medicine is a one year, full-time programme. Students are required to complete 180 credits comprising taught and research modules.


Taught Modules (15 credits each)

o Cellular and Molecular Basis of Regeneration
o Stem Cell and Developmental Biology
o Advanced Tissue Engineering and Regenerative Medicine
o Research Skills and Methodology
o Biomaterials in Regenerative Medicine
o Tissue-specific Stem Cells
o Induced Pluripotent Stem Cells and Genome Engineering
o Ethics and Regulatory Affairs

Research Project in Regenerative Medicine (60 credits)
During the final 12 weeks of the course, students will work full time on their laboratory-based research projects. Students will select research projects from a wide range of topics in regenerative medicine. Examples include research on the cellular and molecular aspects of tissue regeneration, disease pathogenesis, development of stem cell therapies, design of novel nano-biotechnologies, or engineering biomaterials and tissue scaffolds.


Entry requirements
As a multi-disciplinary course, the MSc is appropriate for a wide range of students. Graduates with degrees in biological sciences or medicine will gain an in-depth understanding of the cellular and molecular aspects of regenerative medicine as well as an introduction to the interdisciplinary fields of biomaterials and tissue engineering. Similarly, students with a physical sciences background will have the opportunity to broaden their experiences and acquire new skills in the biological sciences.
Admission to the course is selective, and based upon academic credentials, research experience, and motivation. At a minimum, students must have an undergraduate degree equivalent to UK second-class honours from a recognised academic institution. Applicants are required to submit a statement of purpose and letter of recommendation with their application.
Applications are accepted all year round, but there are limited places to ensure high-quality training, so please apply early to avoid disappointment.

Read less
This is a research-focused Master's training course in Stem Cells and Regenerative Biology. It is ideal preparation for future PhD progression or early career industrial entry. Read more
This is a research-focused Master's training course in Stem Cells and Regenerative Biology. It is ideal preparation for future PhD progression or early career industrial entry.

This course focuses on developing investigative laboratory-based research skills while addressing theoretical and applicable questions in stem cells and regenerative biology. The course provides an intensive research-led environment, which will give you the opportunity to develop a career in academic or applied biomedical or biological sciences.

Why study Stem Cell and Regenerative Biology with us?

Our lecturers have specialist knowleadge and work with a diverse range of skill sets that have application in the field of stem cell research and regenerative biology.

The Faculty of Medicine, Dentistry and Life Sciences at Chester is unique in having academic staff who’s research involves a variety of relevant model organisms. As well as humans, the team researches into fundamental biology of a variety of other mammallian species, birds, fish, amphibians and invertebrates. Students undertaking the MRes are able to draw on this expertise.

In addition, Chester is an active member of the Mercia Stem Cell Alliance and the UK Mesenchymal Stem Cell research community.

What will I learn?

In the module Models of Regenerative Biology, you will attend lectures, small group teaching and practical sessions relating to:

- various model systems of regeneration, with cell culture based models and in vivo systems, e.g. planaria; responses to injury;
- regulatory factors governing tissue regeneration;
- aspects of regenerative medicine.

In the module on Stem Cells and Tissue Engineering, you will attend lectures, small group teaching and practical sessions relating to:

- how to define stem cells;
- stem cell culture and maintenance;
- the principles of tissue engineering;
- the application of stem cell and tissue engineering, e.g. in the clinic or in drug screening and development.

The individual research project is undertaken following completion of these two taught modules and is the primary focus of this course.

Read less
ENGINEERING THE FUNCTIONAL RESTORATION OF TISSUES AND ORGANS. Regenerative Medicine and Technology. (RMT) combines fundamental disciplines such as stem cell biology, materials science and biomechanics with more applied disciplines such as cell therapy, implantology and imaging. Read more

ENGINEERING THE FUNCTIONAL RESTORATION OF TISSUES AND ORGANS

Regenerative Medicine and Technology (RMT) combines fundamental disciplines such as stem cell biology, materials science and biomechanics with more applied disciplines such as cell therapy, implantology and imaging. New collaborations amongst these disciplines can assist in innovation in fundamental life sciences but also in new patient therapies and clinical applications with the ultimate goal to restore lost tissue or organ function.

