• Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of York Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Cardiff University Featured Masters Courses
University of Leeds Featured Masters Courses
Swansea University Featured Masters Courses
"stem" AND "cell"×
0 miles

Masters Degrees (Stem Cell)

  • "stem" AND "cell" ×
  • clear all
Showing 1 to 15 of 120
Order by 
Entry Requirements. The minimum entry criteria for the PgCert/PgDip Stem Cell Biology are as follows. Read more
Entry Requirements

The minimum entry criteria for the PgCert/PgDip Stem Cell Biology are as follows:

(a) Applicants must hold a degree in a relevant life science discipline or another related discipline from a University in the United Kingdom or the Republic of Ireland, or from an institution which is recognised by the Senate for this purpose; or

(b) Candidates who do not meet the above requirements but who hold other qualifications and professional experience may be considered eligible for admission to the programme by accreditation of prior experiential learning (APEL). Those candidates who wish to be considered in terms of experiential learning must complete an APEL form and send this with their application.

(c) Candidates will have to provide evidence of adequate English language skills. Overseas applicants may demonstrate competence through either a TOEFL score of 550 (or computer based), or an IELTS score 6.0.

Course Description

The cutting edge PgCert course will provide you with knowledge and skills required to pursue a career in the rapidly expanding field of stem cell biology. The PgDip will further develop your skills in experimental design and stem cell commercialization. Successful completion of the course will allow you to capitalise on opportunities in areas such as research, law, clinics and industry. You will study in a supportive and collaborative online environment where you will be supported by an e-tutor. The course will cover the latest exciting advances in stem cell science and equip you with the skills to critically analyse these discoveries not only during the course but during your future career.

Structure and Content top

The PgCert course consists of two modules (60 credit points). The first module in Stem Cell Biology will equip you with up to date knowledge on various topics such as sources of stem cells e.g. adult, embryonic and induced pluripotent stem cells, pluripotency, current and future uses of stem cells and bioethics. This module also introduces you to the skills which will enable you to evaluate future advances in stem cell research following the end of the course. The second module in Evidence Based Healthcare Practice will allow you to evaluate how stem cells are currently used and inform future practice in this area.
The PgDip course consists of a further 3 modules in Techniques in Stem Cell Biology, Commercialization of Stem Cells and Research Skills & Statistics (5 modules worth 120 credit points in total). These modules will equip you with the knowledge to design experiments involving stem cells and lead you through the commercialization process, topics which our Industrial Advisory Board recommend are highly sought after skills in stem cell industry employees.

Teaching Methods and Assessment top

The course is delivered as a series of online lectures designed by a range of experts and multimedia resources in the various areas of stem cell biology. The flexible nature of the course allows you to study at your own pace. You can study 1 or two modules each semester. The course will be supplemented by online discussions with e-tutors, access to specialist online talks and interactive quizzes.

Assessment will be by 100% coursework which will take various forms including contributions to online discussions, online quizzes and various pieces of written work.

Read less
This innovative master program enables you to meet the demands of employers in the scientific field worldwide. You will be trained in all aspects of cutting edge molecular stem cell biology including legal and ethical aspects, good medical practice and acquisition of third party funding. Read more

Overview

This innovative master program enables you to meet the demands of employers in the scientific field worldwide. You will be trained in all aspects of cutting edge molecular stem cell biology including legal and ethical aspects, good medical practice and acquisition of third party funding. The course combines cutting edge approaches such as iPSC and bioprinting with traditional basic disciplines such as histology to secure an in-depth understanding towards innovative translational approaches in medicine. The course is entirely taught in English.

Learning outcome

Holding our degree means you have acquired a robust expertise in theory and practice in one of the most scientifically and ethically demanding biomedical fields of today.

During the first year of the program, students achieve a fundamental understanding of developmental processes that are linked to the current progress of stem cell research. This theoretical knowledge is further deepened and expanded on by hands-on experience in the relevant laboratories.

The inclusion of local national and international guest lecturers gives students the opportunity to get an idea what is going on in the field of stem cell research and which labs can be chosen for specialized practicals.

During the second year, the curriculum emphasizes application-oriented courses suited to understand the cellular and molecular basis of human diseases and to familiarize with the complex demands of modern medicine. The 4th semester is reserved for the master thesis; multiple international collaborations and a mobility window offer the chance to perform practicals and master thesis abroad.

Modules

The major modules in the program are listed below:

Stem Cell Physiology (I and II)
3x Lecture Series on recent developments in stem cell research (by national and international experts)
Bioinformatics
Stem Cell Practical Courses- 2 weeks-long practical courses (4 times)
Molecular Tracing Methods
Molecular Genetic Methods
Tissue Engineering
Lab Rotation
Pathology of Degenerative Diseases
Course in Animal Care and Handling
Scientific Responsibility in Biomedicine
Lab Bench Project & Grant Writing
Master Project
Language Courses

Possibility for International Double degree program `Stem Cell Biology and Regenerative Medicine´

In addition to the regular master program, we also offer a double degree master program in `Stem Cell Biology and Regenerative Medicine’ in collaboration with Jinan University in China. This program is supported by the DAAD (Deutscher Akademischer Austauschdienst) with a stipend of 800, -- Euros/month plus travel expenses (flight) for every participating student. The selection for this program will be made from the regular master students. More information is available on our website.