This Master’s programme aims to train multidisciplinary scientists and to stimulate innovative research at the interface between biomedical sciences, engineering and clinical application. The rapidly emerging multidisciplinary field of regenerative medicine has significant effects on current and future health care applications. Our strong focus on technology will equip you with an understanding of processes ranging from specific cell culturing techniques and the use of biomaterials to computer models and imaging modalities.

Utrecht University offers the Master’s programme in cooperation with the University Medical Center Utrecht and the Faculty of Biomedical Engineering at Eindhoven University of Technology (TU/e). The programme combines the expertise of both universities and provides access to their state-of-the-art laboratories and research groups.

WHY STUDY REGENERATIVE MEDICINE AND TECHNOLOGY AT UTRECHT UNIVERSITY?

  • A unique combination of the TU/e technological with the UMC Utrecht clinical and UU biomedical approach
  • Excellent international reputation in the RM field and partners in innovative research projects with partners worldwide allowing students to do their internship at prestigious partner institutions all around the world .
  • New Utrecht Regenerative Medicine Center realized in 2015 at the Uithof campus gives students the opportunity to familiarize themselves with innovative science and to collaborate with the scientists associated with it
  • As a student you will have the opportunity to carry out two hands-on research projects at renowned research groups.

STUDY PROGRAMME

As a Master’s student of Regenerative Medicine and Technology you will take theoretical courses and seminars as well as master classes led by renowned specialists in the field in both Eindhoven and Utrecht. The courses are interactive, and challenge students to further improve their communication, writing and presenting skills. During your six to nine month internships you work in a lively research environment in academia or in consultancy companies and industry.

CAREER IN REGENERATIVE MEDICINE AND TECHNOLOGY

Regenerative Medicine and Technology will address the shortage of donor organs/tissue by providing the opportunity to produce tissue substitutes. As a graduates you can pursue a career in academic (PhD) or in industrial and commercial directions, including R&D, sales and consultancy.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Tissue Engineering and Regenerative Medicine at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Tissue Engineering and Regenerative Medicine at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Every day we are hearing of ground breaking advances in the field of tissue engineering which offer tremendous potential for the future of regenerative medicine and health care. Staff at Swansea University are active in many aspects of tissue engineering.

Key Features of Tissue Engineering and Regenerative Medicine

We are actively researching many aspects of tissue engineering including the following areas:

- Characterisation and control of the stem cell niche

- Mechanical characterisation of stem cells and tissues

- Production of novel scaffolds for tissue engineering

- Electrospinning of scaffold materials

- Cartilage repair and replacement

- Bone repair and replacement

- The application of nanotechnology to regenerative medicine

- Wound healing engineering

- Reproductive Immunobiology

- Bioreactor design

As an MSc By Research Tissue Engineering and Regenerative Medicine student, you will join one of the teams at Swansea University working in tissue engineering and use state of the art research equipment within the Centre for NanoHealth, a collaborative initiative between the College of Engineering and Swansea University Medical School.

The MSc by Research in Tissue Engineering and Regenerative Medicine typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Aim of Tissue Engineering and Regenerative Medicine programme

The aim of this MSc by Research in Tissue Engineering and Regenerative Medicine is to provide you with a solid grounding within the field of tissue engineering and its application within regenerative medicine.

This will be achieved through a year of research in a relevant area of tissue engineering identified after discussion with Swansea academic staff. Working with two academic supervisors you will undertake a comprehensive literature survey which will enable the formulation of an experimental research programme.

As a student on the MSc by Research Tissue Engineering and Regenerative Medicine course, you will be given the relevant laboratory training to undertake the research program. The research will be written up as a thesis that is examined. You will also be encouraged to present your work in the form of scientific communications such as journals and conference poster presentation.

The MSc by Research in Tissue Engineering and Regenerative Medicine will equip you with a wealth of research experience and knowledge that will benefit your future career in academia or the health care industries.

Recent MSc by Research theses supervised in the area of Tissue Engineering at Swansea University include:

- Quality assurance of human stem cell/primary cell bank

- The development of electrospinning techniques for the production of novel tissue engineering scaffolds.

- The incorporation of pulsed electromagnetic fields into wound dressings.

- The application of pulsed electromagnetic fields for improved wound healing.

- The use of nanoparticles in the control of bacterial biofilms in chronic wounds.

- The control of bacterial adhesion at surfaces relevant to regenerative medicine.

- The production of micro-porous particles for bone repair

Facilities

The £22 million Centre for Nanohealth is a unique facility linking engineering and medicine, and will house a unique micro-nanofabrication clean room embedded within a biological research laboratory and with immediate access to clinical research facilities run by local NHS clinicians.

Links with industry

The academic staff of the Medical Engineering discipline have always had a good relationship with industrial organisations. The industrial input ranges from site visits to seminars delivered by clinical contacts.

The close proximity of Swansea University to two of the largest NHS Trusts in the UK outside of London also offers the opportunity for collaborative research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
This programme aims to provide a high level of scientific knowledge and understanding of stem cell biology and regenerative medicine - from the molecular to the whole system level. Read more
This programme aims to provide a high level of scientific knowledge and understanding of stem cell biology and regenerative medicine - from the molecular to the whole system level.

Course Outline & Modules

This programme aims to provide a high level of scientific knowledge and understanding of stem cell biology and regenerative medicine - from the molecular to the whole system level. The programme aims to enable students to develop an informed and critical appreciation of recent scientific developments in these areas of modern biomedical sciences and its clinical and industrial application, as well as a practical skill set for further research and learning, e.g. PhD studies.

The opportunity to undertake a work experience placement will enable students to further their employability and transferable skills and develop links with participating clinical and industrial partners.

This course offers a flexible framework of core and optional modules. The core modules are:
-Advanced Laboratory Skills with data analysis and interpretation
-Understanding Professional Practice & Enhancing your Employability
-Mammalian Cell Biology and Culture
-Stem Cells and Tissue Engineering Technology
-Tissue Formation, Function and Repair
-Models of Regeneration I

Optional modules include, but are not limited to:
-Ageing and Regenerative Medicine
-Transplantation Biology
-Finance and Business Management

Note that not all options may be available in any one year and that options will not proceed if the minimum student intake number is not reached.

Learning, Teaching & Assessment

The programme is delivered using a combination of lectures, practical classes, tutorials and seminars. Some modules will include group work. The core employability module will use visiting lecturers from industry to illustrate the potential employment avenues for graduates of this course. The course includes a research project, this is likely to be a laboratory-based project where students will collect and analyse their own data. Assessment methods employed include examinations and continuous assessment through coursework; these will differ for individual modules.

Career Opportunities

Completion of this course prepares students for a research-focussed role in industry, including the developing clinical field of stem cell therapies of regenerative medicine, or academia. Graduates can therefore expect to enter further research, in the form of a PhD or research assistant, or may undertake a career in the commercial or clinical sector.

Personal Development

Completion of this course prepares students for a research-focussed role in industry, including the developing clinical field of stem cell therapies of regenerative medicine, or academia. Graduates can therefore expect to enter further research, in the form of a PhD or research assistant, or may undertake a career in the commercial or clinical sector.

Read less
Our MRes Tissue Engineering for Regenerative Medicine course gives students from biological, engineering and/or medical-related backgrounds the specialist knowledge and research skills to pursue a career in this field. Read more

Our MRes Tissue Engineering for Regenerative Medicine course gives students from biological, engineering and/or medical-related backgrounds the specialist knowledge and research skills to pursue a career in this field.

You will focus on strategies to repair, replace and regenerate various tissues and organs to solve major clinical problems, gaining insights into topical issues including stem cells, polymer technology, biomaterial fabrication/characterisation and gene delivery. You will learn how to identify major clinical needs and formulate novel therapeutic solutions.

This course has both taught and research components and is suitable for those with little or no previous research experience. You will learn practical skills through two research placements.

Tissue engineering and regenerative medicine as a discipline shows enormous potential for future health and, economically, there is a national demand for specific interdisciplinary training in this area.

We have a vast research network in this field comprising international experts from multiple disciplines and, as such, this course is a collaborative degree from the Faculty of Biology, Medicine and Health and the Faculty of Science and Engineering.

Teaching and learning

This course is structured around taught elements and laboratory-based research projects, with an emphasis on the research-based element.