Ruhr University Bochum (RUB)

Ruhr University Bochum (RUB) has a very international outlook and it is closely interconnected with the thriving research and business initiatives of the surrounding Ruhr region. Aside from the RUB, the surrounding Ruhr region offers a lot of opportunities to young researchers, such as 15 universities, 4 Fraunhofer institutes, 4 Leibnitz institutes and 3 Max-Planck institutes, which makes it easy for the students to interact with the experts and get hands-on experience in the state-of-the-art laboratories.

Read less
This unique specialist course gives you practical experience in human embryonic stem cell techniques, helping you develop the professional skills employers want. Read more

About the course

This unique specialist course gives you practical experience in human embryonic stem cell techniques, helping you develop the professional skills employers want. You’ll also spend time in seminars considering the ethical and legal issues associated with the field.

Where your masters can take you

Graduates with skills in stem cell and regenerative medicine are in demand. Your degree will prepare you for a career in research in academia or industry, or in a clinical-related field. Our graduates are working all over the world – from the UK to China, India and the USA – and over half go on to doctoral study.

Learn from the experts

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research in this field. Our international reputation attracts highly motivated staff and students. Sheffield is a vibrant place to take a masters based on pioneering research.

Regular seminars from distinguished international experts help you to connect your studies to the latest developments. We’re also part of collaborative research groups for developmental biology, cell biology, physiology, pharmacology, neuroscience, models of human disease, stem cell science and regenerative medicine.

Our three research centres focus on translating laboratory research to the clinical environment: Bateson Centre, the Centre for Stem Cell Biology, and the Centre for Membrane Interactions and Dynamics.

Leaders in our field

We have a long track record of groundbreaking discoveries. These include breakthroughs in human stem cells for hearing repair, and the generation of animal models for Parkinson’s disease, schizophrenia, muscular dystrophies and their use for therapeutic studies.

Labs and equipment

We have purpose-built facilities for drosophila, zebrafish, chick and mouse genetics and for molecular physiology. Other facilities provide all the tools you’ll need to examine and analyse a range of cellular structures. We have an electron and a light microscopy centre, a PCR robotics facility, a flow cytometry unit and an RNAi screening facility.

Teaching and assessment

There are lectures, practical classes, tutorials and seminars. In small group teaching classes you’ll discuss, debate and present on scientific and ethical topics. Laboratory placements within the department provide you with one-to-one attention, training and support to do your individual research project. Assessment is by formal examinations, coursework assignments, debates, poster presentations and a dissertation.

Our teaching covers ethics, practical scientific skills and an overview of the current literature. You’ll also develop useful career skills such as presentation, communication and time management.

Core modules

Literature Review; Practical Research Project; Analysis of Current Science; Ethics and Public Understanding.

Examples of optional modules

Stem Cell Techniques; Practical Cell Biology; Practical Developmental Genetics; Bionanomaterials; Modelling Human Diseases; Stem Cell Biology.

Read less
This pioneering course aims to maximise the employability of students. Our track record shows 90% of graduates secure ste cell technology-related posts including PhDs, positions in industry and government-funded agencies (e.g. Read more

Overview

This pioneering course aims to maximise the employability of students. Our track record shows 90% of graduates secure ste cell technology-related posts including PhDs, positions in industry and government-funded agencies (e.g. stem cell banks).

The course content has been designed in consultation with stem cell experts and potential employers in biotechnology, academia, industry and bodies regulating stem cells, to provide the necessary expertise to compete in an ever changing world.

Highlights

- Students learn a broad range of transferable skills including critical analysis, data handling, and oral and written skills.
- Teaching is by leading research scientists who are working at the cutting edge of new developments, ensuring the most recent research is integrated into the course.
- Teaching also incorporates guest speakers recognised as international experts in the stem cell technology field, including clinicians who want to use stem cells in regenerative medicine.

Modules

The course incorporates the following modules:

- Cell, Developmental and Molecular Biology
- Module 2: Embryonic Stem Cells
- Module 3: Adult and Fetal Stem Cells
- Module 4: Translational Technologies for Stem Cells
- Module 5: Research Skills & Stem Cell Technology Exploitation
- Module 6: Regenerative Medicine Research Project

Approximately 40% of the taught modules encompass direct laboratory training. This high level of practical work means we take a maximum of 16 students. This ensures we have good tutor/student ratios and specialist equipment is widely accessible.