You will gain hands-on laboratory experience through both the practical skills unit and research placements in tissue engineering/regenerative medicine-focused laboratories at the University lasting 25 weeks.

The course comprises five compulsory components:

  • research methods course unit - 15 credits;
  • tutorial course unit - 15 credits;
  • masterclass course unit - 15 credits;
  • practical skills course unit - 15 credits;
  • research placements:
  • part 1 - literature review and project proposal - 30 credits;
  • part 2 - a 25-week project including practical work, oral presentation and final dissertation, and an assessment of research performance - 90 credits.

You will experience the interdisciplinary nature of the field during the course and gradually increase the depth and complexity of your research through the masterclass unit.

Each project is written up and assessed separately when submitted during the year.

You will be allocated a personal tutor and a personal logbook is introduced at the start of the programme to monitor progress through the course and assess learning and career objectives.

Research placements

The research placements are the largest component of the course and aim to give you the specialist knowledge and practical skills to pursue a research career in tissue engineering and regenerative medicine, as well as develop your practical research expertise in a chosen area and enhance your ability to analyse and interpret data and summarise your findings in the form of written reports and an oral presentation.

The first placement runs alongside the taught units in Semester 1 and involves writing a comprehensive literature review and formulating a research project proposal.

The second placement (25 weeks) runs concurrently with the tutorial course unit for the first part, but is full-time thereafter. It involves hands-on practical experience in a laboratory and integration within a research team. The project is assessed by oral presentation at an end of year symposium, research performance and by submission of a dissertation.

You will choose from a list of research projects (see sample research projects ) and supervisors. Close interaction with the project supervisor at the start of the project and regular monitoring allows you to take responsibility for your own research development. The development of an interactive supervisory/student arrangement is often a useful grounding for future PhD collaboration.

Coursework and assessment

You will be assessed continually during the year through:

  • oral presentations;
  • group participation;
  • multiple choice questionnaires;
  • written reports;
  • a final dissertation.

Facilities

You will have access to a range of facilities throughout the University.

Disability support

Practical support and advice for current students and applicants is available from the Disability Support Office .

Career opportunities

After the course, many students continue their studies and register for a PhD.

However, the course is also of value to students wishing to progress in the pharmaceutical or biotechnology industry, or go into specialist clinical training.

It is also ideal for MBChB intercalating students who wish to undertake directly channelled research training in the tissue engineering/regenerative medicine field.

Associated organisations

You will benefit from close interaction with members of the following groups.



Read less
The utilisation of stem cells in the clinical arena is one of the most exciting areas of medicine today. Our MSc is designed to enable you to develop an up-to-date, advanced understanding of this exciting area of medicine and clinical research. Read more
The utilisation of stem cells in the clinical arena is one of the most exciting areas of medicine today. Our MSc is designed to enable you to develop an up-to-date, advanced understanding of this exciting area of medicine and clinical research. Regenerative medicine has the potential to impact on conditions as varied as spinal injury, coronary heart disease and type 1 diabetes.

Why Study Stem Cells and Regenerative Medicine with us?

You will receive training in the skills required in the reading and interpretation of the literature and translating that into evidencebased practice. We will develop your research and writing skills so that you will be in a position to contribute to the scientific literature in an effective manner.

The course culminates in the Research Dissertation, which will be assessed through your production of two publishable scientific articles.

If biomedical or clinical research is your interest, successful completion of the MSc will allow you to directly register onto PhD study and join our team of researchers at the Institute of Medicine.

What will I learn?

Our course is designed to provide an in-depth, current look at stem cell technology and its application in medicine. We look at stem cell theory and then apply this to clinical problems. You will develop critical analytical skills so that you will be able to evaluate new developments in research into regenerative medicine. You will also carry out a research project in one of these areas.

Seminars and tutorials will be held with various healthcare professionals and clinical researchers.

How will I be taught?

Our course consists of taught modules and a Research Dissertation.

We deliver taught modules as three-day intensive courses to facilitate attendance from students in employment. Weekly support sessions and journal club supplement learning – all held in our modern facilities in Bache Hall.

How will I be assessed?

You will be assessed via clinical reviews, laboratory reports, posters, oral presentations, or data manipulation exercises.

Read less
Regenerative Medicine harnesses the intrinsic developmental programs by which the tissues and organs of the body are laid down, as well as the natural repair and regenerative capacity of the body, to provide solutions to the problems of degenerative diseases. Read more

Regenerative Medicine harnesses the intrinsic developmental programs by which the tissues and organs of the body are laid down, as well as the natural repair and regenerative capacity of the body, to provide solutions to the problems of degenerative diseases.

These solutions may concern direct tissue replacement, indirect mechanisms to ameliorate disease or enhance intrinsic tissue repair, or the development of pharmaceutical therapies. As such, it is of increasing interest to Life Sciences industries that seek to provide products and processes to the healthcare sector, and to healthcare providers such as the NHS.

This programme is intended to meet current and future needs of the pharmaceutical industry and health care providers by providing a cadre of well-trained scientists capable of fulfilling managerial, administrative, research and technical roles within the developing commercial regenerative medicine sector.

Our programme covers key theoretical and practical aspects of the growth and maintenance of pluripotent stem cell lines, the directed differentiation of these cells into defined tissue phenotypes, and the maintenance of the differentiated state under conditions suitable for drug testing/screening programs.

Essential elements of good practice will also be included, such as quality assurance and the regulatory framework that surrounds the derivation, storage and use of human cells. The course has a strong element fostering entrepreneurship and innovation.

Our teaching is multidisciplinary, with contributions from the fields of medicine, biology, chemistry and bioinformatics.

Programme structure

The programme contains both taught and independent project components.

Compulsory courses

  • Fundamental Biology of Stem Cells
  • Basic Techniques in Regenerative Medicine
  • Stem Cells and Regenerative Medicine
  • Production of Differentiated Cells
  • Regenerative Medicine Regenerative Medicine and Industry

Industrial placement

The laboratory placement is a key component of the course where students gain real world experience of regenerative medicine. The placements may be in an industrial or academic environment depending on the aspirations and career interests of the student. In some cases the placements may not involve hands-on laboratory research but may include aspects of the regulation of regenerative therapies or development of new businesses.

Financial assistance may be available to cover travel expenses to the location of the industrial placement.

Career opportunities

Graduates will be equipped for a variety of roles within the developing commercial regenerative medicine sector.



Read less
This innovative master program enables you to meet the demands of employers in the scientific field worldwide. You will be trained in all aspects of cutting edge molecular stem cell biology including legal and ethical aspects, good medical practice and acquisition of third party funding. Read more

Overview

This innovative master program enables you to meet the demands of employers in the scientific field worldwide. You will be trained in all aspects of cutting edge molecular stem cell biology including legal and ethical aspects, good medical practice and acquisition of third party funding. The course combines cutting edge approaches such as iPSC and bioprinting with traditional basic disciplines such as histology to secure an in-depth understanding towards innovative translational approaches in medicine. The course is entirely taught in English.

Learning outcome

Holding our degree means you have acquired a robust expertise in theory and practice in one of the most scientifically and ethically demanding biomedical fields of today.

During the first year of the program, students achieve a fundamental understanding of developmental processes that are linked to the current progress of stem cell research. This theoretical knowledge is further deepened and expanded on by hands-on experience in the relevant laboratories.

The inclusion of local national and international guest lecturers gives students the opportunity to get an idea what is going on in the field of stem cell research and which labs can be chosen for specialized practicals.

During the second year, the curriculum emphasizes application-oriented courses suited to understand the cellular and molecular basis of human diseases and to familiarize with the complex demands of modern medicine. The 4th semester is reserved for the master thesis; multiple international collaborations and a mobility window offer the chance to perform practicals and master thesis abroad.

Modules

The major modules in the program are listed below:

Stem Cell Physiology (I and II)
3x Lecture Series on recent developments in stem cell research (by national and international experts)
Bioinformatics
Stem Cell Practical Courses- 2 weeks-long practical courses (4 times)
Molecular Tracing Methods
Molecular Genetic Methods
Tissue Engineering
Lab Rotation
Pathology of Degenerative Diseases
Course in Animal Care and Handling
Scientific Responsibility in Biomedicine
Lab Bench Project & Grant Writing
Master Project
Language Courses

Possibility for International Double degree program `Stem Cell Biology and Regenerative Medicine´

In addition to the regular master program, we also offer a double degree master program in `Stem Cell Biology and Regenerative Medicine’ in collaboration with Jinan University in China. This program is supported by the DAAD (Deutscher Akademischer Austauschdienst) with a stipend of 800, -- Euros/month plus travel expenses (flight) for every participating student. The selection for this program will be made from the regular master students. More information is available on our website.