Read less
Stem cell research is one of the hottest areas of research in modern biology. In Nottingham we are pursuing several relevant projects to examine the role of stem cells in a variety of tissues and organs including cardiac and skeletal muscle, neural, blood and vasculature, and primordial germ cells. Read more
Stem cell research is one of the hottest areas of research in modern biology. In Nottingham we are pursuing several relevant projects to examine the role of stem cells in a variety of tissues and organs including cardiac and skeletal muscle, neural, blood and vasculature, and primordial germ cells. We are employing a range of model organisms in these studies and projects are available in each of the areas described.

APPLICATION PROCEDURES
After identifying which Masters you wish to pursue please complete an on-line application form
https://pgapps.nottingham.ac.uk/
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS
http://www.nottingham.ac.uk/studywithus/international-applicants/scholarships-fees-and-finance/scholarships/masters-scholarships.aspx

Read less
Academic, practical and research teaching covering all aspects of the latest developments in regenerative dentistry including dental stem cell culture, iPS and ES cells, tooth bioengineering, the role of stem cells in tooth repair and regeneration. Read more
Academic, practical and research teaching covering all aspects of the latest developments in regenerative dentistry including dental stem cell culture, iPS and ES cells, tooth bioengineering, the role of stem cells in tooth repair and regeneration. A major feature of the course is a research project carried out in one of our research labs and supported by practical demonstrations and evaluation of research publication.

Key benefits

• Training in research methodologies and the critical evaluation of data.
• Taught course on the very latest advances of stem cell research.
• World renowned department.
• Original research project.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/regenerative-dentistry-msc.aspx

Course detail

- Description -

Taught course elements include: Introduction to stem cells, ES and iPS, Dental stem cells, Endogenous dentine repair, Endodontic applications of stem cells, Whole tooth regeneration, Scaffolds and bone regeneration, Salivary gland regeneration, Periodontal ligament restoration, GMP cell culture.

Research and practical elements include a research project, practical demonstrations of dental pulp stem cell culture combined with critical evaluation of research methods and approaches in dental stem cell biology.

Examples of research projects:

- Salivary gland stem cells
- Stem cells in the middle ear and their role in homeostasis and repair
- Development of replacement teeth: location of stem cell niches in a range of species
- A chemical genetics screen for regulators of cranial muscle stem cells
- Dental pulp stem cells in tooth repair
- Exploring the relationship between surface free energy and osseointegration with modifiable ceramic coatings
- Human Embryonic tooth mesenchymal cells and bio-tooth engineering
- Periodontal tissue regeneration - evaluating different human dental stem cell populations
- Neural crest stem cells and ossification of the mandible

- Course purpose -

Regenerative dentistry is for both dentists and biological scientists who desire to learn more about the latest advances in cell and molecule-based dentistry and also gain experience in carrying out laboratory-based, cutting-edge research in dental stem cell biology.

- Course format and assessment -

Written exam, practical tests and written reports, seminar presentation.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
This innovative distance-learning programme is taught online and will provide you with knowledge and understanding in the highly topical and exciting field of stem cell biology and regeneration. Read more
This innovative distance-learning programme is taught online and will provide you with knowledge and understanding in the highly topical and exciting field of stem cell biology and regeneration. You will be guided from the origins of this field through to its application (and potential applications) in treating human disease, covering the latest tools and technologies available for study in this area. Programme content is delivered by researchers active in the field, ensuring that the latest breakthroughs are communicated.

Using a creative distance-learning model, the programme delivers lectures, online discussions and assessments over the internet. This offers you more flexibility than traditional campus-based courses as you can study in your own environment. You will only be required to visit Bristol for your formal examinations at the end of the academic year. This distance-learning model, together with a part-time study option, makes the programme particularly appealing to those students who wish to combine full-time employment with study.

Programme structure

Core units
-Introduction to Stem Cells and Regeneration
-Neurodegeneration and Ophthalmic Disorders
-Molecular Tools in Stem Cells and Regeneration
-Peripheral Neuropathy and Spine
-Cell Signalling
-Biomaterials and their Use in the Skeletal System
-Stem Cells in Cardiac Systems
-Research Project/Dissertation

Careers

The programme can open up a number of different career opportunities. It can be used as a pathway to further studies (eg PhD) which in turn could lead to a research or academic career in the field. It can also open up opportunities in private industry, for example:
-Biotechnology sector research/sales
-Stem cell business development
-Stem cell banking
-Stem cell patents
-Stem cell clinical translation
-Charity research development
-Pharmaceutical industry
-Stem cell regulatory bodies

Read less
Regenerative Medicine is a vibrant area of endeavour involving multidisciplinary interactions and strong employment opportunities for those trained in the field. Read more

The Exciting Area of Regenerative Medicine

Regenerative Medicine is a vibrant area of endeavour involving multidisciplinary interactions and strong employment opportunities for those trained in the field. It encompasses many areas of life science and medicine, including a range of pharmaceutical-related approaches, as well as the use of cell-based therapies, to include also various types of stem-cells, bioactive scaffolds and drug delivery modalities. Whilst gaining a growing interest from the commercial sector and from the healthcare systems world-wide, Regenerative Medicine is still a rich area for fundamental, question-driven research. This 21st Century Medicine holds the promise of contributing to the development of alternatives to long-term, high-cost care approaches for many degenerative and age-related diseases. Nevertheless, it investigates the complexity of stem cell characteristics and properties, regeneration mechanisms and in vivo integration of in vitro-regenerated tissues

About the Course

The MSc Regenerative Medicine (taught masters) will provide students with a multidisciplinary approach to gaining a critical knowledge and training in the biological and chemical basis of tissue regeneration, stem cell biology; as well as knowledge of the basics of intellectual property law, regulatory affairs, ethical issues, all of which are key components of the global regenerative medicine industry. It is a vibrant area of endeavour involving multidisciplinary interactions and strong employment opportunities for those trained in the field.

The MSc Regenerative Medicine (taught masters) will provide you with a multidisciplinary approach to gaining a critical knowledge and training in the biological and chemical basis of tissue regeneration, stem cell biology; as well as knowledge of the basics of intellectual property law, regulatory affairs, ethical issues, all of which are key components of the Regenerative Medicine sector.
Ultimately, the course aims to produce postgraduates capable of making a significant contribution within the Regenerative Medicine area at large. Master Graduates will be well placed to secure jobs in academic research, however the transferable skills developed during the course will equip you for a wide range of careers outside the laboratory, for example within biotechnology business, legal sciences, and science communication. Additionally, the course prepares students for higher levels of study, for example at PhD level.

Module on this Course

The delivery of the course Comprises a mixture of structured taught modules, practical activities and self-directed study. Students are set regular tasks and formative assessments helping strengthening skills of communication, team working, and self-evaluation. The Master degree culminates with a research project dissertation providing you with the opportunity to fully engage with contemporary research in the field; numerous opportunities for conducting part or the entirety of this research project outside the University or abroad can be discussed as required.

These are the Modules on this Course:
• Cell Biology and Biotechnology
• Developmental Biology and regeneration
• Advanced Laboratory Skills
• Research Methods
• Stem Cell Biology
• Cell Therapy and Tissue Engineering
• Dissertation Project

Read less
This programme aims to provide a high level of scientific knowledge and understanding of stem cell biology and regenerative medicine - from the molecular to the whole system level. Read more
This programme aims to provide a high level of scientific knowledge and understanding of stem cell biology and regenerative medicine - from the molecular to the whole system level.

Course Outline & Modules

This programme aims to provide a high level of scientific knowledge and understanding of stem cell biology and regenerative medicine - from the molecular to the whole system level. The programme aims to enable students to develop an informed and critical appreciation of recent scientific developments in these areas of modern biomedical sciences and its clinical and industrial application, as well as a practical skill set for further research and learning, e.g. PhD studies.

The opportunity to undertake a work experience placement will enable students to further their employability and transferable skills and develop links with participating clinical and industrial partners.

This course offers a flexible framework of core and optional modules. The core modules are:
-Advanced Laboratory Skills with data analysis and interpretation
-Understanding Professional Practice & Enhancing your Employability
-Mammalian Cell Biology and Culture
-Stem Cells and Tissue Engineering Technology
-Tissue Formation, Function and Repair
-Models of Regeneration I

Optional modules include, but are not limited to:
-Ageing and Regenerative Medicine
-Transplantation Biology
-Finance and Business Management

Note that not all options may be available in any one year and that options will not proceed if the minimum student intake number is not reached.

Learning, Teaching & Assessment

The programme is delivered using a combination of lectures, practical classes, tutorials and seminars. Some modules will include group work. The core employability module will use visiting lecturers from industry to illustrate the potential employment avenues for graduates of this course. The course includes a research project, this is likely to be a laboratory-based project where students will collect and analyse their own data. Assessment methods employed include examinations and continuous assessment through coursework; these will differ for individual modules.

Career Opportunities

Completion of this course prepares students for a research-focussed role in industry, including the developing clinical field of stem cell therapies of regenerative medicine, or academia. Graduates can therefore expect to enter further research, in the form of a PhD or research assistant, or may undertake a career in the commercial or clinical sector.

Personal Development

Completion of this course prepares students for a research-focussed role in industry, including the developing clinical field of stem cell therapies of regenerative medicine, or academia. Graduates can therefore expect to enter further research, in the form of a PhD or research assistant, or may undertake a career in the commercial or clinical sector.

Read less
This programme offers a fascinating range of subjects, including molecular biology, genetics, biochemistry, microbiology, immunology, tissue engineering, clinical medicine, laboratory management and statistics. Read more
This programme offers a fascinating range of subjects, including molecular biology, genetics, biochemistry, microbiology, immunology, tissue engineering, clinical medicine, laboratory management and statistics.