Ruhr University Bochum (RUB)

Ruhr University Bochum (RUB) has a very international outlook and it is closely interconnected with the thriving research and business initiatives of the surrounding Ruhr region. Aside from the RUB, the surrounding Ruhr region offers a lot of opportunities to young researchers, such as 15 universities, 4 Fraunhofer institutes, 4 Leibnitz institutes and 3 Max-Planck institutes, which makes it easy for the students to interact with the experts and get hands-on experience in the state-of-the-art laboratories.

Read less
The first course of its kind in the UK, the Stem Cell & Regenerative Therapies. From Bench to Market MSc combines biological and medical science with business, law and bioethics. Read more

The first course of its kind in the UK, the Stem Cell & Regenerative Therapies: From Bench to Market MSc combines biological and medical science with business, law and bioethics. It is designed to develop expertise in the biological, commercial and regulatory aspects of cellular therapy, along with its application in biomedicine and equips students to pursue a business-based career in cellular therapy or related disciplines.

Key benefits

  • Work alongside leaders in the field at King’s Centre for Stem Cells and Regenerative Medicine – a focal point in the UK for cutting edge research in this field.
  • Produce credible business plans for the application of cellular therapy in clinical settings, taking into consideration science, patient benefits, ethical code, regulations and market laws.
  • Learn to conduct investigations, analyse the results using various qualitative and quantitative methods and draw valid conclusions for commercialisation of cellular therapy.
  • Mentoring sessions by King’s academics and external guests
  • Outstanding networking opportunities with leaders in the field (scientists, biotechnology/pharma, financial services, stem cell manufacturing, regulatory and public sectors)

Description

Cellular therapies have attracted much interest in recent years in virtually all disciplines of medicine with over 2,700 clinical trials enrolled between 2000 and 2010. As of today, http://www.clinicaltrials.gov has over 27,800 registered cellular therapy clinical trials. The complexity of issues relating to cell manufacturing, the underlying regulatory framework, reimbursement and viable business models, each represent challenges that profoundly undermine the timing and the delivery of a viable healthcare model. Our programme will provide tools that aid the understanding of these complex issues within an integrated and commercial context.

This one-year advanced study course explores the biological, regulatory and business aspects of cellular therapy in the fields of biomedicine. You will study a range of modules that include Stem Cells in Cellular Therapies & Regenerative Medicine and Cellular Therapies in Immunology. You will also complete a dissertation related to business strategy development for cellular therapy.

You will study modules totalling 180 credits throughout the year, with 60 credits coming from the 15,000 – 18,000-word dissertation.

Course format and assessment

Teaching style and study time

We use lectures, seminars and group tutorials to deliver most of the modules on the course. You will also be expected to undertake a significant amount of independent study.

Methods of assessment

This course is assessed through a combination of the following:

  • essays
  • poster presentation
  • journal club-style presentation
  • oral presentations
  • case study.

The study time and assessment methods detailed above are typical and give you a good indication of what to expect. However, they may change if the course modules change.

 Location

The majority of learning for this degree takes place at the King’s College London Denmark Hill and Guy’s campus. Please note that locations are determined by where each module is taught and may vary depending on the optional modules you select.

Regulating body

King’s College London is regulated by the Higher Education Funding Council for England.

Career prospects

Many of our graduates go on to careers in business development and commercialisation of stem cells products and services, while others go on to pursue a career in the research sector.



Read less
This pioneering course aims to maximise the employability of students. Our track record shows 90% of graduates secure ste cell technology-related posts including PhDs, positions in industry and government-funded agencies (e.g. Read more

Overview

This pioneering course aims to maximise the employability of students. Our track record shows 90% of graduates secure ste cell technology-related posts including PhDs, positions in industry and government-funded agencies (e.g. stem cell banks).