It is accredited by the Institute of Biomedical Science and is based at one of the largest transfusion centres in the world, enabling visits to manufacturing, testing and tissue typing sections. You will learn from specialist lecturers based at the University, NHS Blood and Transplant (NHSBT), and NHS hospitals, and have an opportunity to become fully embedded in an NHS environment while you develop your knowledge.

The programme will give you extensive practical experience of transfusion and transplantation, allowing you to gain skills that directly relate to your future career. As well as being academically interesting, this continually developing area of healthcare science has a major impact on patients' quality of life.

The programme:
-Is one of just two specialist full-time courses in transfusion and transplantation, and is a recommended course at level seven in the Career Framework for Health.
-Gives you the opportunity to carry out your MSc project with NHSBT research staff within the transfusion centre.
-Has high contact hours, with teaching each day and practical classes.
-Includes a large skills component (eg writing in different formats, conference and publication skills, assignments with specific study aims).
-Includes laboratory management, a key skill required at level seven.
-Attracts a diverse range of students (about 50 per cent overseas students), including new graduates, those working in blood centres or blood transfusion/haematology in hospitals, or training to lecture in transfusion.

Programme structure

The programme comprises eight taught units that run from September to March and a research project that begins in May and runs until August. Example project topics have included:
-A study on red cell antibody formation in trauma patients
-Optimisation of platelet antigen detection using recombinant proteins
-Expression of red cell membrane proteins during large-scale red cell culture
-A comparison of stem cell mobilisation drugs for stem cell transplantation

Taught units
-Transfusion and Transplantation Science:
-Pathology of Transfusion and Transplantation Science
-Provision of Blood, Cells, Tissues and Organs
-Clinical Transfusion and Transplantation
-Transfusion and Transplantation in Practice (two units)
-Biostatistics
-Research and Laboratory Management

Assessments are designed to teach skills such as comprehension, scientific writing in different formats and conference skills, and to further knowledge in subject areas not covered in the lectures. Students must pass the taught component to be able to progress to the project.

Part-time students complete the Postgraduate Certificate components in their first year and the Postgraduate Diploma in the second. The project is usually taken during year three to complete the MSc.

Careers

Some of the career paths that graduates have followed include: blood transfusion and fetal medicine research, working for a bone marrow donor laboratory or bone marrow registry, biostatistics, graduate entry to medical school, NHS Clinical Scientist Training programme, and progression to PhD study in several areas including cancer biology and stem cell regeneration.

Read less
This course blends theory and practice to help you develop the skills required for a career in molecular and cellular biology. Our teaching focuses on integrated mammalian biology and animal models of human disease, drawing on our pioneering biomedical research. Read more

About the course

This course blends theory and practice to help you develop the skills required for a career in molecular and cellular biology. Our teaching focuses on integrated mammalian biology and animal models of human disease, drawing on our pioneering biomedical research.

Where your masters can take you

Graduates with skills in stem cell and regenerative medicine are in demand. Your degree will prepare you for a career in research in academia or industry, or in a clinical-related field. Our graduates are working all over the world – from the UK to China, India and the USA – and over half go on to doctoral study.

Learn from the experts

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research in this field. Our international reputation attracts highly motivated staff and students. Sheffield is a vibrant place to take a masters based on pioneering research.

Regular seminars from distinguished international experts help you to connect your studies to the latest developments. We’re also part of collaborative research groups for developmental biology, cell biology, physiology, pharmacology, neuroscience, models of human disease, stem cell science and regenerative medicine.

Our three research centres focus on translating laboratory research to the clinical environment: Bateson Centre, the Centre for Stem Cell Biology, and the Centre for Membrane Interactions and Dynamics.

Leaders in our field

We have a long track record of groundbreaking discoveries. These include breakthroughs in human stem cells for hearing repair, and the generation of animal models for Parkinson’s disease, schizophrenia, muscular dystrophies and their use for therapeutic studies.

Labs and equipment

We have purpose-built facilities for drosophila, zebrafish, chick and mouse genetics and for molecular physiology. Other facilities provide all the tools you’ll need to examine and analyse a range of cellular structures. We have an electron and a light microscopy centre, a PCR robotics facility, a flow cytometry unit and an RNAi screening facility.

Teaching and assessment

There are lectures, practical classes, tutorials and seminars. In small group teaching classes you’ll discuss, debate and present on scientific and ethical topics. Laboratory placements within the department provide you with one-to-one attention, training and support to do your individual research project. Assessment is by formal examinations, coursework assignments, debates, poster presentations and a dissertation.

Our teaching covers ethics, practical scientific skills and an overview of the current literature. You’ll also develop useful career skills such as presentation, communication and time management.