The course content has been designed in consultation with stem cell experts and potential employers in biotechnology, academia, industry and bodies regulating stem cells, to provide the necessary expertise to compete in an ever changing world.

Highlights

- Students learn a broad range of transferable skills including critical analysis, data handling, and oral and written skills.
- Teaching is by leading research scientists who are working at the cutting edge of new developments, ensuring the most recent research is integrated into the course.
- Teaching also incorporates guest speakers recognised as international experts in the stem cell technology field, including clinicians who want to use stem cells in regenerative medicine.

Modules

The course incorporates the following modules:

- Cell, Developmental and Molecular Biology
- Module 2: Embryonic Stem Cells
- Module 3: Adult and Fetal Stem Cells
- Module 4: Translational Technologies for Stem Cells
- Module 5: Research Skills & Stem Cell Technology Exploitation
- Module 6: Regenerative Medicine Research Project

Approximately 40% of the taught modules encompass direct laboratory training. This high level of practical work means we take a maximum of 16 students. This ensures we have good tutor/student ratios and specialist equipment is widely accessible.

Read less
Nanotechnology and Regenerative Medicine are rapidly expanding fields with the potential to revolutionise modern medicine. This cross-disciplinary programme provides students with a robust scientific understanding in these fields, combined with a "hands-on" practical and translational focus. Read more

Nanotechnology and Regenerative Medicine are rapidly expanding fields with the potential to revolutionise modern medicine. This cross-disciplinary programme provides students with a robust scientific understanding in these fields, combined with a "hands-on" practical and translational focus.

About this degree

This programme will equip students with a critical understanding of:

  • how nanotechnology can be harnessed for the improved detection and treatment of disease
  • the use of stem cells in medicine
  • tissue engineering strategies for tissue regeneration
  • improving biomaterials for directing cell behaviour
  • the regulatory, ethical and commercial hurdles for the translation of these emerging technologies.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), one optional module (15 credits) and a research project (90 credits).

A PG Certificate (60 credits) is offered in Flexible/Modular study mode only, over a maximum two years. The programme consists of two core modules (30 credits) and two optional modules (30 credits).

Core modules

  • Nanotechnology in Medicine *
  • Applied Tissue Engineering *
  • Biomaterials
  • Research Methodologies
  • Practical Bio-Nanotechnology and Regenerative Medicine

*PG Cert - compulsory modules

Optional modules

Choose one of the following options; attendance at the other module is possible but will not be assessed.

  • Stem Cells in Medicine and their Applications in Surgery
  • Translation of Nanotechnology and Regenerative Medicine

Dissertation/report

All students undertake an extensive laboratory-based (90 credits) research project which culminates in a dissertation of c.15,000 words and an individual viva voce.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, workshops, group discussions, practical sessions, and demonstrations. Assessment is through presentations, problem-solving workshops, written practical reports, coursework, unseen written examinations and the dissertation.

Further information on modules and degree structure is available on the department website: Nanotechnology and Regenerative Medicine MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

Student career options and progression during and following the completion of the degree are considered to be of the utmost importance. Personal tutors will offer individual advice and seminars are arranged on a variety of career competencies including CV writing, writing research proposals and positive personal presentation.

Networking with world-leading scientists, new biotechnology CEO's and clinicians is encouraged and enabled throughout the programme. Research output in terms of publishing papers and presenting at conferences is also promoted. 

Recent career destinations include:

  • Studying PhDs or Medicine at UCL, Imperial College London and Universities of Oxford and Cambridge
  • Clinical PhD training programmes
  • NHS hospitals in the UK
  • EU and overseas hospitals and research facilities

Recent career destinations for this degree

  • Data Integrity Analyst, IMS Health
  • Medical Device Analyst, GlobalData
  • Tissue Processing Specialist Consultant, UCL
  • PhD in Applied Engineering, Universidad de Navarra (University of Navarra)
  • PhD in Bioengineering, Imperial College London

Employability

Graduates of the programme gain the transferable laboratory, critical and soft skills, such as science communication, necessary to pursue a scientific or clinical research career in the fields of nanomedicine and regenerative medicine.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

Based within the world-leading medical research environment of the UCL Division of Surgery & Interventional Science this MSc retains a clinical focus and addresses real medicine needs. Students learn about the route of translation from research ideas into actual products which can benefit patients.