Core modules

Literature Review; Practical Research Project; Analysis of Current Science; Ethics and Public Understanding.

Examples of optional modules

Integrated Mammalian Biology; Practical Cell Biology; Practical Developmental Genetics; Cancer Biology; Modelling Human Diseases; Epithelia in Health and Disease.

Read less
Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production?… Read more
Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production? Would you like to know whether it is possible to produce bio-polymers (plastics) and biofuels from municipal or agricultural waste? If you are thinking of a career in the pharma or biotech industries, the Biochemical Engineering MSc could be the right programme for you.

Degree information

Our MSc programme focuses on the core biochemical engineering principles that enable the translation of advances in the life sciences into real processes or products. Students will develop advanced engineering skills (such as bioprocess design, bioreactor engineering, downstream processing), state-of-the-art life science techniques (such as molecular biology, vaccine development, microfluidics) and essential business and regulatory knowledge (such as management, quality control, commercialisation).

Three distinct pathways are offered tailored for graduate scientists, engineers, or biochemical engineers. Students undertake modules to the value of 180 credits. The programme offers three different pathways (for graduate scientists, engineers, or biochemical engineers) and consists of core taught modules (120 credits) and a research or design project (60 credits).

Core modules for graduate scientists
-Advanced Bioreactor Engineering
-Bioprocess Synthesis and Process Mapping
-Bioprocess Validation and Quality Control
-Commercialisation of Bioprocess Research
-Fluid Flow and Mixing in Bioprocesses
-Heat and Mass Transfers in Bioprocesses
-Integrated Downstream Processing
-Mammalian Cell Culture and Stem Cell Processing

Core modules for graduate engineers
-Advanced Bioreactor Engineering
-Bioprocess Validation and Quality Control**
-Cellular Functioning from Genome to Proteome
-Commercialisation of Bioprocess Research
-Integrated Downstream Processing
-Mammalian Cell Culture and Stem Cell Processing
-Metabolic Processes and Regulation
-Structural Biology and Functional Protein Engineering
-Bioprocess Microfluidics*
-Bioprocess Systems Engineering*
-Bioprocessing and Clinical Translation*
-Cell Therapy Biology*
-Industrial Synthetic Biology*
-Sustainable Bioprocesses and Biorefineries*
-Vaccine Bioprocess Development*

*Core module for graduate biochemical engineers; **core module for both graduate engineers and graduate biochemical engineers

Research project/design project
All MSc students submit a 10,000-word dissertation in either Bioprocess Design (graduate scientists) or Bioprocess Research (graduate engineers and graduate biochemical engineers).

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, and individual and group activities. Guest lectures delivered by industrialists provide a professional and social context. Assessment is through unseen written examinations, coursework, individual and group project reports, individual and group oral presentations, and the research or design project.

Careers

The rapid advancements in biology and the life sciences create a need for highly trained, multidisciplinary graduates possessing technical skills and fundamental understanding of both the biological and engineering aspects relevant to modern industrial bioprocesses. Consequently, UCL biochemical engineers are in high demand, due to their breadth of expertise, numerical ability and problem-solving skills. The first destinations of those who graduate from the Master's programme in biochemical engineering reflect the highly relevant nature of the training delivered.

Approximately three-quarters of our graduates elect either to take up employment in the relevant biotechnology industries or study for a PhD or an EngD, while the remainder follow careers in the management, financial or engineering design sectors.

Top career destinations for this degree:
-Mechanics of Material, Imperial College London
-PhD Biochemical Engineering, University College London (UCL)
-Bio-Pharmaceutical Engineer, GSK (GlaxoSmithKline)
-Associate Consultant, PwC
-Genetics Technician, Chinese Academy Of Sciences

Employability
The department places great emphasis on its ability to assist its graduates in taking up exciting careers in the sector. UCL alumni, together with the department’s links with industrial groups, provide an excellent source of leads for graduates. Over 1,000 students have graduated from UCL with graduate qualifications in biochemical engineering at Master’s or doctoral levels. Many have gone on to distinguished and senior positions in the international bioindustry. Others have followed independent academic careers in universities around the world.

Why study this degree at UCL?

UCL was a founding laboratory of the discipline of biochemical engineering, established the first UK department and is the largest international centre for bioprocess teaching and research. Our internationally recognised MSc programme maintains close links with the research activities of the Advanced Centre for Biochemical Engineering which ensure that lecture and case study examples are built around the latest biological discoveries and bioprocessing technologies.

UCL Biochemical Engineering co-ordinates bioprocess research and training collaborations with more than a dozen UCL departments, a similar number of national and international university partners and over 40 international companies. MSc students directly benefit from our close ties with industry through their participation in the Department’s MBI® Training Programme.

The MBI® Training Programme is the largest leading international provider of innovative UCL-accredited short courses in bioprocessing designed primarily for industrialists. Courses are designed and delivered in collaboration with 70 industrial experts to support continued professional and technical development within the industry. Our MSc students have the unique opportunity to sit alongside industrial delegates, to gain deeper insights into the industrial application of taught material and to build a network of contacts to support their future careers.

Read less
This Master's degree in Cell and Gene Therapy provides an in-depth education in this cutting-edge and rapidly developing field. Read more
This Master's degree in Cell and Gene Therapy provides an in-depth education in this cutting-edge and rapidly developing field. It is delivered by scientists and clinicians researching, developing and testing new treatments for genetically inherited and acquired diseases using gene delivery technology, stem cell manipulation and DNA repair techniques.

Degree information

The degree covers all aspects of the subject, including basic biomedical science, molecular basis of disease, current and developing technologies and clinical applications. Students also receive vocational training in research methodology and statistics, how to perform a research project and complete a practical laboratory-based project.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a research dissertation (60 credits). A Postgraduate Diploma (120 credits, full-time nine months or flexible up to five years) is offered. A Postgraduate Certificate (60 credits, full-time 12 weeks, part-time nine months, or up to two years flexible) is offered.

Core modules
-Molecular Aspects of Cell and Gene Therapy
-Clinical Applications of Cell and Gene Therapy
-Research Methodology and Statistics
-Stem Cell and Tissue Repair

Research Methodology and Statistics is not a core module for the PG Certificate. Students of the PG Certificate can choose an optional module.

Optional modules
-Foundations of Biomedical Sciences
-Applied Genomics
-HIV Frontiers from Research to Clinics
-Molecular and Genetic Basis of Paediatric Disease
-Understanding Research and Critical Appraisal: Biomedicine
-Laboratory Methods in Biomedical Science
-Research Methodology and Statistics

Dissertation/report
All MSc students undertake an independent research project which culminates in a dissertation.

Teaching and learning
Teaching includes lectures, seminars, problem classes and tutorials. Assessment varies depending on the module, but includes written coursework, multiple-choice questions, written examinations, a practical analysis examination and the dissertation.

Careers

The majority of our graduates have gone on to secure PhD places. Please see our programme website to read testimonials from past students which include their destinations following graduation.

Employability
This novel programme aims to equip students for careers in research, education, medicine and business in academic, clinical and industrial settings. Examples of potential careers could include academic research and/or lecturing in a university or other higher education setting, conducting clinical trials as part of a team of clinicians, scientists and allied health professionals, monitoring and analysing the results of clinical trials as part of a clinical trials unit, developing new therapies or intellectual property in the pharmaceutical industry or other business ventures.

Why study this degree at UCL?

The Institute of Child Health (ICH), and its clinical partner Great Ormond Street Hospital (GOSH), is the largest centre in Europe devoted to clinical, basic research and post-graduate education in children's health, including haematopoietic stem cell transplantation (HSCT) and gene therapy.

The UCL School of Life & Medical Sciences (SLMS) has the largest concentration of clinicians and researchers active in cell and gene therapy research in Europe. This is reflected by the many groups conducting high-quality research and clinical trials in the field including researchers at the Institute of Child Health, the Division of Infection and Immunity, the Institute of Ophthalmology, the Institute for Women's Health, the Institute of Genetics and the Cancer Institute.

Read less
We invite postgraduate research proposals in a number of disease areas that impact significantly on patient care. We focus on exploring the mechanisms of disease, understanding the ways disease impacts patients’ lives, utilising new diagnostic and therapeutic techniques and developing new treatments. Read more

Course overview

We invite postgraduate research proposals in a number of disease areas that impact significantly on patient care. We focus on exploring the mechanisms of disease, understanding the ways disease impacts patients’ lives, utilising new diagnostic and therapeutic techniques and developing new treatments.

As a student in Biomedicine you will be registered with a University research institute, for many this is the Institute for Cellular Medicine (ICM). You will be supported in your studies through a structured programme of supervision and training via our Faculty of Medical Sciences Graduate School.

We undertake the following areas of research and offer MPhil, PhD and MD supervision in: Applied immunobiology (including organ and haematogenous stem cell transplantation)

Dermatology (cell signalling in normal and diseased skin including mechanotransduction and response to ultraviolet radiation; dermatopharmacology including mechanisms of psoriatic plaque resolution in response to therapy; stem cell biology and gene therapy; regulation of apoptosis/autophagy; non-melanoma skin cancer/melanoma biology and therapy)

Diabetes (mechanisms of insulin action and glucose homeostasis; insulin secretion and pancreatic beta-cell function; diabetic complications; stem cell therapies; genetics and epidemiology of diabetes)

Diagnostic and therapeutic technologies (bacterial infection; chronic liver failure; cardiovascular and degenerative diseases)

Kidney disease (haemolytic uraemic syndrome; renal inflammation and fibrosis; the immunology of transplant rejection; tubular disease; cystic kidney disease)

The liver (primary biliary cirrhosis (epidemiology, immunobiology and genetics); alcoholic and non-alcoholic fatty liver disease; fibrosis; the genetics of other autoimmune and viral liver diseases)

Magnetic Resonance (MR), spectroscopy and imaging in clinical research (Our studies cover a broad range of topics (including diabetes, dementia, neuroscience, hepatology, cardiovascular, neuromuscular disease, metabolism, and respiratory research projects), but have a common theme of MR technical development and its application to clinical research.)