An in-depth laboratory-based research project is an integral component of the programme; expert support allows students to investigate cutting-edge projects and thereby open up opportunities for further research and publications.

Students are embedded within the vibrant research community of the Faculty of Medical Sciences which provides students - through research seminars, symposia and eminent guest lecturers - outstanding networking opportunities within the research, clinical and translational science communities.



Read less
Regenerative Medicine is a vibrant area multidisciplinary area, encompassing life science and medicine, pharmaceutical-related approaches, as well as the use of cell-based therapies, to include also various types of stem-cells, bioactive scaffolds and drug delivery modalities. Read more

The Exciting Area of Regenerative Medicine

Regenerative Medicine is a vibrant area multidisciplinary area, encompassing life science and medicine, pharmaceutical-related approaches, as well as the use of cell-based therapies, to include also various types of stem-cells, bioactive scaffolds and drug delivery modalities. This 21st Century Medicine holds the promise of contributing to the development of alternatives to long-term, high-cost care approaches for many degenerative and age-related diseases, but at the same time is a rich area for question-driven research.

About the Course

The MSc Regenerative Medicine (taught masters) will provide students with a multidisciplinary approach to gaining a critical knowledge and training in the biological and chemical basis of tissue regeneration. You will cover subject such as stem cell biology, biotechnology, and tissue engineering. Students will be also made aware of the basics of intellectual property law, regulatory affairs, and ethical issues playing a role in the regenerative medicine industry. The delivery of the course comprises a mixture of structured taught modules, practical activities and self-directed study. The degree culminates in a laboratory-based research dissertation project.
Students will access high-specification laboratory facilities and benefit from the expertise of academics active in research projects at national and international level, with numerous opportunities to network with expert in the fields.

It is a vibrant area of endeavour, involving multidisciplinary interactions and strong employment opportunities for those trained in the field. Master Graduates will be well placed to secure jobs in academic research, as well as a wide range of careers outside the laboratory to include biotechnology business, legal sciences, and science communication. Additionally, the course prepares students for studies at PhD level.

Module on this Course

The delivery of the course Comprises a mixture of structured taught modules, practical activities and self-directed study. Students are set regular tasks and formative assessments helping strengthening skills of communication, team working, and self-evaluation. The Master degree culminates with a research project dissertation providing you with the opportunity to fully engage with contemporary research in the field; numerous opportunities for conducting part or the entirety of this research project outside the University or abroad can be discussed as required.

These are the Modules on this Course:
• Cell Biology and Biotechnology
• Developmental Biology and regeneration
• Advanced Laboratory Skills
• Research Methods
• Stem Cell Biology
• Cell Therapy and Tissue Engineering
• Dissertation Project

Read less
Our Stem Cells and Regenerative Medicine MRes is a research-based course with a taught component that is equivalent to an MSc. It provides a springboard into a career that involves a working knowledge of scientific research. Read more
Our Stem Cells and Regenerative Medicine MRes is a research-based course with a taught component that is equivalent to an MSc. It provides a springboard into a career that involves a working knowledge of scientific research.

The course is designed for graduates with a BSc in the life sciences or other science disciplines, and for intercalating and fully qualified MBBS or BDS students. It can be taken either as a stand-alone qualification or as an entry route onto a PhD or MD.

The taught component of the course includes subject-specific content in the area of stem cells and regenerative medicine. You have the flexibility to develop your own bespoke course by selecting additional, complementary modules. You will also participate in training in general research principles, and other professional and key skills.

The subject-based modules focus on interdisciplinary research that seeks to convert stem cell research and technologies into cost-effective, ethically robust 21st century health solutions that will ameliorate degenerative diseases, the effects of ageing and serious injury. This strand is delivered jointly with Durham University, with project opportunities in both universities.

Your research project comprises the major element of the course. This project will involve 24 weeks of research in an area of stem cells and regenerative medicine under the supervision of an expert academic researcher in the field.

The course allows you to experience an internationally competitive research area, predominantly in academia but also potentially in industry.

Read less

Show 10 15 30 per page



Cookie Policy    X