Musculoskeletal disease (including auto-immune arthritis) (what causes the destruction of joints (cell signalling, injury and repair); how cells in the joints respond when tissue is lost (cellular interactions); whether we can alter the immune system and ‘switch off’ auto-immune disease (targeted therapies and diagnostics))

Pharmacogenomics (including complex disease genetics)

Reproductive and vascular biology (the regulation of trophoblast and uNk cells; transcriptional and post-translational features of uterine function; cardiac and vascular remodelling in pregnancy)

Respiratory disease (acute lung injury - lung infections; chronic obstructive pulmonary disease; fibrotic disease of the lung, both before and after lung transplantation)

Pharmacology, Toxicology and Therapeutics

Newcastle University offers a joint doctoral PhD degree programme in biomedical sciences with the Faculty of Medicine, Universitas Indonesia (FKUI).

You spend at least one year of your studies in each university and are jointly supervised by staff from Newcastle University and Universitas Indonesia. This leads to a single award from both institutions. The development of the Joint Doctoral PhD programme has been generously supported under the Prime Minister's Initiative 2 Programme and the British Council Indonesia.

Training and Skills

As a research student you will receive a tailored package of academic and support elements to ensure you maximise your research and future career. The academic information is in the programme profile and you will be supported by our Faculty of Medical Sciences Graduate School.

For further information see http://www.ncl.ac.uk/postgraduate/courses/degrees/biomedicine-mphil-phd-md/#training&skills

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/biomedicine-mphil-phd-md/#howtoapply

Read less
Regenerative Medicine. MSc ( 1 year Full-time ). Overview. Regenerative medicine is an interdisciplinary field, which aims to repair diseased or damaged tissues using biological or cell-based technologies. Read more
Regenerative Medicine
MSc ( 1 year Full-time )

Overview

Regenerative medicine is an interdisciplinary field, which aims to repair diseased or damaged tissues using biological or cell-based technologies. It is a rapidly growing area of biomedical research that encompasses stem cell biology, tissue engineering, drug delivery, and nanotechnology. This MSc course provides advanced, multi-disciplinary training in the scientific principles and clinical applications of regenerative medicine, and is delivered jointly by Barts and The London School of Medicine and Dentistry and the School of Engineering and Materials Science.

Taught modules will develop a strong scientific foundation in the biology of stem cells and regeneration and the fundamental principles of biomaterials, tissue engineering and cellular reprogramming. Through an intensive 12-week research project, students will then gain hands on experience applying these concepts to problems in human health and the development of novel regenerative technologies.

Upon completion of the MSc in Regenerative Medicine, students will be well placed for further training at the PhD level or professional careers in the biotechnology and pharmaceutical industries.

Structure
The MSc in Regenerative Medicine is a one year, full-time programme. Students are required to complete 180 credits comprising taught and research modules.


Taught Modules (15 credits each)

o Cellular and Molecular Basis of Regeneration
o Stem Cell and Developmental Biology
o Advanced Tissue Engineering and Regenerative Medicine
o Research Skills and Methodology
o Biomaterials in Regenerative Medicine
o Tissue-specific Stem Cells
o Induced Pluripotent Stem Cells and Genome Engineering
o Ethics and Regulatory Affairs

Research Project in Regenerative Medicine (60 credits)
During the final 12 weeks of the course, students will work full time on their laboratory-based research projects. Students will select research projects from a wide range of topics in regenerative medicine. Examples include research on the cellular and molecular aspects of tissue regeneration, disease pathogenesis, development of stem cell therapies, design of novel nano-biotechnologies, or engineering biomaterials and tissue scaffolds.


Entry requirements
As a multi-disciplinary course, the MSc is appropriate for a wide range of students. Graduates with degrees in biological sciences or medicine will gain an in-depth understanding of the cellular and molecular aspects of regenerative medicine as well as an introduction to the interdisciplinary fields of biomaterials and tissue engineering. Similarly, students with a physical sciences background will have the opportunity to broaden their experiences and acquire new skills in the biological sciences.
Admission to the course is selective, and based upon academic credentials, research experience, and motivation. At a minimum, students must have an undergraduate degree equivalent to UK second-class honours from a recognised academic institution. Applicants are required to submit a statement of purpose and letter of recommendation with their application.
Applications are accepted all year round, but there are limited places to ensure high-quality training, so please apply early to avoid disappointment.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X